News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Chicago Study Determines Certain Gut Bacteria Can Help Prevent Food Allergies and Other Gastrointestinal Illnesses

With further research, clinical laboratories may soon be performing macrobiotic testing to measure certain bacterial levels in patients’ gut bacteria

New insights from the University of Chicago (UChicago) into how human microbiota (aka, gut bacteria) play a role in food allergies has the potential to change the way a number of gastrointestinal health conditions are diagnosed and treated. This would give microbiologists and clinical laboratories a greater role in helping physicians diagnose, treat, and monitor patients with these health issues.

Past research has shown that certain gut bacteria can prevent antigens that trigger allergic reactions from entering the bloodstream. For example, Clostridium bacteria in the stomach produce a short-chain fatty acid known as butyrate, a metabolite that promotes the growth of healthy bacteria in the gut. This helps keep the microbiome in balance.

One way butyrate is created in the gut is through the fermentation of fiber. However, a lack of fiber in the diet can deplete the production of butyrate and cause the microbiome to be out of balance. When this happens, a state known as dysbiosis occurs that disrupts the microbiome and can lead to food allergies. 

Without butyrate, the gut lining can become permeable and allow food to leak out of the gastrointestinal tract and into the body’s circulatory system. This reaction can trigger a potentially fatal anaphylactic response in the form of a food allergy. Thus, eating enough fiber is critical to the production of butyrate and to maintaining a balanced microbiome.

But today’s western diet can be dangerously low in soluble fiber. Therefore, the scientists at the University of Chicago have developed “a special type of polymeric molecule to deliver a crucial metabolite produced by these bacteria directly to the gut, where it helps restore the intestinal lining and allows the beneficial bacteria to flourish. … these polymers, called micelles, can be designed to release a payload of butyrate, a molecule that is known to help prevent food allergies, directly in the small and large intestines,” according to a UChicago news release.

This will be of interest to microbiologists, in particular. It’s another example of researchers connecting a specific species of bacteria in the human microbiome to a specific benefit.

The University of Chicago scientists published their findings in the journal Nature Biomedical Engineering titled, “Treatment of Peanut Allergy and Colitis in Mice via the Intestinal Release of Butyrate from Polymeric Micelles.”

Cathryn Nagler, PhD

“It’s very unlikely that butyrate is the only relevant metabolite, but the beauty of this platform is that we can make polymers with other microbial metabolites that could be administered in conjunction with butyrate or other therapies,” said Cathryn Nagler, PhD (above), Bunning Family Professor in the Biological Sciences Division and Pritzker School of Molecular Engineering at UChicago and a senior author of the study. “So, the potential for the polymer platform is pretty much wide open.” As further research validates these findings, clinical labs are likely to be doing microbiomic testing to monitor these therapies. (Photo copyright: University of Chicago.)

Restoring Butyrate in the Gut

One way to treat this anomaly has been through a microbiota transplant—also called a fecal biota transplant—where the administration of a solution of fecal matter is transplanted from a donor into the intestinal tract of the recipient. This transplant alters the recipient’s gut microbial composition to a healthier state, but it has had mixed results. 

So, the UChicago researchers went in another direction (literally). They created an oral solution of butyrate and administered it to mice in the lab. The purpose of the solution was to thwart an allergic reaction when the mice were exposed to peanuts. 

But there was a problem with their oral solution. It was repulsive.

“Butyrate has a very bad smell, like dog poop and rancid butter, and it also tastes bad, so people wouldn’t want to swallow it,” Shijie Cao, PhD, Postdoctoral Scientist at the Pritzker School of Molecular Engineering at UChicago and one of the researchers who worked on the project, told Medical News Today.

The researchers developed a new configuration of polymers that masked the butyrate. They then delivered these polymer micelles directly into the digestive systems of mice that lacked healthy gut bacteria or a proper gut linings.

The treatment restored the microbiome by increasing the production of peptides that obliterate harmful bacteria. This allowed more of the beneficial butyrate-producing bacteria to emerge, which protected the mice from an anaphylactic reaction to peanuts and even reduced the symptom severity in an ulcerative colitis model. 

“We were delighted to see that our drug both replenished the levels of butyrate present in the gut and helped the population of butyrate-producing bacteria to expand,” said Cathryn Nagler, PhD, Bunning Family Professor in the Biological Sciences Division and Pritzker School of Molecular Engineering at the University of Chicago and a senior author of the study, in the press release. “That will likely have implications not only for food allergy and inflammatory bowel disease (IBD), but also for the whole set of non-communicable chronic diseases that have been rising over the last 30 years, in response to lifestyle changes and overuse of antibiotics in our society.”

Future Benefits of UChicago Treatment

According to data from the Asthma and Allergy Foundation of America, about 20 million Americans suffered from food allergies in 2021. This includes approximately 16 million (6.2%) of adults and four million (5.8%) of children. The most common allergens for adults are shellfish, peanuts, and tree nuts, while the most common allergens for children are milk, eggs, and peanuts. 

The best way to prevent an allergic reaction to a trigger food is strict avoidance. But this can be difficult to ensure outside of the home. Therefore, scientists are searching for ways to prevent food allergies from happening in the first place. The micelle technology could be adapted to deliver other metabolites and molecules which may make it a potential platform for treating allergies as well as other inflammatory gastrointestinal diseases

“It’s a very flexible chemistry that allows us to target different parts of the gut,” said Jeffrey Hubbell, PhD, Eugene Bell Professor in Tissue Engineering and Vice Dean and Executive Officer at UChicago’s Pritzker School of Molecular Engineering and one of the project’s principal investigators, in the UChicago news release. “And because we’re delivering a metabolite like butyrate, it’s antigen-agnostic. It’s one agent for many different allergic indications, such as peanut or milk allergies. Once we begin working on clinical trials, that will be a huge benefit.”

Nagler and Hubbell have co-founded a company called ClostraBio to further the development of butyrate micelles into a commercially available treatment for peanut and other food allergies. They hope to begin clinical trials within the next 18 months and expand the technology to other applications as well.  

Further research and clinical trials are needed to prove the validity of using polymer micelles in the treatment of diseases. But it is possible that clinical laboratories will be performing microbiomic testing in the future to help alleviate allergic reactions to food and other substances.

—JP Schlingman

Related Information:

Peanut and Food Allergies May Be Reversed with Compound Produced by Healthy Gut Bacteria

Time Release Polymers Deliver Metabolites to Treat Peanut Allergy and Colitis

Food Allergies: Reversing the Old, Preventing the New with Gut Bacteria

Scientists Reverse Food Allergies by Targeting the Microbiome

Polymers Help Protect Mice from Anaphylactic Reaction to Peanuts, UChicago Research Finds

Treatment of Peanut Allergy and Colitis in Mice via the Intestinal Release of Butyrate from Polymeric Micelles

Asian Company Launches World’s First Diagnostic Test for Microbiome of the Mouth

Collected data could give healthcare providers and clinical laboratories a practical view of individuals’ oral microbiota and lead to new diagnostic assays

When people hear about microbiome research, they usually think of the study of gut bacteria which Dark Daily has covered extensively. However, this type of research is now expanding to include more microbiomes within the human body, including the oral microbiome—the microbiota living in the human mouth. 

One example is coming from Genefitletics, a biotech company based in New Delhi, India. It recently launched ORAHYG, the first and only (they claim) at-home oral microbiome functional activity test available in Asia. The company is targeting the direct-to-consumer (DTC) testing market.

According to the Genefitletics website, the ORAHYG test can decode the root causes of:

The test can also aid in the early detection development of:

“Using oral microbial gene expression sequencing technology and its [machine learning] model, [Genefitletics] recently debuted its oral microbiome gene expression solution, which bridges the gap between dentistry and systemic inflammation,” ETHealthworld reported.

“The molecular insights from this test would give an unprecedented view of functions of the oral microbiome, their interaction with gut microbiome and impact on metabolic, cardiovascular, cognitive, skin, and autoimmune health,” BioSpectrum noted.

Sushant Kumar

“Microbes, the planet Earth’s original inhabitants, have coevolved with humanity, carry out vital biological tasks inside the body, and fundamentally alter how we think about nutrition, medicine, cleanliness, and the environment,” Sushant Kumar (above), founder and CEO of Genefitletics, told the Economic Times. “This has sparked additional research over the past few years into the impact of the trillions of microorganisms that inhabit the human body on our health and diverted tons of funding into the microbiome field.” Clinical laboratories may eventually see an interest and demand for testing of the oral microbiome. (Photo copyright: ETHealthworld.)


Imbalanced Oral Microbiome Can Trigger Disease

The term microbiome refers to the tiny microorganisms that reside on and inside our bodies. A high colonization of these microorganisms—including bacteria, fungi, yeast, viruses, and protozoa—live in our mouths.

“Mouth is the second largest and second most diverse colonized site for microbiome with 770 species comprising 100 billion microbes residing there,” said Sushant Kumar, founder and CEO of Genefitletics, BioSpectrum reported. “Each place inside the mouth right from tongue, throat, saliva, and upper surface of mouth have a distinctive and unique microbiome ecosystem. An imbalanced oral microbiome is said to trigger onset and progression of type 2 diabetes, arthritis, heart diseases, and even dementia.”

The direct-to-consumer ORAHYG test uses a saliva sample taken either by a healthcare professional or an individual at home. That sample is then sequenced through Genefitletics’ gene sequencing platform and the resulting biological data set added to an informatics algorithm.

Genefitletics’ machine-learning platform next converts that information into a pre-symptomatic molecular signature that can predict whether an individual will develop a certain disease. Genefitletics then provides that person with therapeutic and nutritional solutions that can suppress the molecules that are causing the disease. 

“The current industrial healthcare system is really a symptom care [system] and adopts a pharmaceutical approach to just make the symptoms more bearable,” Kumar told the Economic Times. “The system cannot decode the root cause to determine what makes people develop diseases.”

Helping People Better Understand their Health

Founded in 2019, Genefitletics was created to pioneer breakthrough discoveries in microbial science to promote better health and increase longevity in humans. The company hopes to unravel the potential of the oral microbiome to help people fend off illness and gain insight into their health. 

“Microorganisms … perform critical biological functions inside the body and transform our approach towards nutrition, medicine, hygiene and environment,” Kumar told CNBC. “It is important to understand that an individual does not develop a chronic disease overnight.

“It starts with chronic inflammation which triggers pro-inflammatory molecular indications. Unfortunately, these molecular signatures are completely invisible and cannot be measured using traditional clinical grade tests or diagnostic investigations,” he added. “These molecular signatures occur due to alteration in gene expression of gut, oral, or vaginal microbiome and/or human genome. We have developed algorithms that help us in understanding these alterations way before the clinical symptoms kick in.” 

Genefitletics plans to utilize individuals’ collected oral microbiome data to determine their specific nutritional shortcomings, and to develop personalized supplements to help people avoid disease.

The company also produces DTC kits that analyze gut and vaginal microbiomes as well as a test that is used to evaluate an infant’s microbiome.

“The startup wants to develop comparable models to forecast conditions like autism, PCOS [polycystic ovarian syndrome], IBD [Inflammatory bowel disease], Parkinson’s, chronic renal [kidney] disease, anxiety, depression, and obesity,” the Economic Times reported.

Time will tell whether the oral microbiome tests offered by this company prove to be clinically useful. Certainly Genefitletics hopes its ORAHYG test can eventually provide healthcare providers—including clinical laboratory professionals—with a useful view of the oral microbiome. The collected data might also help individuals become aware of pre-symptomatic conditions that make it possible for them to seek confirmation of the disease and early treatment by medical professionals.   

—JP Schlingman

Related Information:

Genefitletics Brings Asia’s First Oral Microbiome Test ORAHYG

Let’s Focus on the Role of Microbiomes in Systemic Inflammation and Disease Development: Sushant Kumar, Genefitletics

Genefitletics Can Now Predict and Detect Chronic Diseases and Cancer

Genefitletics Can Now Predict and Detect Chronic Diseases and Cancer

Healthtech Startup Genefitletics Raises Undisclosed Amount in Pre-seed Funding

Understanding Oral Microbiome Testing: What You Need to Know

Researchers at Rockefeller University and HHMI Identify Biomarker That Makes People “Mosquito Magnets”

These new insights might lead to a new line of clinical laboratory testing, particularly if the results could guide the patient to microbiome-based repellents that would remain effective for months once applied

Researchers are beginning to identify what compounds make individuals more attractive to mosquitos. That is a first step in the development of a biomarker that could be developed into a clinical laboratory test. Question is: would there be enough consumers wanting to do a lab test to determine if they were highly attractive to mosquitos, thus making this a revenue-generating test for labs?

It does seem like some people are mosquito magnets and there may be a scientific reason for that. According to an article published in Scientific American (SA) some people actually are more attractive to the pesky little bloodsuckers than other people. Researchers at the Laboratory of Neurogenetics and Behavior at Rockefeller University and the Howard Hughes Medical Institute (HHMI) in New York wanted to know why.

The SA article reported on their study published in the journal Cell titled, “Differential Mosquito Attraction to Humans Is Associated with Skin-Derived Carboxylic Acid Levels.” The researchers, according to SA, found that individual humans have “a unique scent profile made up of different chemical compounds” and that “mosquitoes were most drawn to people whose skin produces high levels of carboxylic acids.” The researchers also found that “attractiveness to mosquitoes remained steady over time, regardless of changes in diet or grooming habits.”

At a minimum, there would be widespread consumer interest to at least understand why some individuals get more mosquito bites than others. What may be of particular interest to microbiologists is the statement by molecular biologist Omar Akbari, PhD, of the University of California, San Diego, who told Scientific American that by “taking human-colonizing skin bacteria … and engineering them in such a way that they can either express a repellent compound or be able to degrade something that’s attractive,” a mosquito repellant could be developed that would last for months once applied.

Matthew DeGennaro, PhD

“This study clearly shows that these acids are important,” neurogeneticist Matthew DeGennaro, PhD (above), told CNN. “… how the mosquitoes perceive these carboxylic acids is interesting because these particular chemicals … are hard to smell at a distance. It could be that these chemicals are being altered by … the skin microbiome … if we understand why mosquitoes find a host, we can design new repellents that will block the mosquitoes from sensing those chemicals, and this could be used to improve our current repellents.” Clinical laboratory testing will be needed to produce biomarkers for developing such improved repellents. (Photo copyright: Laboratory of Tropical Genetics.)

Clinical Laboratory Testing Needed to Identify Levels of Carboxylic Acids

To complete their study, the researchers had 64 participants wear nylon stockings for six hours on their arms to get their unique scent into the fabric. The scent on the stockings was not discernible to the human nose, but it was to the mosquitos.

Two pieces of the nylon were then placed in a closed container with Aedes aegypti mosquitoes. The researchers found that certain samples were more popular with the mosquitos than others. Upon further analysis the researchers found that the most popular samples came from subjects with higher levels of carboxylic acids, and the least popular had the lowest levels. The scientists ran the test with the same participants several times over three years and the results remained largely the same.

Carboxylic acid is an organic compound found in humans in sebum, the oily layer protecting our skin. The level at which humans release carboxylic acid varies from person to person. And there is no discernible way the human nose can determine whether a person has the level of carboxylic acid on the skin that mosquitos find desirable. The answer would need to be determined by a diagnostic test performed in a clinical laboratory.

Although the development of a test to determine someone’s susceptibility to mosquitos may be far away, there could be significant consumer interest in developing such a test.

“The question of why some people are more attractive to mosquitoes than others—that’s the question that everybody asks,” Leslie B. Vosshall, PhD, Chief Scientific Officer, Howard Hughes Medical Institute, who led the research team to find out why some people are more attractive to mosquitos than others, told Scientific American. “My mother, my sister, people in the street, my colleagues—everybody wants to know.” She credits their interest as the inspiration for embarking on the study.

“Understanding what makes someone a ‘mosquito magnet’ will suggest ways to rationally design interventions such as skin microbiota manipulation to make people less attractive to mosquitoes. We propose that the ability to predict which individuals in a community are high attractors would allow for more effective deployment of resources to combat the spread of mosquito-borne pathogens,” the researchers wrote in their Cell paper.

Preventing Spread of Deadly Diseases

Although mosquitos are an annoyance, they also can be dangerous vectors of disease.

“Every bite of these mosquitoes puts people into public health danger. Aedes aegypti mosquitoes are vectors for dengue, yellow fever, and Zika,” Vosshall told CNN. “Those people who are magnets are going to be much more likely to be infected with viruses.”

Further research into these early findings may help develop diagnostic tests to protect against the spread of these diseases and identify individuals who are more attractive to the mosquitos, and therefore, more likely to contract and spread disease.

Being able to identify which individuals are mosquito magnets could help keep individuals safe from dangerous diseases, and development of a better repellent could also make outdoor summer events more bearable for the (unfortunately) popular among the pests. Medical laboratory tests associated with determining an individual’s susceptibility to mosquito bites could give clinical laboratories a new way to add value to consumers and patients.   

Ashley Croce

Related Information:

Some People Really Are Mosquito Magnets, and They’re Stuck That Way

Differential Mosquito Attraction to Humans Is Associated with Skin-Derived Carboxylic Acid Levels

Here’s Why Mosquitoes Are Attracted to Some People More than Others

University of Utah and Sloan Kettering Institute Study Sheds Light on How the Body Recognizes “Good” from Bad Bacteria in the Microbiome

Researchers found that early in life intestinal microorganisms “educate” the thymus to develop T cells; findings could lead to improved immune system therapeutics and associated clinical laboratory tests

Researchers at the University of Utah and the Sloan Kettering Institute (SKI)—the experimental research division of the Memorial Sloan Kettering Cancer Center (MSKCC) in New York—have uncovered new insights into how the immune system learns to distinguish between harmful infectious bacteria and “good” bacteria in the microbiome that occupies the gastrointestinal tract.

The researchers published their findings in Nature. They used engineered mice as the test subjects and say the study could lead to a greater understanding of human conditions such as Type 1 and Type 2 diabetes and inflammatory bowel disease (IBD). In turn, this new knowledge could lead to new diagnostic tests for clinical laboratories.

“From the time we are born, our immune system is set up so that it can learn as much as it can to distinguish the good from the bad,” Matthew Bettini, PhD, Associate Professor of Pathology said in a University of Utah news release.

Does Gut Bacteria ‘Educate’ the Immune System?

The researchers were attempting to learn how the body develops T cells specific to intestinal microorganisms. T cells, they noted, are “educated” in the thymus, an organ in the upper chest that is key to the adaptive immune system.

“Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection,” they wrote in their study. “Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen, while limiting inflammatory anti-commensal responses.”

Matthew Bettini, PhD and Gretchen Diehl, PhD

Matthew Bettini, PhD (left), Associate Professor of Pathology at the University of Utah, co-authored the study along with Gretchen Diehl, PhD (right), an immunologist at Sloan Kettering Institute. The team also included researchers from the Baylor College of Medicine in Houston and the Washington University School of Medicine in St. Louis. “Our studies make clear that there is a window in which gut microbiota have access to the immune education process. This opens up possibilities for designing therapeutics that can influence the trajectory of the immune system during this early time point,” Bettini said in the University of Utah news release. (Photo copyright: University of Utah/Sloan Kettering Institute.)

Findings Challenge Earlier Assumptions about Microbiota’s Influence on Immunity

The researchers began by seeding the intestines of mice with segmented filamentous bacteria (SFB), which they described as “one of the few commensal microorganisms for which a microorganism-specific T-cell receptor has been identified.” In addition, SFB-specific T cells can be tracked using a magnetic enrichment technique, they wrote in Nature.

They discovered that in young mice, microbial antigens from the intestines migrated to the thymus, resulting in an expansion of T cells specific to SFB. But they did not see an expansion of T cells in adult mice, suggesting that the process of adapting to microbiota happens early.

“Our study challenges previous assumptions that potential pathogens have no influence on immune cells that are developing in the thymus,” Bettini said in the news release. “Instead, we see that there is a window of opportunity for the thymus to learn from these bacteria. Even though these events that shape which T cells are present happen early in life, they can have a greater impact later in life.”

For example, T cells specific to microbiota can also protect against closely related harmful bacteria, the researchers found. “Mice populated with E. coli at a young age were more than six times as likely to survive a lethal dose of Salmonella later in life,” the news release noted. “The results suggest that building immunity to microbiota also builds protection against harmful bacteria the body has yet to encounter.”

According to the researchers, in addition to protecting against pathogens, “microbiota-specific T cells have pathogenic potential.” For example, “defects in these mechanisms could help explain why the immune system sometimes attacks good bacteria in the wrong place, causing the chronic inflammation that’s responsible for inflammatory bowel disease,” they suggested.

Other Clinical Laboratory Research into the Human Microbiome

The research conducted by the University of Utah, Sloan Kettering Institute, and others, adds to a growing understanding of the human microbiome. For example, in “International Study into Ancient Poop Yields Insight into the Human Microbiome, May Produce Useful Insights for Microbiologists,” Dark Daily reported on an international study of 2000-year-old human feces which suggested that the microbiomes of today’s humans may have been modified by modern phenomena such as processed food and sanitation.

And in “Harvard Medical School Study Finds ‘Staggering’ Amounts of Genetic Diversity in Human Microbiome; Might Be Useful in Diagnostics and Precision Medicine,” Dark Daily reported on a study from Harvard Medical School and Joslin Diabetes Center that unveiled a “staggering microbial gene diversity” in the microbiome and the potential for identification of more-useful biomarkers for disease detection.

And a study from the University of Nebraska-Lincoln and the Ocean Road Cancer Institute in Tanzania raised the possibility that bacteria in the cervical microbiome could lead to new tests for cervical cancer. (See Dark Daily, “University Study Suggests Cervical Microbiome Could Be Used by Medical Laboratories as Biomarker in Determining Women’s Risk for Cervical Cancer.”

All of this suggests the potential in the future “for clinical laboratories and microbiologists to do microbiome testing in support of clinical care,” said Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report. Of course, more research is needed in these areas.

“We believe that our findings may be extended to areas of research where certain bacteria have been found to be either protective or pathogenic for other conditions, such as Type 1 and Type 2 diabetes,” Bettini said in the University of Utah news release. “Now we’re wondering, will this window of bacterial exposure and T cell development also be important in initiating these diseases?”

—Stephen Beale

Related Information

How the Body Builds a Healthy Relationship With ‘Good’ Gut Bacteria

Thymic Development of Gut-Microbiota-Specific T Cells

International Study into Ancient Poop Yields Insight into the Human Microbiome, May Produce Useful Insights for Microbiologists

Harvard Medical School Study Finds ‘Staggering’ Amounts of Genetic Diversity in Human Microbiome; Might Be Useful in Diagnostics and Precision Medicine

University Study Suggests Cervical Microbiome Could Be Used by Medical Laboratories as Biomarker in Determining Women’s Risk for Cervical Cancer

Medical Laboratory Testing Company uBiome Raided by FBI for Alleged Insurance Fraud and Questionable Business Practices

Following the raid, the company’s co-founders resigned from the board of directors

Microbiome testing company, uBiome, a biotechnology developer that offers at-home direct-to-consumer (DTC) test kits to health-conscious individuals who wish to learn more about the bacteria in their gut, or who want to have their microbiome genetically sequenced, has recently come under investigation by insurance companies and state regulators that are looking into the company’s business practices.

CNBC reported that the Federal Bureau of Investigation (FBI) raided the company’s San Francisco headquarters in April following allegations of insurance fraud and questionable billing practices. The alleged offenses, according to CNBC, included claims that uBiome routinely billed patients for tests multiple times without consent.

Becker’s Hospital Review wrote that, “Billing documents obtained by The Wall Street Journal and described in a June 24 report further illustrate uBiome’s allegedly improper billing and prescribing practices. For example, the documents reportedly show that the startup would bill insurers for a lab test of 12 to 25 gastrointestinal pathogens, despite the fact that its tests only included information for about five pathogens.”

Company Insider Allegations Trigger FBI Raid

In its article, CNBC stated that “company insiders” alleged it was “common practice” for uBiome to bill patients’ insurance companies multiple times for the same test.

“The company also pressured its doctors to approve tests with minimal oversight, according to insiders and internal documents seen by CNBC. The practices were in service of an aggressive growth plan that focused on increasing the number of billable tests served,” CNBC wrote.

FierceBiotech reported that, “According to previous reports, the large insurers Anthem, Aetna, and Regence BlueCross BlueShield have been examining the company’s billing practices for its physician-ordered tests—as has the California Department of Insurance—with probes focusing on possible financial connections between uBiome and the doctors ordering the tests, as well as rumors of double-billing for tests using the same sample.”

Becker’s Hospital Review revealed that when the FBI raided uBiome they seized employee computers. And that, following the raid, uBiome had announced it would temporarily suspend clinical operations and not release reports, process samples, or bill health insurance for their services.

The company also announced layoffs and that it would stop selling SmartJane and SmartGut test kits, Becker’s reported.

uBiome Assumes New Leadership

Following the FBI raid, uBiome placed its co-founders Jessica Richman (CEO) and Zac Apte (CTO) on administrative leave while conducting an internal investigation (both have since resigned from the company’s board of directors). The company’s board of directors then named general counsel, John Rakow, to be interim CEO, FierceBiotech reported.

John Rakow (center) is shown above with uBiome co-founders Jessica Richman (lower left) and Zac Apte (lower right). In a company statement, Rakow stressed that he believed in the company’s products and ability to survive the scandal. His belief may be based on evidence. Researchers have been developing tests based on the human microbiome for everything from weight loss to predicting age to diagnosing cancer. Such tests are becoming increasingly popular. Dark Daily has reported on this trend in multiple e-briefings. (Photo copyrights: LinkedIn/uBiome.)

After serving two months as the interim CEO, Rakow resigned from the position. The interim leadership of uBiome was then handed over to three directors from Goldin Associates, a New York City-based consulting firm, FierceBiotech reported. They include:

Four testing products remain available for in-home testing on the uBiome website:

What Went Wrong?

Richman and Apte founded uBiome in 2012 with the intent of marketing a new test that would prove a link between peoples’ microbiome and their overall health. The two founders initially raised more than $100 million from venture capitalists, and, according to PitchBook, uBiome was last valued at around $600 million, Forbes reported.

Nevertheless, as a company, uBiome’s future is uncertain. Of greater concern to clinical laboratory leaders is whether at-home microbiology self-test kits will become a viable, safe alternative to tests traditionally performed by qualified personnel in controlled laboratory environments.

Dark Daily reported on the controversy surrounding this trend in “At-Home Microbiology Tests Trigger Concerns about Scientific Value and Impact from Microbiologists and Clinical Laboratory Scientists,” October 16, 2017.

It’s a trend worth watching.

—JP Schlingman

Related Information:

Insiders Describe Aggressive Growth Tactics at uBiome, the Health Start-up Raided by the FBI Last Week

FBI Investigating uBiome’s Billing Practices

Turmoil Persists at uBiome with New Management Overhaul Amid FBI Probe: Reports

uBiome Appoints John Rakow as Interim Chief Executive Officer

Another Shakeup at uBiome: Interim CEO Quits

Seven Updates on the Ongoing uBiome Investigation

Microbiome Startup uBiome Cofounders on Administrative Leave after Reports of FBI Raid

Microbiome Testing Startup Under Scrutiny for Billing Practices

At-Home Microbiology Tests Trigger Concerns about Scientific Value and Impact from Microbiologists and Clinical Laboratory Scientists

;