News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Executive War College Will Focus on Three Forces Influencing Clinical Laboratory Success

Lab professionals will learn more at the upcoming 30th annual edition of the event

Big changes and challenges are coming for the clinical laboratory anatomic pathology industry, and with them a slew of opportunities for lab and pathology practice leaders. At the upcoming 30th Annual Executive War College on Diagnostics, Pathology, and Clinical Laboratory Management, expert speakers and panelists will focus on the three most disruptive forces. 

There will be more than 169 presenters at this year’s Executive War College. Those speakers include:

“Since the inception of The Dark Report in 1995 there has been continual change both within the US healthcare system and within the profession of laboratory medicine,” noted Robert L. Michel, Dark Daily’s editor-in-chief and creator of the Executive War College. “Now, three decades later, the following three items are imperatives for all labs: controlling costs; having adequate lab staff across all positions; and having enough capital to acquire and deploy new diagnostic technologies, along with the latest information technologies.”

“Most clinical laboratory managers would agree that many of the same operational pain points faced by labs in the 1990s exist today,” said Robert L. Michel (above), founder of the Executive War College. In an interview with Dark Daily, Michel broke down the nuances of this triad of forces and what participants in the Executive War College can expect. (Photo copyright: LabX.)

Forces at Work in Clinical Labs and Pathology Groups

Here’s a more detailed look at each of the forces that Michel noted.

Force 1: An acute shortage of experienced lab scientists

“When you look at the supply-demand for laboratory personnel in the United States today, it is recognized that demand exceeds supply, and that gap continues to widen,” Michel noted. “For example, in the case of anatomic pathologists, the increased number of case referrals grows faster than medical schools can train new pathologists. Currently, the ability of pathology laboratories large and small to hire and retain an adequate number of pathologists is a challenge.”

Executive War College attendees can expect panelists and speakers to highlight creative problem solving techniques to circumvent the challenges labor shortages cause. 

Force 2: New applications of artificial intelligence

“Today every instrument vendor, every automation supplier, every software supplier, every service supplier is telling labs that they have artificial intelligence (AI) baked inside,” Michel observed. “It is important for lab managers to understand that a variety of technologies are used by different AI solutions.”

These include deep learning, neural networks, natural language processing, and machine learning. “The challenge for lab managers today is to understand what specific technology is behind the AI vendors want to sell to them to manage certain processes in their lab.”

Clinical laboratory managers and pathologists interested in acquiring a deeper understanding of where to start with AI in their lab will find numerous sessions on artificial intelligence at this year’s Executive War College. “There will be a number of sessions this year where clinical labs discuss their success deploying various AI solutions,” Michel said.

Force 3: Financial stress across the entire US healthcare system

“It’s recognized that a significant number of US hospitals and integrated delivery networks (IDNs) are struggling to maintain adequate operating margins,” Michel noted. “This obviously impacts the clinical laboratories serving these hospitals. If the hospitals’ cash flows and operating profit margins are being squeezed, typically the administration comes to the lab team and says, ‘Your budget for next year will be x% less than this year.’

“There are many IDNs and hospital labs where budget cuts have happened for multiple years,” Michel continued. “As a consequence, labs in these hospitals must be nimble to maintain a high-quality menu of diagnostic tests. Several years of such budget cuts by the parent hospital can undermine the ability of the clinical lab team to offer competitive salary packages to attract and retain the clinical lab scientists, pathologists, and clinical chemists they need.”

Recognizing Opportunities in Today’s Lab Market

The good news is that—despite the negative forces acting upon the US healthcare system today—clinical laboratories, genetic testing companies, and anatomic pathology groups have a path forward.

“This path forward is informed by two longstanding precepts recognized by innovative managers. One precept is ‘Change creates new winners and losers.’ The other precept is ‘Change creates opportunity,’” Michel said. “Savvy lab leaders recognize the powerful truths in each precept.

“As healthcare has changed over the past four decades, nearly all the regional and national laboratories that were dominant in 1990, for example, don’t exist today!” he noted. “And yet, even as these lab organizations disappeared, new clinical lab organizations emerged that recognized healthcare’s changes and organized themselves to serve the changing needs of hospitals, office-based physicians, payers, and patients.”

All of these critical topics and more will be covered during the 30th Annual Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management on April 29-30, 2025, at the Hyatt Regency in New Orleans. Signup today to bring your lab’s management team by registering at https://www.executivewarcollege.com.

—Ashley Croce

Mayo Clinic Researchers Uses Exome Sequencing to Identify Individuals at Risk of Hereditary Cancer

Half of the people tested were unaware of their genetic risk for contracting the disease

Existing clinical laboratory genetic screening guidelines may be inadequate when it comes to finding people at risk of hereditary breast-ovarian cancer syndromes and Lynch syndrome (aka, hereditary nonpolyposis colorectal cancer). That’s according to a study conducted at the Mayo Clinic in Rochester, Minn., which found that about half of the study participants were unaware of their genetic predisposition to the diseases.

Mayo found that 550 people who participated in the study (1.24%) were “carriers of the hereditary mutations.” The researchers also determined that half of those people were unaware they had a genetic risk of cancer, and 40% did not meet genetic testing guidelines, according to a Mayo Clinic news story.

The discoveries were made following exome sequencing, which the Mayo Clinic news story described as the “protein-coding regions of genes” and the sites for most disease-causing mutations.

“Early detection of genetic markers for these conditions can lead to proactive screenings and targeted therapies, potentially saving lives of people and their family members,” said lead author Niloy Jewel Samadder, MD, gastroenterologist and cancer geneticist at Mayo Clinic’s Center for Individualized Medicine and Comprehensive Cancer Center.

The Mayo researchers published their findings in the journal JCO Precision Oncology titled, “Exome Sequencing Identifies Carriers of the Autosomal Dominant Cancer Predisposition Disorders Beyond Current Practice Guideline Recommendations.”

“This study is a wake-up call, showing us that current national guidelines for genetic screenings are missing too many people at high risk of cancer,” said lead author Niloy Jewel Samadder, MD (above), gastroenterologist and cancer geneticist at Mayo Clinic’s Center for Individualized Medicine and Comprehensive Cancer Center. New screening guidelines may increase the role of clinical laboratories in helping physicians identify patients at risk of certain hereditary cancers. (Photo copyright: Mayo Clinic.)

Advancing Personalized Medicine

“The goals of this study were to determine whether germline genetic screening using exome sequencing could be used to efficiently identify carriers of HBOC (hereditary breast and ovarian cancer) and LS (Lynch syndrome),” the authors wrote in JCO Precision Oncology.

Their work was a project of the Mayo Clinic Center for Individualized Medicine Tapestry study, which aims at advancing personalized medicine and developing a dataset for genetic research.

For the current study, Helix, a San Mateo, Calif. population genomics company, collaborated with Mayo Clinic to perform exome sequencing on the following genes:

According to the Mayo Clinic:

  • BRCA1 can lead to a 50% chance of breast cancer, and a 40% chance of ovarian cancer, respectively, as well as other cancers.
  • BRCA2 mutations suggest risk of breast cancer and ovarian cancer is 50% and 20%, respectively.
  • Lynch syndrome relates to an 80% lifetime risk of developing colorectal cancer and 50% risk of uterine and endometrial cancer.

Mayo/Helix researchers performed genetic screenings on more than 44,000 study participants. According to their published study, of the 550 people who were found to have hereditary breast cancer or Lynch syndrome:

  • 387 had hereditary breast and ovarian cancer (27.2% BRCA1, 42.8% BRCA2).
  • 163 had lynch syndrome (12.3% MSH6, 8.8% PMS2, 4.5% MLH1, 3.8% MSH2, and 0.2% EPCAM).
  • 52.1% were newly diagnosed carriers.
  • 39.2% of the 550 carriers did not meet genetic evaluation criteria set by the National Comprehensive Cancer Network (NCCN).
  • Participants recruited by researchers hailed from Rochester, Minn.; Phoenix, Ariz.; and Jacksonville, Fla.
  • Minorities were less likely to meet the NCCN criteria than those who reported as White (51.5% as compared to 37.5%).

“Our results emphasize the importance of expanding genetic screening to identify people at risk for these cancer predisposition syndromes,” Samadder said.

Exome Data in EHRs  

Exomes of more than 100,000 Mayo Clinic patients have been sequenced and the results are being included in the patients’ electronic health records (EHR) as part of the Tapestry project. This gives clinicians access to patient information in the EHRs so that the right tests can be ordered at the right time, Mayo Clinic noted in its article.

“Embedding genomic data into the patient’s chart in a way that is easy to locate and access will assist doctors in making important decisions and advance the future of genomically informed medicine.” said Cherisse Marcou, PhD, co-director and vice chair of information technology and bioinformatics in Mayo’s Clinical Genomics laboratory.

While more research is needed, Mayo Clinic’s accomplishments suggest advancements in gene sequencing and technologies are making way for data-driven tools to aid physicians.

As the cost of gene sequencing continue to fall due to improvement in the technologies, more screenings for health risk factors in individuals will likely become economically feasible. This may increase the role medical laboratories play in helping doctors use exomes and whole genome sequencing to screen patients for risk of specific cancers and health conditions.

—Donna Marie Pocius

Related Information:

Exome Sequencing Identifies Carriers of the Autosomal Dominant Cancer Predisposition Disorders Beyond Current Practice Guideline Recommendation

Mayo Clinic Uncovers Genetic Cancer Risk in 550 Patients

Mayo Clinic’s Data-Driven Quest to Advance Individualized Medicine

Scathing Report from Former Health Minister Finds England’s NHS Plagued by Long Wait Times, Crumbling Infrastructure

Declining health of UK’s population also affecting performance of the country’s national health service, report notes

England’s National Health Service (NHS) is “in serious trouble” due to long waiting times, outdated technology, misallocated resources, and numerous other problems, with dire consequences for the country’s populace. That’s according to a new report by NHS surgeon and former Health Minister Lord Ara Darzi, OM KBE FRS FMedSci HonFREng, who was tasked by the United Kingdom’s new Labor government to investigate the ailing healthcare system. His report may contain lessons for US healthcare—including clinical laboratories—as well.

“Although I have worked in the NHS for more than 30 years, I have been shocked by what I have found during this investigation—not just in the health service but in the state of the nation’s health,” Darzi stated in a UK government press release. “We want to deliver high quality care for all but far too many people are waiting for too long and in too many clinical areas, quality of care has gone backwards.”

Many of the problems he identified relate to wait times.

“From access to GPs (general practitioners) and to community and mental health services, on to accident and emergency, and then to waits not just for more routine surgery and treatment but for cancer and cardiac services, waiting time targets are being missed,” he wrote in his report.

For example, “as of June 2024, more than one million people were waiting for community services, including more than 50,000 people who had been waiting for over a year, 80% of whom are children and young people,” he wrote.

Accident and emergency care (A/E) “is in an awful state,” the report noted, “with A/E queues more than doubling from an average of just under 40 people on a typical evening in April 2009 to over 100 in April 2024. One in 10 patients are now waiting for 12 hours or more.”

“In the last 15 years, the NHS was hit by three shocks—austerity and starvation of investment, confusion caused by top-down reorganization, and then the pandemic which came with resilience at an all-time low. Two out of three of those shocks were choices made in Westminster,” said NHS surgeon and former Health Minister Lord Ara Darzi in a government press release. “It took more than a decade for the NHS to fall into disrepair so it’s going to take time to fix it. But we in the NHS have turned things around before, and I’m confident we will do it again.” (Photo copyright: Health Data Research UK.)

Delays in Other Critical Tests

Genetic test results are lagging as well. “In 2024, more than 35,000 genomic tests are being completed each month but only around 60% on time,” Darzi wrote.

He also noted that “only around 5% of eligible patients with brain cancer are able to access whole genome sequencing (WGS), which is important for treatment selection.” Just two-thirds (65.8%) get their first treatment within 62 days, and more than 30% wait more than 31 days for radical radiotherapy, according to the report.

Overall, “the UK has appreciably higher cancer mortality rates than other countries, with no progress whatsoever made in diagnosing cancer at stage one and two between 2013 and 2021,” he wrote.

Patients have also experienced delays in access to cardiovascular treatment. For example, in 2013-2014, high-risk heart attack patients waited an average of 114 minutes for intervention to unblock an artery, Darzi noted in his report. However, in 2022-2023, the average time was 146 minutes, a 28% increase.

“For the most part, once people are in the system, they receive high quality care,” he wrote. “But there are some important areas of concerns, such as maternity care, where there have been a succession of scandals and inquiries.”

Key Factors Leading to Delays

Darzi pointed to four key factors that have led to the problems.

Lack of funding. “The 2010s was the most austere decade since the NHS was founded, with spending growing at around 1% in real terms,” Darzi wrote, compared with a long-term average of 3.4%.

One result was that administrators took funds from the capital budget to cover day-to-day needs, leading to “crumbling buildings that hit productivity,” he noted.

“The backlog maintenance bill now stands at more than £11.6 billion and a lack of capital means that there are too many outdated scanners, too little automation, and parts of the NHS are yet to enter the digital era,” he wrote.

The COVID-19 pandemic. Given the preceding “decade of austerity,” NHS had fewer resources to deal with the crisis than most other high-income health systems, he wrote. As a result, NHS “delayed, cancelled, or postponed far more routine care during the pandemic than any comparable health system.” This led to “a bigger backlog than other health systems.”

Lack of patient and staff engagement. Patient satisfaction “has declined and the number of complaints has increased, while patients are less empowered to make choices about their care,” he wrote. In addition, “too many staff have become disengaged, and there are distressingly high-levels of sickness absence—as much as one working month a year for each nurse and each midwife working in the NHS.”

Management structures and systems. Darzi laid considerable blame on the UK’s Health and Social Care Act of 2012, which led to what he described as “a costly and distracting process of almost constant reorganization of the ‘headquarters’ and ‘regulatory’ functions of the NHS.”

One consequence, he wrote, is that too many clinicians have been deployed in hospitals instead of community-based care, despite years of promises by successive governments to put more emphasis on the latter.

National Health in Decline

Along with issues within the NHS, “the health of the nation has deteriorated and that impacts its performance,” Darzi wrote. “There has been a surge in multiple long-term conditions, and, particularly among children and young people, in mental health needs. Fewer children are getting the immunizations they need to protect their health, and fewer adults are participating in some of the key screening programs, such as for breast cancer.”

Darzi’s investigation included frontline visits to NHS facilities as well as focus groups with NHS staff and patients, the press release states. He also consulted an expert reference group consisting of more than 70 organizations and examined analyses from NHS England, the UK’s Department of Health and Social Care, and external groups.

It is interesting that there is no mention of anatomic pathology and medical laboratory testing services in Lord Darzi’s report. As reported in recent years by new outlets in the United Kingdom, delays in cancer diagnoses—often as long as six months—were severe enough that, in 2018, the NHS announced funding for a program to create a national digital pathology network to improve productivity of pathologists and shorten wait times for the results of cancer tests.

—Stephen Beale

Related Information:

The NHS Is in ‘Serious Trouble’ and Needs Major Reform – Here Are the Pitfalls the Government Must Avoid

‘Major Surgery, Not Sticking Plaster Solutions’ Needed to Rebuild NHS

Independent Investigation of the National Health Service in England

No Extra NHS Funding without Reform, Says PM

No More Money for NHS Without Reform, Says Starmer As He Outlines Vision for Health Service

Long NHS Delays in England Leading to Thousands of Unnecessary Deaths, Inquiry Finds

NHS Is Broken but No Extra Funding without Reform, Starmer Says

The Left Must Accept NHS Reform or It Will Die, Says Streeting

Welsh and UK Government to Co-Operate on NHS Reform

Keir Starmer Says UK’s NHS Needs to ‘Reform or Die’

Welsh NHS Needs Reform, Keir Starmer Says

Researchers at University of Michigan Rogel Cancer Center Develop Urine Test That Detects Head and Neck Cancer

Proof-of-concept study may eventually lead to new clinical laboratory urine tests for fast, non-invasive detection of cancer

Here is the latest example of researchers finding useful biomarkers in urine for diagnosing certain cancers. The discovery comes from the University of Michigan Health Rogel Cancer Center, where, in a proof-of-concept study, scientists developed a urine-based test that screens for circulating free DNA (cfDNA) fragments (aka, cell-free DNA) released by tumors in the head and neck. If they confirm these findings, it’s possible the technology could be adapted into a non-invasive clinical laboratory test for selected cancers.

One such cancer is human papillomavirus (HPV) which, though “widely recognized for causing cervical cancer” is “increasingly found to cause cancers in the mouth, throat, and other head and neck regions,” according to a U-M Medical School press release.

The U-M study findings could lead to an early, non-invasive test for the detection of cancer, as compared to traditional urine or blood-based liquid biopsy testing.

The researchers published their findings in the journal JCI Insight titled, “ctDNA Transiting into Urine is Ultrashort and Facilitates Noninvasive Liquid Biopsy of HPV+ Oropharyngeal Cancer.”

“In this study, we provide evidence to support the hypothesis that conventional assays do not detect ultrashort fragments found in urine since they are designed to support longer DNA fragments. Our team used an unconventional approach to develop a urine test for HPV-positive head and neck cancer ctDNA detection,” said Chandan Bhambhani, PhD (above), Research Lab Specialist Intermediate at University of Michigan and co-first author of the study, in a news release. Clinical laboratories may soon have a new urine-based test for detecting cancer. (Photo copyright: LinkedIn.)

Advantages, Challenges of Urine Testing

Key to their discovery was use of whole genome sequencing to find what conventional assays tend to miss: predominantly ultrashort (under 50 base pairs) of circulating urine transrenal cell-free tumor DNA (TR-ctDNA) fragments, according to the JCI Insight paper.

According to the researchers, benefits of urine testing include:

  • Testing with urine is convenient for people who may be unable to access healthcare and phlebotomy services.
  • Urine has low biohazard risk and may be easily collected in large amounts, compared with blood.
  • Ongoing collection of urine could make way for TR-ctDNA “kinetics to be used as a high time-resolution biomarker” to monitor patients’ response to treatment.

However, urine, the researchers cautioned, must be analyzed in a different manner if it is to be comparable in efficiency to blood-based ctDNA testing.

“There have been mixed reports on the efficiency of TR-ctDNA detection compared with that of blood ctDNA. A potentially crucial factor for the analysis of TR-ctDNA is knowing the length of TR-ctDNA fragments present in urine, because this affects assay design for optimal sensitivity in TR-ctDNA detection,” the researchers explained.

New Assay Detects Ultrashort DNA Fragments

To complete their study, the U-M researchers developed an ultrashort HPV droplet digital PCR (polymerase chain reaction) assay that enabled detection of TR-ctDNA from HPV-associated oropharyngeal squamous cell carcinoma (HPV OPSCC), BioTechniques reported.

The assay was made to target the HPV16 E6 (Human papillomavirus 16) gene and to measure TR-ctDNA in patients with HPV OPSCC, the JCI Insight paper noted.

“The HPV16 E6 gene represents a highly recurrent ctDNA target in the population of patients with HPV OPSCC,” the researchers wrote in JCI Insight, adding:

  • Targeting ultrashort fragments was essential “for robust TR-ctDNA detection.”
  • Results in urine with patients with HPV OPSCC was consistent with results from plasma ctDNA.

The test, still in the discovery phase, was mailed to patients who were being treated for the disease and who reside within 100 miles of Ann Arbor, Mich. They returned urine samples for testing at the U-M lab and to get insights into possible post-treatment needs.

“Using longitudinal urine samples from a small case series, we showed proof of concept for early detection of cancer recurrence. Thus, our results indicate that by targeting ultrashort DNA fragments, TR-ctDNA becomes a viable approach for HPV OPSCC detection and potentially for cancer recurrence monitoring after treatment,” the authors wrote.

Further Studies, Possible Test Expansion

HPV infection—and especially HPV type 16—is a growing risk factor for oropharyngeal cancers, according to the National Cancer Institute.

The U-M Rogel Cancer Center scientists plan more studies to leverage the information urine may carry about an individual’s health. The researchers intend to expand the scope of their new test to other cancers including breast cancer and acute myeloid leukemia.

“The test that has been developed has detected cancer far earlier than would typically happen based on clinical imaging. As such, these promising results have given us the confidence to broaden the scope of this study, seeking to expanding distribution even further,” said J. Chad Brenner, PhD, Associate Professor of Otolaryngology-Head and Neck Surgery, U-M Medicine, and co-senior author of the study, in the news release.

The University of Michigan Health study exemplifies scientists’ commitment to new categories of biomarkers that can be used for medical laboratory tests and prescription drugs. And by focusing on urine, the researchers made it possible for patients to collect specimens themselves and send them to the medical laboratory for analysis and reporting.  

—Donna Marie Pocius

Related Information:

University of Michigan Health Lab Researchers Discover Urine-based Test to Detect Head and Neck Cancer

ctDNA Transiting into Urine is Ultrashort and Facilitates Noninvasive Liquid Biopsy of HPV+ Oropharyngeal Cancer

Urine-based Test Detects Head and Neck Cancer

National Cancer Institute: Head and Neck Fact Cancers

Orchid Health Announces Release of First Commercially-Available Whole Genome Sequencing Service for Certain Diseases in Preimplantation Embryos

Clinical laboratory managers should note that this company’s new diagnostic offering involving screening embryos for specific genetic conditions is not without controversy

Is the world ready for whole genome sequencing (WGS) of preimplantation embryos to help couples undergoing in vitro fertilization (IVF) treatments know if their embryos  have potential genetic health problems? Orchid Health, a clinical preimplantation genetic testing (PGT) laboratory that conducts genetic screening in San Francisco, believes the answer is yes! But the cost is high, and the process is not without controversy.

According to an article in Science, Orchid’s service—a sequencings of the whole human genome of preimplantation embryos at $2,500 per embryo tested—“will look not just for single-gene mutations that cause disorders such as cystic fibrosis, but also more extensively for medleys of common and rare gene variants known to predispose people to neurodevelopmental disorders, severe obesity, and certain psychiatric conditions such as schizophrenia.”

However, Science also noted that some genomics researchers “claim the company inappropriately uses their data to generate some of its risk estimates,” adding that the “Psychiatric Genomics Consortium (PGC), an international group of more than 800 researchers working to decode the genetic and molecular underpinnings of mental health conditions, says Orchid’s new test relies on data [PGC] produced over the past decade, and that the company has violated restrictions against the data’s use for embryo screening.”

There are some who assert that a whole genome sequence of an embryo—given today’s state of genetic technology and knowledge—could generate information that cannot be interpreted accurately in ways that help parents and doctors make informed prenatal testing decisions. At the same time, criticisms expressed by the PGC raise reasonable points.

Perhaps this is a sign of the times. Orchid Health is the latest genetic testing company that is looking to get ahead of genetic testing competitors with its diagnostics offerings. Meanwhile, knowledgeable and credible experts question the appropriateness of this testing, given the genetic knowledge that exists today.

Noor Siddiqui

“This is a major advance in the amount of information parents can have,” Orchid’s founder and CEO Noor Siddiqui (above) told CNBC. “The way that you can use that information is really up to you, but it gives a lot more control and confidence into a process that, for all of history, has just been totally left to chance.” Should Orchid Health’s analysis prove useful, pediatricians could order further clinical laboratory prenatal testing to confirm and diagnose potential genetic diseases for parents. (Photo copyright: General Assembly.)

Orchid Receives World-class Support

Regardless of the pushback from some genetic researchers, Orchid has attracted several world-class geneticists and genetics investors to its board of advisors. They include:

The WGS test, according to Orchid, detects genetic errors in embryos that are linked to severe illnesses before a pregnancy even begins. And by sequencing 99% of an embryo’s DNA, the test can spot potential health risks that could affect a future baby.

According to its website, the PGT lab company uses the WGS data to identify both monogenic (single-gene) and polygenic (multiple-gene) diseases, including:

The company also claims its genetic screening can predict the risk of brain health issues in the unborn, such as Alzheimer’s disease, bipolar disorder, and schizophrenia, as well as heart health issues such atrial fibrillation and coronary artery disease.

Other health problems such as celiac disease and Type I/II diabetes also can be forecasted with the test, Orchid claims. 

Not all Genetics Experts Agree

Orchid is not without its critics. Knowledgeable, credible experts have questioned the appropriateness of this type of genetic testing. They fear it could become a modern-day form of eugenics.

Andrew McQuillin, PhD, Professor of Molecular Psychiatry at University College London, has concerns about Orchid’s preimplantation genetic testing. He maintains that it is difficult to control how such data is used, and that even the most accurate sequencing techniques do not predict disease risk very well. 

“[Polygenic risk scores are] useful in the research context, but at the individual level, they’re not actually terribly useful to predict who’s going to develop schizophrenia or not,” McQuillin told Science. “We can come up with guidance on how these things should be used. The difficulty is that official guidance like that doesn’t feature anywhere in the marketing from these companies.”

McQuillin also stated that researchers must have an extensive discussion regarding the implications of this type of embryo screening.

“We need to take a look at whether this is really something we should be doing. It’s the type of thing that, if it becomes widespread, in 40 years’ time, we will ask, ‘What on Earth have we done?’” McQuillin emphasized.

Redefining Reproduction

It takes about three weeks for couples to receive their report back from Orchid after completing the whole genome sequence of a preimplantation embryo. A board-certified genetic counselor then consults with the parents to help them understand the results. 

Founder and CEO Noor Siddiqui hopes Orchid will be able to scale up its operations and introduce more automation to the testing process to the cost per embryo.

“We want to make this something that’s accessible to everyone,” she told CNBC.

“I think this has the potential to totally redefine reproduction,” she added. “I just think that’s really exciting to be able to make people more confident about one of the most important decisions of their life, and to give them a little bit more control.”

Clinical laboratories have long been involved in prenatal screening to gain insight into risk levels associated with certain genetic disorders. Even some of that testing comes with controversy and ambiguous findings. Whether Orchid Health’s PGT process delivers accurate, reliable diagnostic insights regarding preimplantation embryos remains to be seen.

—JP Schlingman

Related Information:

Genetics Group Slams Company for Using Its Data to Screen Embryos’ Genomes

Reproductive Startup Launches Test to Identify an Embryo’s Genetic Defects Before an IVF Pregnancy Begins

What Is the Difference Between Monogenic and Polygenic Diseases?

First Clinical Validation of Whole Genome Screening on Standard Trophectoderm Biopsies of Preimplantation Embryos

Orchid Tests Embryos for Genetic Diseases. It Just Raised $12 Million with This 11-Slide Pitch Deck

;