Research in the UK and US into how rapid WGS can prevent deaths and improve outcomes for kids with rare genetic diseases may lead to more genetic testing based in local clinical laboratories
Genetic scientists with the National Health Service (NHS) in England have embarked on an ambitious plan to offer rapid whole genome sequencing (rWGS) for children and babies with serious illnesses, as part of a larger initiative to embrace genomic medicine in the United Kingdom (UK).
The NHS estimates that the plan will benefit more than 1,000 children and babies each year, including newborns with rare diseases such as cancer, as well as kids placed in intensive care after being admitted to hospitals. Instead of waiting weeks for results from conventional tests, clinicians will be able to administer a simple blood test and get results within days, the NHS said in a press release.
The press release notes that about 75% of rare genetic diseases appear during childhood “and are responsible for almost a third of neonatal intensive care deaths.”
Here in the United States, pathologists and clinical laboratory managers should see this development as a progressive step toward expanding access to genetic tests and whole genome sequencing services. The UK is looking at this service as a nationwide service. By contrast, given the size of the population and geography of the United States, as this line of medical laboratory testing expands in the US, it will probably be centered in select regional centers of excellence.
“This strategy sets out how more people will be empowered to take preventative action following risk-based predictions, receive life-changing diagnoses, and get the support needed to live with genomically-informed diagnoses alongside improved access to cutting-edge precision [medicine] treatments. It also outlines how the NHS will accelerate future high-quality genomic innovation that can be adopted and spread across the country, leading to positive impacts for current and future generations,” the NHS wrote.
“This global first is an incredible moment for the NHS and will be revolutionary in helping us to rapidly diagnose the illnesses of thousands of seriously ill children and babies—saving countless lives in the years to come,” said NHS chief executive Amanda Pritchard (above) in a press release announcing the program. (Photo copyright: Hospital Times.)
New Rapid Whole Genome Sequencing Service
The NHS announced the plan following a series of trials last year. In one trial, a five-day old infant was admitted to a hospital in Cheltenham, Gloucester, with potentially deadly levels of ammonia in his blood. Whole genome sequencing revealed that changes in the CPS1 gene were preventing his body from breaking down nitrogen, which led to the spike in ammonia. He was given life-saving medication in advance of a liver transplant that doctors believed would cure the condition. Without the rapid genetic test, doctors likely would have performed an invasive liver biopsy.
Using a simple blood test, the new newborn genetic screening service in England is expected to benefit more than 1,000 critically ill infants each year, potentially saving their lives. “The rapid whole genome testing service will transform how rare genetic conditions are diagnosed,” explained Emma Baple, PhD, Professor of Genomic Medicine at University of Exeter Medical School and leader of the National Rapid Whole Genome Sequencing Service in the press release. “We know that with prompt and accurate diagnosis, conditions could be cured or better managed with the right clinical care, which would be life-altering—and potentially life-saving—for so many seriously unwell babies and children,” Precision Medicine Institute reported.
According to The Guardian, test results will be available in two to seven days.
Along with the new rWGS testing service, the NHS announced a five-year plan to implement genomic medicine more broadly. The provisions include establishment of an ethics advisory board, more training for NHS personnel, and an expansion of genomic testing within the existing NHS diagnostic infrastructure. The latter could include using NHS Community Diagnostics centers to collect blood samples from family members to test for inherited diseases.
UK’s Longtime Interest in Whole Genome Sequencing
The UK government has long been interested in the potential role of WGS for delivering better outcomes for patients with genetic diseases, The Guardian reported.
In 2013, the government launched the 100,000 Genomes Project to examine the usefulness of the technology. In November 2021, investigators with the project reported the results of a large pilot study in which they analyzed the genomes of 4,660 individuals with rare diseases. The study, published in the New England Journal of Medicine (NEJM) titled, “100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—Preliminary Report,” found “a substantial increase in yield of genomic diagnoses made in patients with the use of genome sequencing across a broad spectrum of rare disease.”
The study’s findings suggest that use of WGS “could save the NHS millions of pounds,” The Guardian reported.
Whole Genome Sequencing System for Newborns in the US
“This NBS-rWGS [newborn screening by rapid whole genome sequencing] system is designed to complement the existing newborn screening process and has the potential to eliminate the diagnostic and therapeutic odyssey that many children and parents face,” Kingsmore said in a press release. “Currently, only 35 core genetic disorders are recommended for newborn screening in the United States, but there are more than 7,200 known genetic diseases. Outcomes remain poor for newborns with a genetic disease because of the limited number of recommended screenings. With NBS-rWGS, we can more quickly expand that number and therefore potentially improve outcomes through precision medicine.”
A more recent 2023 study which examined 112 infant deaths at Rady Children’s Hospital found that 40% of the babies had genetic diseases. In seven infants, genetic diseases were identified post-mortem, and in five of them “death might have been avoided had rapid, diagnostic WGS been performed at time of symptom onset or regional intensive care unit admission,” the authors wrote.
“Prior etiologic studies of infant mortality are generally retrospective, based on electronic health record and death certificate review, and without genome information, leading to underdiagnosis of genetic diseases,” said Christina Chambers, PhD, co-author of the study, in a press release. “In fact, prior studies show at least 30% of death certificates have inaccuracies. By implementing broad use of genome sequencing in newborns we might substantially reduce infant mortality.”
Pioneering work with whole genome sequencing for newborns, such as that being conducted by the clinical laboratory and genetic teams at Rady Children’s Hospital and the UK’s NHS, could allow doctors to make timely interventions for our most vulnerable patients.
Genomic sequencing continues to benefit patients through precision medicine clinical laboratory treatments and pharmacogenomic therapies
EDITOR’S UPDATE—Jan. 26, 2022: Since publication of this news briefing, officials from Genomics England contacted us to explain the following:
The “five million genome sequences” was an aspirational goal mentioned by then Secretary of State for Health and Social Care Matt Hancock, MP, in an October 2, 2018, press release issued by Genomics England.
As of this date a spokesman for Genomics England confirmed to Dark Daily that, with the initial goal of 100,000 genomes now attained, the immediate goal is to sequence 500,000 genomes.
This goal was confirmed in a tweet posted by Chris Wigley, CEO at Genomics England.
In accordance with this updated input, we have revised the original headline and information in this news briefing that follows.
What better proof of progress in whole human genome screening than the announcement that the United Kingdom’s 100,000 Genome Project has not only achieved that milestone, but will now increase the goal to 500,000 whole human genomes? This should be welcome news to clinical laboratory managers, as it means their labs will be positioned as the first-line provider of genetic data in support of clinical care.
Many clinical pathologists here in the United States are aware of the 100,000 Genome Project, established by the National Health Service (NHS) in England (UK) in 2012. Genomics England’s new goal to sequence 500,000 whole human genomes is to pioneer a “lasting legacy for patients by introducing genomic sequencing into the wider healthcare system,” according to Technology Networks.
The importance of personalized medicine and of the power of precise, accurate diagnoses cannot be understated. This announcement by Genomics England will be of interest to diagnosticians worldwide, especially doctors who diagnose and treat patients with chronic and life-threatening diseases.
Building a Vast Genomics Infrastructure
Genetic sequencing launched the era of precision medicine in healthcare. Through genomics, drug therapies and personalized treatments were developed that improved outcomes for all patients, especially those suffering with cancer and other chronic diseases. And so far, the role of genomics in healthcare has only been expanding, as Dark Daily covered in numerous ebriefings.
Genomics England, which is wholly owned by the Department of Health and Social Care in the United Kingdom, was formed in 2012 with the goal of sequencing 100,000 whole genomes of patients enrolled in the UK National Health Service. That goal was met in 2018, and now the NHS aspires to sequence 500,000 genomes.
“The last 10 years have been really exciting, as we have seen genetic data transition from being something that is useful in a small number of contexts with highly targeted tests, towards being a central part of mainstream healthcare settings,” Richard Scott, MD, PhD (above), Chief Medical Officer at Genomics England told Technology Networks. Much of the progress has found its way into clinical laboratory testing and precision medicine diagnostics. (Photo copyright: Genomics England.)
Genomics England’s initial goals included:
To create an ethical program based on consent,
To set up a genomic medicine service within the NHS to benefit patients,
To make new discoveries and gain insights into the use of genomics, and
To begin the development of a UK genomics industry.
To gain the greatest benefit from whole genome sequencing (WGS), a substantial amount of data infrastructure must exist. “The amount of data generated by WGS is quite large and you really need a system that can process the data well to achieve that vision,” said Richard Scott, MD, PhD, Chief Medical Officer at Genomics England.
In early 2020, Weka, developer of the WekaFS, a fully parallel and distributed file system, announced that it would be working with Genomics England on managing the enormous amount of genomic data. When Genomics England reached 100,000 sequenced genomes, it had already gathered 21 petabytes of data. The organization expects to have 140 petabytes by 2023, notes a Weka case study.
Putting Genomics England’s WGS Project into Action
WGS has significantly impacted the diagnosis of rare diseases. For example, Genomics England has contributed to projects that look at tuberculosis genomes to understand why the disease is sometimes resistant to certain medications. Genomic sequencing also played an enormous role in fighting the COVID-19 pandemic.
Scott notes that COVID-19 provides an example of how sequencing can be used to deliver care. “We can see genomic influences on the risk of needing critical care in COVID-19 patients and in how their immune system is behaving. Looking at this data alongside other omics information, such as the expression of different protein levels, helps us to understand the disease process better,” he said.
What’s Next for Genomics Sequencing?
As the research continues and scientists begin to better understand the information revealed by sequencing, other areas of scientific study like proteomics and metabolomics are becoming more important.
“There is real potential for using multiple strands of data alongside each other, both for discovery—helping us to understand new things about diseases and how [they] affect the body—but also in terms of live healthcare,” Scott said.
Along with expanding the target of Genomics England to 500,000 genomes sequenced, the UK has published a National Genomic Strategy named Genome UK. This plan describes how the research into genomics will be used to benefit patients. “Our vision is to create the most advanced genomic healthcare ecosystem in the world, where government, the NHS, research and technology communities work together to embed the latest advances in patient care,” according to the Genome UK website.
Clinical laboratories professionals with an understanding of diagnostics will recognize WGS’ impact on the healthcare industry. By following genomic sequencing initiatives, such as those coming from Genomics England, pathologists can keep their labs ready to take advantage of new discoveries and insights that will improve outcomes for patients.
Media reports in the United Kingdom cite bad timing and centralization of public health laboratories as reasons the UK is struggling to meet testing goals
Clinical pathologists and medical laboratories in UK and the US function within radically different healthcare systems. However, both countries faced similar problems deploying widespread diagnostic testing for SARS-CoV-2, the novel coronavirus that causes COVID-19. And the differences between America’s private healthcare system and the UK’s government-run, single-payer system are exacerbating the UK’s difficulties expanding coronavirus testing to its citizens.
The Dark Daily reported in March that a manufacturing snafu had delayed distribution of a CDC-developed diagnostic test to public health laboratories. This meant virtually all testing had to be performed at the CDC, which further slowed testing. Only later that month was the US able to significantly ramp up its testing capacity, according to data from the COVID Tracking Project.
However, the UK has fared even worse, trailing Germany, the US, and other countries, according to reports in Buzzfeed and other media outlets. On March 11, the UK government established a goal of administering 10,000 COVID-19 tests per day by late March, but fell far short of that mark, The Guardian reported. The UK government now aims to increase this to 25,000 tests per day by late April.
This compares with about 70,000 COVID-19 tests per day in
Germany, the Guardian reported, and about 130,000 per day in the US
(between March 26 and April 14), according to the COVID Tracking Project.
“Ministers need to explain why the NHS [National Health Service] is not testing to capacity, why we are falling behind other countries, and what measures they will put in place to address this situation as a matter of urgency,” MP Keir Starmer (above) said in Parliament in late March, The Guardian reported. (Photo copyright: The Guardian.)
What’s Behind the UK’s Lackluster COVID-19 Testing
Response
In January, when the outbreak first hit, Public Health England (PHE) “began a strict program of contact tracing and testing potential cases,” Buzzfeed reported. But due to limited medical laboratory capacity and low supplies of COVID-19 test kits, the government changed course and de-emphasized testing, instead focusing on increased ICU and ventilator capacity. (Scotland, Wales, and Northern Ireland each have separate public health agencies and national health services.)
Later, when the need for more COVID-19 testing became
apparent, UK pathology laboratories had to contend with global shortages of
testing kits and chemicals, The Guardian reported. At present, COVID-19 testing
is limited to healthcare workers and patients displaying symptoms of pneumonia,
acute
respiratory distress syndrome, or influenza-like illness, PHE stated in “COVID-19:
Investigation and Initial Clinical Management of Possible Cases” guidance.
Another factor that has limited widespread COVID-19 testing is the country’s highly-centralized system of public health laboratories, Buzzfeed reported. “This has limited its ability to scale and process results at the same speed as other countries, despite its efforts to ramp up capacity,” Buzzfeed reported. Public Health England, which initially performed COVID-19 testing at one lab, has expanded to 12 labs. NHS laboratories also are testing for the SARS-CoV-2 coronavirus, PHE stated in “COVID-19: How to Arrange Laboratory Testing” guidance.
Sharon Peacock, PhD, PHE’s National Infection Service Interim Director, Professor of Public Health and Microbiology at the University of Cambridge, and honorary consultant microbiologist at the Cambridge clinical and public health laboratory based at Addenbrookes Hospital, defended this approach at a March hearing of the Science and Technology Committee (Commons) in Parliament.
“Laboratories in this country have largely been merged, so we have a smaller number of larger [medical] laboratories,” she said. “The alternative is to have a single large testing site. From my perspective, it is more efficient to have a bigger testing site than dissipating our efforts into a lot of laboratories around the country.”
Writing in The Guardian, Paul Hunter, MB ChB MD, a microbiologist and Professor of Medicine at University of East Anglia, cites historic factors behind the testing issue. The public health labs, he explained, were established in 1946 as part of the National Health Service. At the time, they were part of the country’s defense against bacteriological warfare. They became part of the UK’s Health Protection Agency (now PHE) in 2003. “Many of the laboratories in the old network were shut down, taken over by local hospitals or merged into a smaller number of regional laboratories,” he wrote.
US Facing Different Clinical Laboratory Testing Problems
Meanwhile, a few medical laboratories in the US are now contending with a different problem: Unused testing capacity, Nature reported. For example, the Broad Institute of MIT and Harvard in Cambridge, Mass., can run up to 2,000 tests per day, “but we aren’t doing that many,” Stacey Gabriel, PhD, a human geneticist and Senior Director of the Genomics Platform at the Broad Institute, told Nature. Factors include supply shortages and incompatibility between electronic health record (EHR) systems at hospitals and academic labs, Nature reported.
Politico
cited the CDC’s narrow testing criteria, and a lack of supplies for collecting
and analyzing patient samples—such as swabs and personal protective equipment—as
reasons for the slowdown in testing at some clinical laboratories in the US.
Challenges Deploying Antibody Tests in UK
The UK has also had problems deploying serology tests designed to detect whether people have developed antibodies against the virus. In late March, Peacock told members of Parliament that at-home test kits for COVID-19 would be available to the public through Amazon and retail pharmacy chains, the Independent reported. And, Politico reported that the government had ordered 3.5 million at-home test kits for COVID-19.
However, researchers at the University of Oxford who had been charged with validating the accuracy of the kits, reported on April 5 that the tests had not performed well and did not meet criteria established by the UK Medicines and Healthcare products Regulatory Agency (MHRA). “We see many false negatives (tests where no antibody is detected despite the fact we know it is there), and we also see false positives,” wrote Professor Sir John Bell, GBE, FRS, Professor of Medicine at the university, in a blog post. No test [for COVID-19], he wrote, “has been acclaimed by health authorities as having the necessary characteristics for screening people accurately for protective immunity.”
He added that it would be “at least a month” before suppliers could develop an acceptable COVID-19 test.
In the United States, the Cellex COVID-19 test is intended for use by medical laboratories. As well, many research sites, academic medical centers, clinical laboratories, and in vitro diagnostics (IVD) companies in the US are working to develop and validate serological tests for COVID-19.
Within weeks, it is expected that a growing number of such
tests will qualify for a Food and Drug Administration (FDA) Emergency Use
Authorization (EUA) and become available for use in patient care.
Mounting financial and patient-care problems in UK show NHS may not provide a quality blueprint for fixing US healthcare system flaws
Patients scheduled for elective surgeries—such as hip replacements or penciled in for routine outpatient appointments—have been turned away this winter from National Health Service (NHS) hospitals as the United Kingdom’s (UK’s) public healthcare system suffers another care emergency.
This latest crisis in the UK should provide further evidence to anatomic pathologists and medical laboratory leaders that the United States healthcare system is not alone in facing mounting financial and patient care questions. While an NHS-like single-payer healthcare system in the US is the goal of many reformers, the UK’s current crisis indicates such a system has serious flaws.
UK News Organizations Disagree with Government Leaders as to Cause of Crisis
NHS officials estimate as many as 55,000 elective operations and outpatient procedures were cancelled as hospitals attempted to free up capacity for the sickest patients. The Telegraph reported that the bed shortfall is blamed on a spike in winter flu, with budget cuts to social services for home healthcare, staff shortages, and an aging population further pressuring the healthcare system.
In late January, the NHS’ National Emergency Pressure Panel (NEPP) announced that planned operations, such as elective surgeries, that had been “suspended because of pressure on the NHS in January,” would be able to resume in February, Sky News reported.
Meanwhile, in response to the original decision in January to have hospitals stop performing elective surgeries and similar procedures, an editorial in The Guardian challenged Prime Minister Theresa May’s suggestion that the current crisis was primarily due to the flu epidemic.
“This is not the flu: it is a system-wide crisis brought about by seven years of mounting austerity,” The Guardian’s editors wrote. “Oh, and that is getting worse, too. The official defense is that this is not a crisis because there is a plan … But planning can’t magic up highly trained doctors and nurses. Plans do not make hospital beds. And while vaccination helps, you can’t entirely plan your way out of the impact of flu.”
Doctors Report ‘Intolerable Conditions’ at 68 Hospitals
The crisis reached new heights when specialists in emergency medicine from 68 hospitals sent a letter to the prime minister stating the “current level of safety compromise is at times intolerable, despite the best efforts of staff.” The letter, published in The Guardian, also pointed out media coverage reporting anecdotal accounts of “appalling” situations in many emergency departments “are not outliers.” According the doctors, conditions include:
Over 120 patients a day managed in corridors, some dying prematurely;
An average of 10-12 hours from decision to admit a patient until they are transferred to a bed;
Over 50 patients at a time awaiting beds in the emergency department; and,
Patients sleeping in clinics as makeshift wards.
One doctor, Richard Fawcett, MD, drew media attention when he used Twitter to apologized for “third world conditions” caused by overcrowding in the hospital where he works, The Telegraph reported.
Richard Fawcett, MD (above), a consultant in emergency medicine for University Hospitals of North Midlands NHS Trust, drew widespread media attention in England when he apologized to patients on Twitter for the “third world conditions” this winter at the hospital where he works. A Lieutenant Colonel in the British Royal Army, Fawcett has done three deployments to Afghanistan. (Photo copyright: Midlands Air Ambulance Charity.)
NHS officials acknowledged staff criticism but attempted to paint the crisis as temporary. University of North Midlands NHS Trust (UHNM) told BBC News that area hospitals had been under “severe and sustained pressure over the Christmas period,” which had “continued into the new year.”
“Our staff want the very best for our patients and at times they find the situation frustrating, which can be reflected on social media. However, we are a leading trauma, stroke, and cardiac center and have been regularly praised by external independent commentators for the quality of compassionate care provided at our hospitals despite all our pressures,” Dr. John Oxtoby, Consultant Radiologist and Deputy Medical Director, UHNM, told BBC News.
“We have to keep going and turn up in a fit state to do the best job that we can. But it’s been really tough, particularly on more junior staff,” one hospital staff member told The Guardian. “And when they ask me, ‘Will it always be like this and will it get better?’ I cannot say it will improve as the truth is it won’t unless the NHS gets the resources and investment it needs.”
Basic Elements of Care Neglected
This is not the first time the NHS has come under fire for substandard patient care.
Between 400 and 1,200 patients are estimated to have died as result of poor care between January 2005 and March 2008 at Stafford Hospital, reported The Guardian. A 2010 report into care at the hospital, now named County Hospital and run by UHNM, found a litany of problems.
“For many patients, the most basic elements of care were neglected,” inquiry Chairman Sir Robert Francis, QC, told The Guardian. “Some patients needing pain relief either got it late or not at all. Others were left unwashed for up to a month … The standards of hygiene were at times awful, with families forced to remove used bandages and dressings from public areas and clean toilets themselves for fear of catching infections.”
Reports of substandard patient care within the United Kingdom’s National Health Service are not new. British barrister Sir Robert Francis, QC (above), led investigations into the Stafford Hospital scandal, which uncovered that an estimated 400 to 1200 patients died between 2005 and 2008 at the facility due to appalling conditions and lax procedures. (Photo copyright: The Telegraph.)
Why not this crisis in US? Because, even if our system of healthcare has flaws, it is responsive to consumer/patient demand. Whereas, in the UK, the NHS is always budget short and so is always struggling to invest in expanding hospital/physician capacity to meet the steady increase in patient demand.
Dark Daily’s goal in reporting on this story is to help anatomic pathologists and clinical laboratory leaders in the United States understand that every country’s health system—like ours—has its share of unique problems and is not perfect.
Aging population and funding challenges could cause doctors in United States to shorten appointment slots for patients here as well
Across the globe, health systems share a common challenge: how to meet the steady increase in the number of patients demanding access to clinical care with a workforce of physicians, nurses, and clinicians that may be shrinking due to retirements and other factors. Pathologists and clinical laboratory managers will want to stay alert to these developments, because this same trend is at work within the United States.
The United Kingdom (UK) offers a good example of this problem. Claiming doctors are being “run into the ground,” general practitioners in the UK are calling for an end to the country’s standard 10-minute office visit and a decrease in the number of patients they see per week.
• Rising demand from an aging population with multiple health needs;
• Physician and staff shortage; and
• Inadequate federal government funding for healthcare.
Those factors also are at play within the United States (US) healthcare system. The possibility exists that health system administrators might want to create a standard of 10-minute appointment intervals as a norm for primary care physicians in this country. (more…)