Bacteria could become new biomarker for testing patients’ reaction to cancer treatments which would give microbiologists and clinical laboratories a new tool for aiding diagnosis and in the selection of appropriate therapies
In a surprising study conducted at King’s College London and Guy’s and St Thomas’ NHS Foundation Trust, British scientists have discovered that a common bacteria found in the mouth may be able to “melt” certain cancers. The bacteria could also be used as a clinical laboratory biomarker to determine how patients may react to specific cancer treatments.
The researchers found that the presence of Fusobacterium can help neutralize head and neck cancers and provide better outcomes in patients with those diseases, according to a Kings College London news release.
“In essence, we found that when you find these bacteria within head and neck cancers, [patients] have much better outcomes,” said Miguel Reis Ferreira, MD, PhD, clinical oncologist at Guy’s and St Thomas’, adjunct senior clinical lecturer at King’s College London and senior author of the study, in the news release. “The other thing that we found is that in cell cultures this bacterium is capable of killing cancer.”
“This research reveals that these bacteria play a more complex role than previously known in their relationship with cancer—that they essentially melt head and neck cancer cells,” said Miguel Reis Ferreira, MD, PhD (above), clinical oncologist at Guy’s and St Thomas’, adjunct senior clinical lecturer at King’s College London and senior author of the study, in a news release. “However, this finding should be balanced by their known role in making cancers such as those in the bowel get worse.” Should these findings prove sound, clinical laboratories may soon have a new biomarker for testing patients’ reaction to cancer treatments. (Photo copyright: King’s College London.)
Researchers Surprised by Their Findings
The researchers began their research by using computer modeling to identify the types of bacteria to further scrutinize. They then studied the effect of those bacteria on cancer cells by analyzing data on 155 head and neck cancer patients whose tumor information had been submitted to the Cancer Genome Atlas. Head and neck cancers include cancers of the mouth, throat, voice box, nose, and sinuses.
The scientists placed Fusobacterium in petri dishes and kept the bacteria there for a few days. They observed the effect of that bacteria on head and neck cancers and discovered there was a 70% to 90% reduction in the number of viable cancer cells after being infused with the Fusobacterium.
Due to the known correlation between Fusobacterium and colorectal cancer, the team was astonished to find the cancer cells present in head and neck cancers had almost been eradicated.
In the news release, Ferreira said the researchers initially expected the Fusobacterium to boost the growth of the cancers and render those cancers more resistant to treatments like radiotherapy. However, they found the opposite to be true.
“The research in colorectal cancer indicates that these bacteria are bad, and that was kind of ingrained into our minds, and we were expecting to find the same thing,” said Ferreira in a Press Association (PA) interview, The Independent reported. “When we started finding things the other way around, we were brutally surprised.”
Predicting Better Outcomes, Lower Risk of Death
“You put it in the cancer at very low quantities and it just starts killing it very quickly,” Ferreira said in the King’s College London news release. “What we’re finding is that this little bug is causing a better outcome based on something that it’s doing inside the cancer. So we are looking for that mechanism at present, and it should be the theme for a new paper in the very short-term future.”
In addition, the scientists discovered that patients with Fusobacterium within their cancer showed improved survival rates when compared to those without the bacteria. The presence of the bacteria correlated with a 65% reduction in death risk.
“What it could mean is that we can use these bacteria to better predict which patients are more likely to have good or worse outcomes, and based on that, we could change their treatment to make it kinder in the patients that have better outcomes or make it more intense in patients that are more likely to have their cancers come back,” said Ferreira in the PA interview.
“Our findings are remarkable and very surprising. We had a eureka moment when we found that our international colleagues also found data that validated the discovery,” said Anjali Chander, PhD student, senior clinical research fellow, Comprehensive Cancer Center, King’s College London, and lead author of the study in the news release.
More to Learn about Bacteria as Biomarkers
According to the National Cancer Institute (NCI), more than 71,000 people will be diagnosed with one of the major types of head and neck cancer this year in the US and more than 16,000 patients will die from these diseases.
The Global Cancer Observatory (GLOBOCAN) estimates there are about 900,000 new cases of head and neck cancers diagnosed annually worldwide with approximately 450,000 deaths attributed to those cancers every year. GLOBOCAN also claims head and neck cancers are the seventh most common cancer globally.
More research and studies are needed to confirm the virtue of this latest venture into the human microbiome. However, the preliminary results of this study appear promising.
The study of human microbiota continues to bring unexpected surprises, as scientists gain more insights and identify specific strains of bacteria that may have a positive or negative influence on an individual’s health. These discoveries may give microbiologists and clinical laboratories intriguing new biomarkers that could be incorporated into medical tests that aid diagnosis and the selection of appropriate therapies.
As this therapeutic approach gains regulatory approval, clinical laboratory tests to determine condition of patient’s gut microbiota and monitor therapy will be needed
Some developments in the clinical laboratory industry are less about diagnostic tests and more about novel approaches to therapy. Such is the case with a new carbon bead technology developed by researchers from University College London (UCL) and the Royal Free Hospital intended to remove harmful bacteria toxins from the gut before they leak to the liver. The macroporous beads, which come in small pouches, are delivered orally and could be utilized in the future to treat a number of diseases.
Why is this relevant? Once a new treatment is accepted for clinical use, demand increases for a clinical laboratory test that confirms the therapy will likely work and to monitor its progress.
In collaboration with Yaqrit, a UK-based life sciences company that develops treatments for chronic liver disease, the UCL and Royal Free Hospital scientists engineered the carbon beads—known as CARBALIVE—to help restore gut health. They measured the technology’s impact on liver, kidney, and brain function in both rats and mice.
“The influence of the gut microbiome on health is only just beginning to be fully appreciated,” said Rajiv Jalan, PhD, Professor of Hepatology at UCL in a press release. “When the balance of the microbiome is upset, ‘bad’ bacteria can proliferate and out-compete the ‘good’ bacteria that keeps the gut healthy.
“One of the ways [the ‘bad’ bacteria] do this is by excreting endotoxin, toxic metabolites, and cytokines that transform the gut environment to make it more favorable to them and hostile to good bacteria,” he continued. “These substances, particularly endotoxin, can trigger gut inflammation and increase the leakiness of the gut wall, resulting in damage to other organs such as the liver, kidneys, and brain.”
“I have high hopes that the positive impact of these carbon beads in animal models will be seen in humans, which is exciting not just for the treatment of liver disease but potentially any health condition that is caused or exacerbated by a gut microbiome that doesn’t work as it should,” said Rajiv Jalan, PhD (above), Professor of Hepatology, University College London, in a press release. “This might include conditions such as irritable bowel syndrome (IBS), for example, which is on the rise in many countries.” Though not a clinical laboratory diagnostic test, new therapies like CARBALIVE could be a boon to physicians treating patients with IBS and other gastrointestinal conditions.
Developing the Carbon Beads
The team discovered CARBALIVE is effective in the prevention of liver scarring and injury in animals with cirrhosis when ingested daily for several weeks. They also found a reduced mortality rate in test animals with acute-on-chronic-liver-failure (ACLF).
After achieving success with CARBALIVE in animals, the researchers tested the technology on 28 cirrhosis patients. The carbon beads proved to be safe for humans and had inconsequential side effects.
“In cirrhosis, a condition characterized by scarring of the liver, it is known that inflammation caused by endotoxins can exacerbate liver damage,” Jalan explained. “Part of the standard treatment for cirrhosis is antibiotics aimed at controlling bad bacteria, but this comes with the risk of antibiotic resistance and is only used in late-stage disease.”
The beads, which are smaller than a grain of salt, contain an exclusive physical structure that absorbs large and small molecules in the gut. They are intended to be taken with water at bedtime as harmful bacteria is more likely to circulate through the body at night which could result in damage. The carbon beads do not kill bacteria, which decreases the risk of antibiotic resistance. They eventually pass through the body as waste.
“They work by absorbing the endotoxins and other metabolites produced by ‘bad’ bacteria in the gut, creating a better environment for the good bacteria to flourish and helping to restore microbiome health,” said Michal Kowalski, M.Sc.Eng, Director and VP of Operations at Yaqrit, in the UCL news release.
“This prevents these toxins from leaching into other areas of the body and causing damage, as they do in cirrhosis,” he added. “The results in animal models are very positive, with reduction in gut permeability, liver injury, as well as brain and kidney dysfunction.”
Additional Research
The researchers plan to perform further clinical trials in humans to determine if the carbon beads are effective at slowing the progression of liver disease. If the benefits that were observed in lab animals prove to be compelling in humans, the technology may become an invaluable tool for the treatment of liver disease and other diseases associated with poor microbiome health in the future.
According to the American Liver Foundation, 4.5 million adults in the US have been diagnosed with liver disease. However, it is estimated that 80 to 100 million adults have some form of fatty liver disease and are unaware of it. Liver disease was the 12th leading cause of death in the US in 2020 with 51,642 adults perishing from the disease that year.
According to BMC Public Health, globally there were 2.05 million new cases of liver cirrhosis diagnosed in 2019. In that year, 1.47 million people around the world died from the disease.
More research and clinical studies are needed before this novel technology can be used clinically. When and if that happens, the demand for clinical laboratory tests that measure microbiome deficiencies and monitor patient progress during therapy will likely be high.
With further research, clinical laboratories may soon be performing macrobiotic testing to measure certain bacterial levels in patients’ gut bacteria
New insights from the University of Chicago (UChicago) into how human microbiota (aka, gut bacteria) play a role in food allergies has the potential to change the way a number of gastrointestinal health conditions are diagnosed and treated. This would give microbiologists and clinical laboratories a greater role in helping physicians diagnose, treat, and monitor patients with these health issues.
Past research has shown that certain gut bacteria can prevent antigens that trigger allergic reactions from entering the bloodstream. For example, Clostridium bacteria in the stomach produce a short-chain fatty acid known as butyrate, a metabolite that promotes the growth of healthy bacteria in the gut. This helps keep the microbiome in balance.
One way butyrate is created in the gut is through the fermentation of fiber. However, a lack of fiber in the diet can deplete the production of butyrate and cause the microbiome to be out of balance. When this happens, a state known as dysbiosis occurs that disrupts the microbiome and can lead to food allergies.
Without butyrate, the gut lining can become permeable and allow food to leak out of the gastrointestinal tract and into the body’s circulatory system. This reaction can trigger a potentially fatal anaphylactic response in the form of a food allergy. Thus, eating enough fiber is critical to the production of butyrate and to maintaining a balanced microbiome.
But today’s western diet can be dangerously low in soluble fiber. Therefore, the scientists at the University of Chicago have developed “a special type of polymeric molecule to deliver a crucial metabolite produced by these bacteria directly to the gut, where it helps restore the intestinal lining and allows the beneficial bacteria to flourish. … these polymers, called micelles, can be designed to release a payload of butyrate, a molecule that is known to help prevent food allergies, directly in the small and large intestines,” according to a UChicago news release.
This will be of interest to microbiologists, in particular. It’s another example of researchers connecting a specific species of bacteria in the human microbiome to a specific benefit.
“It’s very unlikely that butyrate is the only relevant metabolite, but the beauty of this platform is that we can make polymers with other microbial metabolites that could be administered in conjunction with butyrate or other therapies,” said Cathryn Nagler, PhD (above), Bunning Family Professor in the Biological Sciences Division and Pritzker School of Molecular Engineering at UChicago and a senior author of the study. “So, the potential for the polymer platform is pretty much wide open.” As further research validates these findings, clinical labs are likely to be doing microbiomic testing to monitor these therapies. (Photo copyright: University of Chicago.)
Restoring Butyrate in the Gut
One way to treat this anomaly has been through a microbiota transplant—also called a fecal biota transplant—where the administration of a solution of fecal matter is transplanted from a donor into the intestinal tract of the recipient. This transplant alters the recipient’s gut microbial composition to a healthier state, but it has had mixed results.
So, the UChicago researchers went in another direction (literally). They created an oral solution of butyrate and administered it to mice in the lab. The purpose of the solution was to thwart an allergic reaction when the mice were exposed to peanuts.
But there was a problem with their oral solution. It was repulsive.
“Butyrate has a very bad smell, like dog poop and rancid butter, and it also tastes bad, so people wouldn’t want to swallow it,” Shijie Cao, PhD, Postdoctoral Scientist at the Pritzker School of Molecular Engineering at UChicago and one of the researchers who worked on the project, told Medical News Today.
The researchers developed a new configuration of polymers that masked the butyrate. They then delivered these polymer micelles directly into the digestive systems of mice that lacked healthy gut bacteria or a proper gut linings.
The treatment restored the microbiome by increasing the production of peptides that obliterate harmful bacteria. This allowed more of the beneficial butyrate-producing bacteria to emerge, which protected the mice from an anaphylactic reaction to peanuts and even reduced the symptom severity in an ulcerative colitis model.
“We were delighted to see that our drug both replenished the levels of butyrate present in the gut and helped the population of butyrate-producing bacteria to expand,” said Cathryn Nagler, PhD, Bunning Family Professor in the Biological Sciences Division and Pritzker School of Molecular Engineering at the University of Chicago and a senior author of the study, in the press release. “That will likely have implications not only for food allergy and inflammatory bowel disease (IBD), but also for the whole set of non-communicable chronic diseases that have been rising over the last 30 years, in response to lifestyle changes and overuse of antibiotics in our society.”
Future Benefits of UChicago Treatment
According to data from the Asthma and Allergy Foundation of America, about 20 million Americans suffered from food allergies in 2021. This includes approximately 16 million (6.2%) of adults and four million (5.8%) of children. The most common allergens for adults are shellfish, peanuts, and tree nuts, while the most common allergens for children are milk, eggs, and peanuts.
The best way to prevent an allergic reaction to a trigger food is strict avoidance. But this can be difficult to ensure outside of the home. Therefore, scientists are searching for ways to prevent food allergies from happening in the first place. The micelle technology could be adapted to deliver other metabolites and molecules which may make it a potential platform for treating allergies as well as other inflammatory gastrointestinal diseases.
“It’s a very flexible chemistry that allows us to target different parts of the gut,” said Jeffrey Hubbell, PhD, Eugene Bell Professor in Tissue Engineering and Vice Dean and Executive Officer at UChicago’s Pritzker School of Molecular Engineering and one of the project’s principal investigators, in the UChicago news release. “And because we’re delivering a metabolite like butyrate, it’s antigen-agnostic. It’s one agent for many different allergic indications, such as peanut or milk allergies. Once we begin working on clinical trials, that will be a huge benefit.”
Nagler and Hubbell have co-founded a company called ClostraBio to further the development of butyrate micelles into a commercially available treatment for peanut and other food allergies. They hope to begin clinical trials within the next 18 months and expand the technology to other applications as well.
Further research and clinical trials are needed to prove the validity of using polymer micelles in the treatment of diseases. But it is possible that clinical laboratories will be performing microbiomic testing in the future to help alleviate allergic reactions to food and other substances.
Collected data could give healthcare providers and clinical laboratories a practical view of individuals’ oral microbiota and lead to new diagnostic assays
When people hear about microbiome research, they usually think of the study of gut bacteria which Dark Daily has covered extensively. However, this type of research is now expanding to include more microbiomes within the human body, including the oral microbiome—the microbiota living in the human mouth.
One example is coming from Genefitletics, a biotech company based in New Delhi, India. It recently launched ORAHYG, the first and only (they claim) at-home oral microbiome functional activity test available in Asia. The company is targeting the direct-to-consumer (DTC) testing market.
According to the Genefitletics website, the ORAHYG test can decode the root causes of:
“Using oral microbial gene expression sequencing technology and its [machine learning] model, [Genefitletics] recently debuted its oral microbiome gene expression solution, which bridges the gap between dentistry and systemic inflammation,” ETHealthworld reported.
“The molecular insights from this test would give an unprecedented view of functions of the oral microbiome, their interaction with gut microbiome and impact on metabolic, cardiovascular, cognitive, skin, and autoimmune health,” BioSpectrum noted.
“Microbes, the planet Earth’s original inhabitants, have coevolved with humanity, carry out vital biological tasks inside the body, and fundamentally alter how we think about nutrition, medicine, cleanliness, and the environment,” Sushant Kumar (above), founder and CEO of Genefitletics, told the Economic Times. “This has sparked additional research over the past few years into the impact of the trillions of microorganisms that inhabit the human body on our health and diverted tons of funding into the microbiome field.” Clinical laboratories may eventually see an interest and demand for testing of the oral microbiome. (Photo copyright: ETHealthworld.)
Imbalanced Oral Microbiome Can Trigger Disease
The term microbiome refers to the tiny microorganisms that reside on and inside our bodies. A high colonization of these microorganisms—including bacteria, fungi, yeast, viruses, and protozoa—live in our mouths.
“Mouth is the second largest and second most diverse colonized site for microbiome with 770 species comprising 100 billion microbes residing there,” said Sushant Kumar, founder and CEO of Genefitletics, BioSpectrum reported. “Each place inside the mouth right from tongue, throat, saliva, and upper surface of mouth have a distinctive and unique microbiome ecosystem. An imbalanced oral microbiome is said to trigger onset and progression of type 2 diabetes, arthritis, heart diseases, and even dementia.”
The direct-to-consumer ORAHYG test uses a saliva sample taken either by a healthcare professional or an individual at home. That sample is then sequenced through Genefitletics’ gene sequencing platform and the resulting biological data set added to an informatics algorithm.
Genefitletics’ machine-learning platform next converts that information into a pre-symptomatic molecular signature that can predict whether an individual will develop a certain disease. Genefitletics then provides that person with therapeutic and nutritional solutions that can suppress the molecules that are causing the disease.
“The current industrial healthcare system is really a symptom care [system] and adopts a pharmaceutical approach to just make the symptoms more bearable,” Kumar told the Economic Times. “The system cannot decode the root cause to determine what makes people develop diseases.”
Helping People Better Understand their Health
Founded in 2019, Genefitletics was created to pioneer breakthrough discoveries in microbial science to promote better health and increase longevity in humans. The company hopes to unravel the potential of the oral microbiome to help people fend off illness and gain insight into their health.
“Microorganisms … perform critical biological functions inside the body and transform our approach towards nutrition, medicine, hygiene and environment,” Kumar told CNBC. “It is important to understand that an individual does not develop a chronic disease overnight.
“It starts with chronic inflammation which triggers pro-inflammatory molecular indications. Unfortunately, these molecular signatures are completely invisible and cannot be measured using traditional clinical grade tests or diagnostic investigations,” he added. “These molecular signatures occur due to alteration in gene expression of gut, oral, or vaginal microbiome and/or human genome. We have developed algorithms that help us in understanding these alterations way before the clinical symptoms kick in.”
Genefitletics plans to utilize individuals’ collected oral microbiome data to determine their specific nutritional shortcomings, and to develop personalized supplements to help people avoid disease.
The company also produces DTC kits that analyze gut and vaginal microbiomes as well as a test that is used to evaluate an infant’s microbiome.
“The startup wants to develop comparable models to forecast conditions like autism, PCOS [polycystic ovarian syndrome], IBD [Inflammatory bowel disease], Parkinson’s, chronic renal [kidney] disease, anxiety, depression, and obesity,” the Economic Times reported.
Time will tell whether the oral microbiome tests offered by this company prove to be clinically useful. Certainly Genefitletics hopes its ORAHYG test can eventually provide healthcare providers—including clinical laboratory professionals—with a useful view of the oral microbiome. The collected data might also help individuals become aware of pre-symptomatic conditions that make it possible for them to seek confirmation of the disease and early treatment by medical professionals.
These new insights might lead to a new line of clinical laboratory testing, particularly if the results could guide the patient to microbiome-based repellents that would remain effective for months once applied
Researchers are beginning to identify what compounds make individuals more attractive to mosquitos. That is a first step in the development of a biomarker that could be developed into a clinical laboratory test. Question is: would there be enough consumers wanting to do a lab test to determine if they were highly attractive to mosquitos, thus making this a revenue-generating test for labs?
The SA article reported on their study published in the journal Cell titled, “Differential Mosquito Attraction to Humans Is Associated with Skin-Derived Carboxylic Acid Levels.” The researchers, according to SA, found that individual humans have “a unique scent profile made up of different chemical compounds” and that “mosquitoes were most drawn to people whose skin produces high levels of carboxylic acids.” The researchers also found that “attractiveness to mosquitoes remained steady over time, regardless of changes in diet or grooming habits.”
At a minimum, there would be widespread consumer interest to at least understand why some individuals get more mosquito bites than others. What may be of particular interest to microbiologists is the statement by molecular biologist Omar Akbari, PhD, of the University of California, San Diego, who told Scientific American that by “taking human-colonizing skin bacteria … and engineering them in such a way that they can either express a repellent compound or be able to degrade something that’s attractive,” a mosquito repellant could be developed that would last for months once applied.
“This study clearly shows that these acids are important,” neurogeneticist Matthew DeGennaro, PhD (above), told CNN. “… how the mosquitoes perceive these carboxylic acids is interesting because these particular chemicals … are hard to smell at a distance. It could be that these chemicals are being altered by … the skin microbiome … if we understand why mosquitoes find a host, we can design new repellents that will block the mosquitoes from sensing those chemicals, and this could be used to improve our current repellents.” Clinical laboratory testing will be needed to produce biomarkers for developing such improved repellents. (Photo copyright: Laboratory of Tropical Genetics.)
Clinical Laboratory Testing Needed to Identify Levels of Carboxylic Acids
To complete their study, the researchers had 64 participants wear nylon stockings for six hours on their arms to get their unique scent into the fabric. The scent on the stockings was not discernible to the human nose, but it was to the mosquitos.
Two pieces of the nylon were then placed in a closed container with Aedes aegypti mosquitoes. The researchers found that certain samples were more popular with the mosquitos than others. Upon further analysis the researchers found that the most popular samples came from subjects with higher levels of carboxylic acids, and the least popular had the lowest levels. The scientists ran the test with the same participants several times over three years and the results remained largely the same.
Carboxylic acid is an organic compound found in humans in sebum, the oily layer protecting our skin. The level at which humans release carboxylic acid varies from person to person. And there is no discernible way the human nose can determine whether a person has the level of carboxylic acid on the skin that mosquitos find desirable. The answer would need to be determined by a diagnostic test performed in a clinical laboratory.
Although the development of a test to determine someone’s susceptibility to mosquitos may be far away, there could be significant consumer interest in developing such a test.
“The question of why some people are more attractive to mosquitoes than others—that’s the question that everybody asks,” Leslie B. Vosshall, PhD, Chief Scientific Officer, Howard Hughes Medical Institute, who led the research team to find out why some people are more attractive to mosquitos than others, told Scientific American. “My mother, my sister, people in the street, my colleagues—everybody wants to know.” She credits their interest as the inspiration for embarking on the study.
“Understanding what makes someone a ‘mosquito magnet’ will suggest ways to rationally design interventions such as skin microbiota manipulation to make people less attractive to mosquitoes. We propose that the ability to predict which individuals in a community are high attractors would allow for more effective deployment of resources to combat the spread of mosquito-borne pathogens,” the researchers wrote in their Cell paper.
Preventing Spread of Deadly Diseases
Although mosquitos are an annoyance, they also can be dangerous vectors of disease.
“Every bite of these mosquitoes puts people into public health danger. Aedes aegypti mosquitoes are vectors for dengue, yellow fever, and Zika,” Vosshall told CNN. “Those people who are magnets are going to be much more likely to be infected with viruses.”
Further research into these early findings may help develop diagnostic tests to protect against the spread of these diseases and identify individuals who are more attractive to the mosquitos, and therefore, more likely to contract and spread disease.
Being able to identify which individuals are mosquito magnets could help keep individuals safe from dangerous diseases, and development of a better repellent could also make outdoor summer events more bearable for the (unfortunately) popular among the pests. Medical laboratory tests associated with determining an individual’s susceptibility to mosquito bites could give clinical laboratories a new way to add value to consumers and patients.