News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Nearly 10% of Patients Surveyed Claim to Have Been Hurt by UK’s National Health Service

With public trust in healthcare organizations dropping, clinical laboratories worldwide must work doubly hard to provide competent, secure services to their patients

Is the UK’s National Health Service hurting people? About 10% of NHS patients said yes in a recent survey conducted by the London School of Hygiene and Tropical Medicine (LSHTM) and the University of Oxford. And those findings are a public stain on the physicians and clinical laboratories in an already strained healthcare system.

Of the 10,000 people interviewed, nearly 1,000 “reported they had experienced harm caused by the NHS in the previous three years. Of those, 6.2% cited their treatment or care and 3.5% blamed the harm on a lack of access to NHS services,” according to an LSHTM news release.

While the definition of “hurt” within the confines of the survey wasn’t specified, what is clear is that public trust in the UK’s healthcare system is decreasing. Fallout from the survey may affect the public’s trust in clinical labs that are facing unfavorable feedback from slow test result delivery times or rare instances of incorrect results.

“I’ve been studying patient safety and working in and with the NHS, including as a GP, for many years. It’s a complex challenge to pinpoint the cause of the problem and solve it,” said study author Helen Hogan, PhD, MBBS, a general practitioner and associate professor in the department of Health Services Research and Policy at LSHTM, in the news release.

The researchers published their findings in the journal BMJ Quality and Safety titled, “Patient-reported Harm from NHS Treatment or Care, or the Lack of Access to Care: A Cross-Sectional Survey of General Population Prevalence, Impact, and Responses.”

“These findings indicate that healthcare harm affects a considerable number of the general public. It shows that there is still some way to go to improve safety across the NHS,” said study author Helen Hogan, PhD, MBBS, general practitioner and associate professor in the department of Health Services Research and Policy at LSHTM, in a news release. (Photo copyright: London School of Hygiene and Tropical Medicine.)

LSHTM Survey Details

Slightly more than 10,000 patients in Great Britain took part in the cross-sectional survey, which was funded by the National Institute for Health Research Policy Program.

Of the 9.7% that reported NHS harm, 6.2% claimed it was from the actual treatment or care given and 3.5% from the access to care. Severity ranged from 37.6% reporting moderate impact to 44.8% reporting severe impact, and the majority claimed the impact occurred at hospitals, the authors wrote in BMJ Quality and Safety.

Women led the respondents in reports of harm, and more severe harm or higher rates of harm were reported from those in disadvantaged groups or lower social grades and those with disabilities or long-term illness, according to the researchers.

Though 60% got professional support for their troubles, including 11.6% contacting the NHS’ Patient Advice and Liaison Service (PALS), only 17% made a formal complaint. A small percentage, 2.5%, sought financial compensation, the survey showed.

Poor Patient Service Experience

Further, the patients reported poor results when they sought relief from the harm. Some (44.4%) desired treatment or care to help with the harm, while others (34.8%) wanted an explanation for the harm. Two-thirds said their incidents were not dealt with well and only half reported a positive PALS experience, the survey noted.

“Those harmed by healthcare are looking for a compassionate and caring response from services. What they really want is to be listened to, to have their harm acknowledged, and get an explanation,” noted Michele Peters, PhD, fellow survey author and associate professor at Oxford Population Health, University of Oxford, in the LSHTM news release.

Loss in Confidence

To make matters worse for the UK’s publicly run healthcare system, an unrelated patient satisfaction survey published contemporaneously found that NHS satisfaction hit record lows. According to The Guardian, the annual patient survey found a 24% decrease in satisfaction among adults in Britain in how NHS is run (now at a mere 21%). Dissatisfaction rose from 52% to 59% in the past year.

General practice, accident and emergency, and dental care were the areas of biggest disappointment, the study revealed.

“It is by far the most dramatic loss of confidence in how the NHS runs that we have seen in 40 years of this survey,” said Mark Dayan, a policy analyst at the Nuffield Trust who was engaged by The King’s Fund to analyze the survey data.

“There is a need to better understand the patient perspective following harm and for further consideration of what a person-centered approach to resolution and recovery might look like,” the researchers noted in BMJ Quality and Safety.

These types of findings can contribute to public mistrust of healthcare organizations worldwide, including clinical laboratories and pathology groups. It’s worth watching how the NHS resolves these issues.

—Kristin Althea O’Connor

UK Biobank Launches Large, Comprehensive Study of the Human Proteome

Study is expected to result in new clinical laboratory test biomarkers based on proteins shown to be associated with specific diseases

In January, the UK Biobank announced the launch of the “world’s most comprehensive study” of the human proteome. The study focuses on proteins circulating throughout the human body. Researchers involved in this endeavor hope the project will transform disease detection and lead to clinical laboratory blood tests that help diagnosticians identify illnesses earlier than with conventional diagnostics.   

Building on the results of a 2023 pilot project that studied “the effects of common genetic variation on proteins circulating in the blood and how these associations can contribute to disease,” according to a UK Biobank news release, the 2025 UK Biobank Pharma Proteomics Project (UKB-PPP) plans to analyze up to 5,400 proteins in 600,000 samples to explore how an individual’s protein levels changes over time and how those changes may influence the existence of diseases in mid-to-late life.

The specimens being analyzed include 500,000 samples extracted from UK Biobank participants and an additional 100,000 set of second samples taken from volunteers up to 15 years later. 

“The data collected in the study will allow scientists around the world to conduct health-related research, exploring how lifestyle, environment, and genetics lead through proteins to some people developing particular diseases, while others do not,” Sir Rory Collins, FMedSci FRS, professor of medicine and epidemiology at University of Oxford and principal investigator and chief executive of the UK Biobank, told The Independent.

“That will allow us to identify who it is, who’s likely to develop disease well before they do, and we can then look at ways in which to prevent those conditions before they develop,” he added.

“It really might be possible to develop simple blood tests that can detect disease much earlier than currently exists,” said Naomi Allen, MSc, DPhil (above), chief scientist for UK Biobank and professor of epidemiology at Oxford Population Health, University of Oxford, in an interview with The Independent. “So, it adds a crucial piece in the jigsaw puzzle for scientists to figure out how disease develops and gives us firm clues on what we can do to prevent and treat it.” Clinical laboratories may soon have new test biomarkers that help identify proteins associated with specific diseases. (Photo copyright: UK Biobank.)

Developing New Protein-based Biomarkers

A proteome is the entire set of proteins expressed by an organism, cell, or tissue and the study of the proteome is known as proteomics. The proteome is an expression of an organism’s genome, but it can change over time between cell types and growth conditions. 

The human genome contains approximately 20,000 genes and human cells have between 80,000 and 400,000 proteins with specific cells having their own proteomes. Proteomics can help ascertain how proteins function and interact with each other and assist in the identification of biomarkers for new drug discoveries and development. 

“This is hugely valuable, because it will enable researchers to see how changes in protein levels within individuals over mid- to late-life influence the development of a whole range of different diseases,” said Naomi Allen, MSc, DPhil, chief scientist for UK Biobank and professor of epidemiology at the Oxford Population Health, University of Oxford, in The Independent. “It will accelerate research into the causes of disease and the development of new treatments that target specific proteins associated with those diseases.

“The pilot data is already showing that specific proteins are elevated in those who go on to develop many different types of cancers up to seven years before a clinical diagnosis is made. And for dementia, up to 10 years before clinical diagnosis is made,” she added.

According to the project’s website, the UK Biobank’s proteomics dataset will allow researchers to: 

  • Examine proteomic and genetic data from half a million people to provide a more detailed picture of the biological processes involved in disease progression.
  • Examine how and why protein levels change over time to understand age-related changes in healthy individuals.
  • Utilize proteomic data together with imaging data to understand disease mechanisms.
  • Open pathways for the development of artificial intelligence (AI), machine-learning tools that can predict future diseases and produce early interventions.

“Data from the pilot study has shown that specific proteins are substantially elevated in individuals with autoimmune conditions like multiple sclerosis and Crohn’s disease and so on,” Allen noted. “So, you can see how a simple blood test could be used to complement existing diagnostic measures in order to diagnose these types of diseases more accurately and perhaps more quickly.”

An Invaluable Resource of Knowledge

The initial UK Biobank started in 2006 and, to date, has collected biological and medical data from more than half a million individuals. The subjects of the UKB-PPP study are between the ages of 40 and 69 and reside in the UK. The database is globally accessible to approved researchers and scientists engaging in research into various diseases. 

The full dataset of the latest research is expected to be added to the UK Biobank Research Analysis Platform by the year 2027. The newest study is backed by a consortium of 14 pharmaceutical firms.

Allen also noted that evidence from the research has emphasized how some drugs may be useful in treating a variety of conditions. 

“Some proteins that are known to be important for immunity are related to developing a range of psychiatric conditions like schizophrenia, depression, bipolar disorder and so on,” she told The Independent. “And given there are drugs already available that specifically target some of these proteins that are used for other conditions, it presents a real opportunity for repurposing those existing drugs for these neuropsychiatric conditions.”

This type of comprehensive study of the human proteome may have a great impact on patient diagnosis and treatment once the study is completed and the results are disclosed.

“The data will be invaluable. The value of the data is infinite,” Collins told The Independence.

Since it is clinical laboratories that will be engaged in testing for proteins that have become associated with specific diseases, this new UK Biobank study has the potential to expand knowledge about useful protein markers for both diagnosis and therapeutic solutions (prescription drugs).

JP Schlingman

Related Information:

Largest Ever Protein Study Set to Revolutionize Cancer and Dementia Tests

Largest Dataset of Thousands of Proteins Marks Landmark Step for Research into Human Health

Groundbreaking Human Protein Study Launches

World’s Largest Proteomics Study Launched by UK Biobank

Disease Prediction and New Drugs: Why UK Biobank’s Huge New Protein Project Matters

Blood Proteins Predict Cancer Risk Seven Years in Advance, Studies Find

UK Researchers Use Proteomics to Identify Proteins That Indicate Presence of Cancer Years before Diagnosis

Proteomics May Hold Key to Understanding Aging’s Role in Chronic Diseases and Be Useful as a Clinical Laboratory Test for Age-related Diseases

Proteomics-based Clinical Laboratory Testing May Get a Major Boost as Google’s DeepMind Research Lab Is Making Public Its Entire AI Database of Human Protein Predictions

Scientists Close in on Elusive Goal of Adapting Nanopore Technology for Protein Sequencing

Technology could enable medical laboratories to deploy inexpensive protein sequencing with a handheld device at point of care and remote locations

Clinical laboratories engaged in protein testing will be interested in several recent studies that suggest scientists may be close to adapting nanopore-sensing technology for use in protein identification and sequencing. The new proteomics techniques could lead to new handheld devices capable of genetic sequencing of proteins at low cost and with a high degree of sensitivity, in contrast to current approaches based on mass spectrometry.

But there are challenges to overcome, not the least of which is getting the proteins to cooperate. Compact devices based on nanopore technology already exist that can sequence DNA and RNA. But “there are lots of challenges with proteins” that have made it difficult to adapt the technology, Aleksei Aksimentiev, PhD, Professor of Biological Physics at the University of Illinois at Urbana-Champaign, told ASBMB Today, a publication of the American Society for Biochemistry and Molecular Biology. “In particular, they’re not uniformly charged; they’re not linear, most of the time they’re folded; and there are 20 amino acids, plus a zoo of post-translational modifications,” he added.

The ASBMB story notes that nanopore technology depends on differences in charges on either side of the membrane to force DNA or RNA through the hole. This is one reason why proteins pose such a challenge.

Giovanni Maglia, PhD, a Full Professor at the University of Groningen in the Netherlands and researcher into the fundamental properties of membrane proteins and their applications in nanobiotechnology, says he has developed a technique that overcomes these challenges.

“Think of a cell as a miniature city, with proteins as its inhabitants. Each protein-resident has a unique identity, its own characteristics, and function. If there was a database cataloging the fingerprints, job profiles, and talents of the city’s inhabitants, such a database would undoubtedly be invaluable!” said Behzad Mehrafrooz, PhD (above), Graduate Research Assistant at University of Illinois at Urbana-Champaign in an article he penned for the university website. This research should be of interest to the many clinical laboratories that do protein testing. (Photo copyright: University of Illinois.)

How the Maglia Process Works

In a Groningen University news story, Maglia said protein is “like cooked spaghetti. These long strands want to be disorganized. They do not want to be pushed through this tiny hole.”

His technique, developed in collaboration with researchers at the University of Rome Tor Vergata, uses electrically charged ions to drag the protein through the hole.

“We didn’t know whether the flow would be strong enough,” Maglia stated in the news story. “Furthermore, these ions want to move both ways, but by attaching a lot of charge on the nanopore itself, we were able to make it directional.”

The researchers tested the technology on what Maglia described as a “difficult protein” with many negative charges that would tend to make it resistant to flow.

“Previously, only easy-to-thread proteins were analyzed,” he said in the news story. “But we gave ourselves one of the most difficult proteins as a test. And it worked!”

Maglia now says that he intends to commercialize the technology through a new startup called Portal Biotech.

The Groningen University scientists published their findings in the journal Nature Biotechnology, titled “Translocation of Linearized Full-Length Proteins through an Engineered Nanopore under Opposing Electrophoretic Force.”

Detecting Post-Translational Modifications in the UK

In another recent study, researchers at the University of Oxford reported that they have adapted nanopore technology to detect post-translational modifications (PTMs) in protein chains. The term refers to changes made to proteins after they have been transcribed from DNA, explained an Oxford news story.

“The ability to pinpoint and identify post-translational modifications and other protein variations at the single-molecule level holds immense promise for advancing our understanding of cellular functions and molecular interactions,” said contributing author Hagan Bayley, PhD, Professor of Chemical Biology at University of Oxford, in the news story. “It may also open new avenues for personalized medicine, diagnostics, and therapeutic interventions.”

Bayley is the founder of Oxford Nanopore Technologies, a genetic sequencing company in the UK that develops and markets nanopore sequencing products.

The news story notes that the new technique could be integrated into existing nanopore sequencing devices. “This could facilitate point-of-care diagnostics, enabling the personalized detection of specific protein variants associated with diseases including cancer and neurodegenerative disorders,” the story states.

The Oxford researchers published their study’s findings in the journal Nature Nanotechnology titled, “Enzyme-less Nanopore Detection of Post-Translational Modifications within Long Polypeptides.”

Promise of Nanopore Protein Sequencing Technology

In another recent study, researchers at the University of Washington reported that they have developed their own method for protein sequencing with nanopore technology.

“We hacked the [Oxford Nanopore] sequencer to read amino acids and PTMs along protein strands,” wrote Keisuke Motone, PhD, one of the study authors in a post on X (formerly Twitter) following the study’s publication on the preprint server bioRxiv titled, “Multi-Pass, Single-Molecule Nanopore Reading of Long Protein Strands with Single-Amino Acid Sensitivity.”

“This opens up the possibility for barcode sequencing at the protein level for highly multiplexed assays, PTM monitoring, and protein identification!” Motone wrote.

In a commentary they penned for Nature Methods titled, “Not If But When Nanopore Protein Sequencing Meets Single-Cell Proteomics,” Motone and colleague Jeff Nivala, PhD, Principal Investigator at University of Washington, pointed to the promise of the technology.

Single-cell proteomics, enabled by nanopore protein sequencing technology, “could provide higher sensitivity and wider throughput, digital quantification, and novel data modalities compared to the current gold standard of protein MS [mass spectrometry],” they wrote. “The accessibility of these tools to a broader range of researchers and clinicians is also expected to increase with simpler instrumentation, less expertise needed, and lower costs.”

There are approximately 20,000 human genes. However, there are many more proteins. Thus, there is strong interest in understanding the human proteome and the role it plays in health and disease.

Technology that makes protein testing faster, more accurate, and less costly—especially with a handheld analyzer—would be a boon to the study of proteomics. And it would give clinical laboratories new diagnostic tools and bring some of that testing to point-of-care settings like doctor’s offices.

—Stephen Beale

Related Information:

Nanopores as the Missing Link to Next Generation Protein Sequencing

Nanopore Technology Achieves Breakthrough in Protein Variant Detection

The Scramble for Protein Nanopore Sequencing

The Emerging Landscape of Single-Molecule Protein Sequencing Technologies

ASU Researcher Advances the Science of Protein Sequencing with NIH Innovator Award          

The Missing Link to Make Easy Protein Sequencing Possible?

Engineered Nanopore Translocates Full Length Proteins

Not If But When Nanopore Protein Sequencing Meets Single-Cell Proteomics

Enzyme-Less Nanopore Detection of Post-Translational Modifications within Long Polypeptides

Unidirectional Single-File Transport of Full-Length Proteins through a Nanopore

Translocation of Linearized Full-Length Proteins through an Engineered Nanopore under Opposing Electrophoretic Force

Interpreting and Modeling Nanopore Ionic Current Signals During Unfoldase-Mediated Translocation of Single Protein Molecules

Multi-Pass, Single-Molecule Nanopore Reading of Long Protein Strands with Single-Amino Acid Sensitivity

Cambridge Researchers in UK Develop ‘Unknome Database’ That Ranks Proteins by How Little is Known about Their Functions

Scientists believe useful new clinical laboratory assays could be developed by better understanding the huge number of ‘poorly researched’ genes and the proteins they build

Researchers have added a new “-ome” to the long list of -omes. The new -ome is the “unknome.” This is significant for clinical laboratory managers because it is part of an investigative effort to better understand the substantial number of genes, and the proteins they build, that have been understudied and of which little is known about their full function.

Scientists at the Medical Research Council Laboratory of Molecular Biology (MRC-LMB) in Cambridge, England, believe these genes are important. They have created a database of thousands of unknown—or “unknome” as they cleverly dubbed them—proteins and genes that have been “poorly understood” and which are “unjustifiably neglected,” according to a paper the scientist published in the journal PLOS Biology titled, “Functional Unknomics: Systematic Screening of Conserved Genes of Unknown Function.”

The Unknome Database includes “thousands of understudied proteins encoded by genes in the human genome, whose existence is known but whose functions are mostly not,” according to a news release.

The database, which is available to the public and which can be customized by the user, “ranks proteins based on how little is known about them,” the PLOS Biology paper notes.

It should be of interest to pathologists and clinical laboratory scientists. The fruit of this research may identify additional biomarkers useful in diagnosis and for guiding decisions on how to treat patients.

Sean Munro, PhD

“These uncharacterized genes have not deserved their neglect,” said Sean Munro, PhD (above), MRC Laboratory of Molecular Biology in Cambridge, England, in a press release. “Our database provides a powerful, versatile and efficient platform to identify and select important genes of unknown function for analysis, thereby accelerating the closure of the gap in biological knowledge that the unknome represents.” Clinical laboratory scientists may find the Unknome Database intriguing and useful. (Photo copyright: Royal Society.)

Risk of Ignoring Understudied Proteins

Proteomics (the study of proteins) is a rapidly advancing area of clinical laboratory testing. As genetic scientists learn more about proteins and their functions, diagnostics companies use that information to develop new assays. But did you know that researchers tend to focus on only a small fraction of the total number of protein-coding DNA sequences contained in the human genome?

The study of proteomics is primarily interested in the part of the genome that “contains instructions for building proteins … [which] are essential for development, growth, and reproduction across the entire body,” according to Scientific American. These are all protein-coding genes.

Proteomics estimates that there are more than two million proteins in the human body, which are coded for 20,000 to 25,000 genes, according to All the Science.

To build their database, the MRC researchers ranked the “unknome” proteins by how little is known about their functions in cellular processes. When they tested the database, they found some of these less-researched proteins important to biological functions such as development and stress resistance. 

“The role of thousands of human proteins remains unclear and yet research tends to focus on those that are already well understood,” said Sean Munro, PhD, MRC Laboratory of Molecular Biology in Cambridge, England, in the news release. “To help address this we created an Unknome database that ranks proteins based on how little is known about them, and then performed functional screens on a selection of these mystery proteins to demonstrate how ignorance can drive biological discovery.”

Munro created the Unknome Database along with Matthew Freeman, PhD, Head of England’s Sir William Dunn School of Pathology, University of Oxford.

In the paper, they acknowledged the human genome encodes about 20,000 proteins, and that the application of transcriptomics and proteomics has “confirmed that most of these new proteins are expressed, and the function of many of them has been identified.

“However,” the authors added, “despite over 20 years of extensive effort, there are also many others that still have no known function.”

They also recognized limited resources for research and that a preference for “relative safety” and “well-established fields” are likely holding back discoveries.

The researchers note “significant” risks to continually ignoring unexplored proteins, which may have roles in cell processes, serve as targets for therapies, and be associated with diseases as well as being “eminently druggable,” Genetic Engineering News reported.

Setting up the Unknome Database

To develop the Unknome Database, the researchers first turned to what has already come to fruition. They gave each protein in the human genome a “knownness” score based on review of existing information about “function, conservation across species, subcellular localization, and other factors,” Interesting Engineering reported.

It turns out, 3,000 groups of proteins (805 with a human protein) scored zero, “showing there’s still much to learn within the human genome,” Science News stated, adding that the Unknome Database catalogues more than 13,000 protein groups and nearly two million proteins. 

The researchers then tested the database by using it to determine what could be learned about 260 “mystery” genes in humans that are also present in Drosophila (small fruit flies).

“We used the Unknome Database to select 260 genes that appeared both highly conserved and particularly poorly understood, and then applied functional assays in whole animals that would be impractical at genome-wide scale,” the researchers wrote in PLOS Biology.

“We initially selected all genes that had a knownness score of ≤1.0 and are conserved in both humans and flies, as well as being present in at least 80% of available metazoan genome sequences. … After testing for viability, the nonessential genes were then screened with a panel of quantitative assays designed to reveal potential roles in a wide range of biological functions,” they added.

“Our screen in whole organisms reveals that, despite several decades of extensive genetic screens in Drosophila, there are many genes with essential roles that have eluded characterization,” the researchers conclude.

Clinical Laboratory Testing Using the Unknome Database

Future use of the Unknome Database may involve CRISPR technology to explore functions of unknown genes, according to the PLOS Biology paper.

Munro told Science News the research team may work with other research efforts aimed at understanding “mysterious proteins,” such as the Understudied Proteins Initiative.

The Unknome Database’s ability to be customized by others means researchers can create their own “knownness” scores as it applies to their studies. Thus, the database could be a resource in studies of treatments or medications to fight diseases, Chemistry World noted.

According to a statement prepared for Healthcare Dive by SomaLogic, a Boulder, Colorado-based protein biomarker company, diagnostic tests that measure proteins can be applied to diseases and conditions such as:

In a study published in Science Translational Medicine, SomaLogic’s SomaScan assay was reportedly successful in predicting the likelihood within four years of myocardial infarction, heart failure, stroke, and even death.

“The 27-protein model has potential as a ‘universal’ surrogate end point for cardiovascular risk,” the researchers wrote in Science Translational Medicine.

Proteomics definitely has its place in clinical laboratory testing. The development of MRC-LMB’s Unknome Database will help researchers’ increase their knowledge about the functions of more proteins which should in turn lead to new diagnostic assays for labs.

—Donna Marie Pocius

Related Information:

Mapping the ‘Unknome’ May Reveal Critical Genes Scientists Have Ignored

How Many Proteins Exist?

Unknome: A Database of Human Genes We Know Almost Nothing About

Functional Unknomics: Systematic Screening of Conserved Genes of Unknown Function

Unknome Database Ranks Proteins Based on How Little is Known about Them

How a New Database of Human Genes Can Help Discover New Biology

The Unknome Catalogs Nearly Two Million Proteins. Many are Mysterious

Into the Unknome: Scientists at MRC LMB in Cambridge Create Database Ranking Human Proteins by How Little We know About Them

Scientists Hope to Illuminate Unknown Human Proteins with New Public Database

Proteomic Tests Empower Precision Medicine

A Proteomic Surrogate for Cardiovascular Outcomes That is Sensitive to Multiple Mechanisms of Change in Risk

University of Oxford Researchers Use Spectroscopy and Artificial Intelligence to Create a Blood Test for Chronic Fatigue Syndrome

Spectroscopic technique was 91% accurate in identifying the notoriously difficult-to-diagnose disease suggesting a clinical diagnostic test for CFS may be possible

Most clinical pathologists know that, despite their best efforts, scientists have failed to come up with a reliable clinical laboratory blood test for diagnosing myalgic encephalomyelitis (ME), the condition commonly known as chronic fatigue syndrome (CFS)—at least not one that’s ready for clinical use.

But now an international team of researchers at the University of Oxford has developed an experimental non-invasive test for CFS using a simple blood draw, artificial intelligence (AI), and a spectroscopic technique known as Raman spectroscopy.

The approach uses a laser to identify unique cellular “fingerprints” associated with the disease, according to an Oxford news release.

“When Raman was added to a panel of potentially diagnostic outputs, we improved the ability of the model to identify the ME/CFS patients and controls,” Karl Morten, PhD, Director of Graduate Studies and Principal Investigator at Oxford University, told Advanced Science News. Morton led the research team along with Wei Huang, PhD, Professor of Biological Engineering at Oxford.

The researchers claim the test is 91% accurate in differentiating between healthy people, disease controls, and ME/CFS patients, and 84% accurate in differentiating between mild, moderate, and severe cases, the new release states.

The researchers published their paper in the journal Advanced Science titled, “Developing a Blood Cell-Based Diagnostic Test for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Using Peripheral Blood Mononuclear Cells.”

Karl Morten, PhD

“This could be a game changer as we are unsure what causes [ME/CFS] and diagnosis occurs perhaps 10 to 20 years after the condition has started to develop,” said Karl Morten, PhD, Director of Graduate Studies and Principal Investigator at Oxford University. “An early diagnosis might allow us to identify what is going wrong with the potential to fix it before the more long-term degenerative changes are observed.” Though this research may not lead to a simple clinical laboratory blood test for CFS, any non-invasive diagnostic test would enable doctors to help many people. (Photo copyright: Oxford University.)

Need for an ME/CFS Test

The federal Centers for Disease Control and Prevention (CDC) describes ME/CFS as “a serious, long-term illness that affects many body systems,” with symptoms that include severe fatigue and sleep difficulties. Citing an Institute of Medicine (IoM) report, the agency estimates that 836,000 to 2.5 million Americans suffer from the condition but notes that most cases have not been diagnosed.

“One of the difficulties is the complexity of the disease,” said Jonas Bergquist, MD, PhD, Director of the ME/CFS Research Center of Uppsala University in Sweden, told Advanced Science News. “Because it’s a multi-organ disorder, you get symptoms from many different regions of the body with different onsets, though it’s common with post viral syndrome to have different overlapping [symptoms] that disguise the diagnosis.” Bergquist was not involved with the Oxford study.

One key to the Oxford researchers’ technique is the use of multiple artificial intelligence models to analyze the spectral profiles. “These signatures are complex and by eye there are not necessarily clear features that separate ME/CFS patients from other groups,” Morten told Advanced Science News.

“The AI looks at this data and attempts to find features which can separate the groups,” he continued. “Different AI methods find different features in the data. Individually, each method is not that successful at assigning an unknown sample to the correct group. However, when we combine the different methods, we produce a model which can assign the subjects to the different groups very accurately.”

Without a reliable test, “diagnosis of the condition is difficult, with most patients relying on self-report, questionnaires, and subjective measures to receive a diagnosis,” the Oxford press release noted.

But developing such a test has been challenging, Advanced Science News noted.

How Oxford’s Raman Technique Works

Raman spectroscopy uses a laser to determine the “vibrational modes of molecules,” according to the Oxford press release.

“When a laser beam is directed at a cell, some of the scattered photons undergo frequency shifts due to energy exchanges with the cell’s molecular components,” the press release stated. “Raman micro-spectroscopy detects these shifted photons, providing a non-invasive method for single cell analysis. The resulting single cell Raman spectra serve as a unique fingerprint, revealing the intrinsic and biochemical properties and indicating the physiological and metabolic state of the cell.”

The researchers employed the technique on blood samples from 98 subjects, including 61 ME/CFS patients, 16 healthy controls, and 21 controls with multiple sclerosis (MS), Advanced Science reported.

The Oxford scientists focused their attention on peripheral blood mononuclear cells (PBMCs), as previous studies found that these cells showed “reduced energetic function” in ME/CFS patients. “With this evidence, the team proposed that single-cell analysis of PBMCs might reveal differences in the structure and morphology in ME/CFS patients compared to healthy controls and other disease groups such as multiple sclerosis,” the press release states.

Clinical Laboratory Blood Processing and the Oxford Raman Technique

Oxford’s Raman spectroscopic technique “only requires a small blood sample which could be developed as a point-of-care test perhaps from one drop of blood,” the researchers wrote. However, Advanced Science News pointed out that required laser microscopy equipment costs more than $250,000.

In their Advanced Science paper, the researchers note that the test could be made more widely available by transferring blood samples collected by local clinical laboratories to diagnostic centers that have the needed hardware.

“Alternatively, a compact system containing portable Raman instruments could be developed, which would be much cheaper than a standard Raman microscope, and [which] incorporated with microfluidic systems to stream cells through a Raman laser for detection, eliminating the need for lengthy blood sample processing,” the researchers wrote.

They noted that the technique could be adapted to test for other chronic conditions as well, such as MS, fibromyalgia, Lyme disease, and long COVID.

“Our paper is very much a starting point for future research,” Morten told Advanced Science News. “Larger cohorts need to be studied, and if Raman proves useful, we need to think carefully about how a test might be developed.”

Bergquist agreed, stating it’s “not necessarily something you would see in a doctor’s office. It requires a lot of advanced data analysis to use—I still see it as a research methodology. But in the long run, it could be developed into a tool that could be used in a more simplistic way.”

Though a useable diagnostic test may be far off, clinical laboratories should consider how they can aid in ME/CFS research.

—Stephen Beale

Related Information:

First Steps Towards Developing a New Diagnostic Test to Accurately Identify Hallmarks of Chronic Fatigue Syndrome in Blood Cells

First Ever Diagnostic Test for Chronic Fatigue Syndrome Sparks Hope

Developing a Blood Cell-Based Diagnostic Test for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Using Peripheral Blood Mononuclear Cells

Blood Test for Chronic Fatigue Syndrome Found to Be 91% Accurate

Scientists Develop Blood Test for Chronic Fatigue Syndrome

Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Systematic Review

Biomarker for Chronic Fatigue Syndrome Identified

;