News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Spatial Transcriptomics Provide a New and Innovative Way to Analyze Tissue Biology, May Have Value in Surgical Pathology

Newly combined digital pathology, artificial intelligence (AI), and omics technologies are providing anatomic pathologists and medical laboratory scientists with powerful diagnostic tools

Add “spatial transcriptomics” to the growing list of “omics” that have the potential to deliver biomarkers which can be used for earlier and more accurate diagnoses of diseases and health conditions. As with other types of omics, spatial transcriptomics might be a new tool for surgical pathologists once further studies support its use in clinical care.

Oncologists and anatomic pathologists are increasingly becoming aware of the power of computer image analysis algorithms that use artificial intelligence (AI) when analyzing digital pathology images, such as whole-slide imaging (WSI), and radiology images. They also are aware that various omics, such as genomics, epigenomics, proteomics, metabolomics, metagenomics, and transcriptomics, are taking greater roles in precision medicine diagnostics as well.

Among this spectrum of omics is spatial transcriptomics, or ST for short.

Spatial Transcriptomics is a groundbreaking and powerful molecular profiling method used to measure all gene activity within a tissue sample. The technology is already leading to discoveries that are helping researchers gain valuable information about neurological diseases and breast cancer.

Marriage of Genetic Imaging and Sequencing

Spatial transcriptomics is a term used to describe a variety of methods designed to assign cell types that have been isolated and identified by messenger RNA (mRNA), to their locations in a histological section. The technology can determine subcellular localization of mRNA molecules and can quantify gene expression within anatomic pathology samples.

In “Spatial: The Next Omics Frontier,” Genetic Engineering and Biotechnology News (GEN) wrote, “Spatial transcriptomics gives a rich, spatial context to gene expression. By marrying imaging and sequencing, spatial transcriptomics can map where particular transcripts exist on the tissue, indicating where particular genes are expressed.”

In an interview with Technology Networks, George Emanuel, PhD, co-founder of life-science genomics company Vizgen, said, “Spatial transcriptomic profiling provides the genomic information of single cells as they are intricately spatially organized within their native tissue environment.

“With techniques such as single-cell sequencing, researchers can learn about cell type composition; however, these techniques isolate individual cells in droplets and do not preserve the tissue structure that is a fundamental component of every biological organism,” he added.

“Direct spatial profiling the cellular composition of the tissue allows you to better understand why certain cell types are observed there and how variations in cell state might be a consequence of the unique microenvironment within the tissue,” he continued. “In this way, spatial transcriptomics allows us to measure the complexity of biological systems along the axes that are most relevant to their function.”

George Emanuel, PhD

“Although spatial genomics is a nascent field, we are already seeing broad interest among the community and excitement across a range of questions, all the way from plant biology to improving our understanding of the complex interactions of the tumor microenvironment,” George Emanuel, PhD (above), told Technology Networks. Oncologists, anatomic pathologists, and medical laboratory scientists my soon see diagnostics that take advantage of spatial genomics technologies. (Photo copyright: Vizgen.)

According to 10x Genomics, “spatial transcriptomics utilizes spotted arrays of specialized mRNA-capturing probes on the surface of glass slides. Each spot contains capture probes with a spatial barcode unique to that spot.

“When tissue is attached to the slide, the capture probes bind RNA from the adjacent point in the tissue. A reverse transcription reaction, while the tissue is still in place, generates a cDNA [complementary DNA] library that incorporates the spatial barcodes and preserves spatial information.

“Each spot contains approximately 200 million capture probes and all of the probes in an individual spot share a barcode that is specific to that spot.”

“The highly multiplexed transcriptomic readout reveals the complexity that arises from the very large number of genes in the genome, while high spatial resolution captures the exact locations where each transcript is being expressed,” Emanuel told Technology Networks.  

Spatial Transcriptomics for Breast Cancer and Neurological Diagnostics

An open-access article published in the journal Breast Cancer Research, titled, “Identification and Transfer of Spatial Transcriptomics Signatures for Cancer Diagnosis,” stated that spatial transcriptomics (ST) could successfully detect breast cancer expression signatures from annotated tissue sections.

In that paper, the authors wrote “we envision that in the coming years we will see simplification, further standardization, and reduced pricing for the ST protocol leading to extensive ST sequencing of samples of various cancer types.”

Spatial transcriptomics is also being used to research neurological conditions and neurodegenerative diseases. ST has been proven as an effective tool to hunt for marker genes for these conditions as well as help medical professionals study drug therapies for the brain.

“You can actually map out where the target is in the brain, for example, and not only the approximate location inside the organ, but also in what type of cells,” Malte Kühnemund, PhD, Director of Research and Development at 10x Genomics, told Labiotech.eu. “You actually now know what type of cells you are targeting. That’s completely new information for them and it might help them to understand side effects and so on.”

The field of spatial transcriptomics is rapidly moving and changing as it branches out into more areas of healthcare. New discoveries within ST methodologies are making it possible to combine it with other technologies, such as Artificial Intelligence (AI), which could lead to powerful new ways oncologists and anatomic pathologists diagnose disease.

“I think it’s going to be tricky for pathologists to look at that data,” Kühnemund said. “I think this will go hand in hand with the digital pathology revolution where computers are doing the analysis and they spit out an answer. That’s a lot more precise than what any doctor could possibly do.”

Spatial transcriptomics certainly is a new and innovative way to look at tissue biology. However, the technology is still in its early stages and more research is needed to validate its development and results.  

Nevertheless, this is an opportunity for companies developing artificial intelligence tools for analyzing digital pathology images to investigate how their AI technologies might be used with spatial transcriptomics to give anatomic pathologists a new and useful diagnostic tool. 

—JP Schlingman

Related Information:

What is Spatial Transcriptomics?

Spatial: The Next Omics Frontier

Spatial Transcriptomics Puts More Biology on the Map

Exploring Tissue Architecture Using Spatial Transcriptomics

Trends, Applications and Advances in Spatial Transcriptomics

Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration

Identification and Transfer of Spatial Transcriptomics Signatures for Cancer Diagnosis

Spatial Transcriptomics: A Window into Disease

Advancements That Could Bring Proteomics and Mass Spectrometry to Clinical Laboratories

Experts list the top challenges facing widespread adoption of proteomics in the medical laboratory industry

Year-by-year, clinical laboratories find new ways to use mass spectrometry to analyze clinical specimens, producing results that may be more precise than test results produced by other methodologies. This is particularly true in the field of proteomics.

However, though mass spectrometry is highly accurate and fast, taking only minutes to convert a specimen into a result, it is not fully automated and requires skilled technologists to operate the instruments.

Thus, although the science of proteomics is advancing quickly, the average pathology laboratory isn’t likely to be using mass spectrometry tools any time soon. Nevertheless, medical laboratory scientists are keenly interested in adapting mass spectrometry to medical lab test technology for a growing number of assays.

Molly Campbell, Science Writer and Editor in Genomics, Proteomics, Metabolomics, and Biopharma at Technology Networks, asked proteomics experts “what, in their opinion, are the greatest challenges currently existing in proteomics, and how can we look to overcome them?” Here’s a synopsis of their answers:

Lack of High Throughput Impacts Commercialization

Proteomics isn’t as efficient as it needs to be to be adopted at the commercial level. It’s not as efficient as its cousin genomics. For it to become sufficiently efficient, manufacturers must be involved.

John Yates III, PhD, Professor, Department of Molecular Medicine at Scripps Research California campus, told Technology Networks, “One of the complaints from funding agencies is that you can sequence literally thousands of genomes very quickly, but you can’t do the same in proteomics. There’s a push to try to increase the throughput of proteomics so that we are more compatible with genomics.”

For that to happen, Yates says manufacturers need to continue advancing the technology. Much of the research is happening at universities and in the academic realm. But with commercialization comes standardization and quality control.

“It’s always exciting when you go to ASMS [the conference for the American Society for Mass Spectrometry] to see what instruments or technologies are going to be introduced by manufacturers,” Yates said.

There are signs that commercialization isn’t far off. SomaLogic, a privately-owned American protein biomarker discovery and clinical diagnostics company located in Boulder, Colo., has reached the commercialization stage for a proteomics assay platform called SomaScan. “We’ll be able to supplant, in some cases, expensive diagnostic modalities simply from a blood test,” Roy Smythe, MD, CEO of SomaLogic, told Techonomy.


The graphic above illustrates the progression mass spectrometry took during its development, starting with small proteins (left) to supramolecular complexes of intact virus particles (center) and bacteriophages (right). Because of these developments, today’s medical laboratories have more assays that utilize mass spectrometry. (Photo copyright: Technology Networks/Heck laboratory, Utrecht University, the Netherlands.)

Achieving the Necessary Technical Skillset

One of the main reasons mass spectrometry is not more widely used is that it requires technical skill that not many professionals possess. “For a long time, MS-based proteomic analyses were technically demanding at various levels, including sample processing, separation science, MS and the analysis of the spectra with respect to sequence, abundance and modification-states of peptides and proteins and false discovery rate (FDR) considerations,” Ruedi Aebersold, PhD, Professor of Systems Biology at the Institute of Molecular Systems Biology (IMSB) at ETH Zurich, told Technology Networks.

Aebersold goes on to say that he thinks this specific challenge is nearing resolution. He says that, by removing the problem created by the need for technical skill, those who study proteomics will be able to “more strongly focus on creating interesting new biological or clinical research questions and experimental design.”

Yates agrees. In a paper titled, “Recent Technical Advances in Proteomics,” published in F1000 Research, a peer-reviewed open research publishing platform for scientists, scholars, and clinicians, he wrote, “Mass spectrometry is one of the key technologies of proteomics, and over the last decade important technical advances in mass spectrometry have driven an increased capability of proteomic discovery. In addition, new methods to capture important biological information have been developed to take advantage of improving proteomic tools.”

No High-Profile Projects to Stimulate Interest

Genomics had the Human Genome Project (HGP), which sparked public interest and attracted significant funding. One of the big challenges facing proteomics is that there are no similarly big, imagination-stimulating projects. The work is important and will result in advances that will be well-received, however, the field itself is complex and difficult to explain.

Emanuel Petricoin, PhD, is a professor and co-director of the Center for Applied Proteomics and Molecular Medicine at George Mason University. He told Technology Networks, “the field itself hasn’t yet identified or grabbed onto a specific ‘moon-shot’ project. For example, there will be no equivalent to the human genome project, the proteomics field just doesn’t have that.”

He added, “The equipment needs to be in the background and what you are doing with it needs to be in the foreground, as is what happened in the genomics space. If it’s just about the machinery, then proteomics will always be a ‘poor step-child’ to genomics.”

Democratizing Proteomics

Alexander Makarov, PhD, is Director of Research in Life Sciences Mass Spectrometry (MS) at Thermo Fisher Scientific. He told Technology Networks that as mass spectrometry grew into the industry we have today, “each new development required larger and larger research and development teams to match the increasing complexity of instruments and the skyrocketing importance of software at all levels, from firmware to application. All this extends the cycle time of each innovation and also forces [researchers] to concentrate on solutions that address the most pressing needs of the scientific community.”

Makarov describes this change as “the increasing democratization of MS,” and says that it “brings with it new requirements for instruments, such as far greater robustness and ease-of-use, which need to be balanced against some aspects of performance.”

One example of the increasing democratization of MS may be several public proteomic datasets available to scientists. In European Pharmaceutical Review, Juan Antonio Viscaíno, PhD, Proteomics Team Leader at the European Bioinformatics Institute (EMBL-EBI) wrote, “These datasets are increasingly reused for multiple applications, which contribute to improving our understanding of cell biology through proteomics data.”

Sparse Data and Difficulty Measuring It

Evangelia Petsalaki, PhD, Group Leader EMBL-EBI, told Technology Networks there are two related challenges in handling proteomic data. First, the data is “very sparse” and second “[researchers] have trouble measuring low abundance proteins.”

Petsalaki notes, “every time we take a measurement, we sample different parts of the proteome or phosphoproteome and we are usually missing low abundance players that are often the most important ones, such as transcription factors.” She added that in her group they take steps to mitigate those problems.

“However, with the advances in MS technologies developed by many companies and groups around the world … and other emerging technologies that promise to allow ‘sequencing’ proteomes, analogous to genomes … I expect that these will not be issues for very long.”

So, what does all this mean for clinical laboratories? At the current pace of development, its likely assays based on proteomics could become more common in the near future. And, if throughput and commercialization ever match that of genomics, mass spectrometry and other proteomics tools could become a standard technology for pathology laboratories.

—Dava Stewart

Related Information:

5 Key Challenges in Proteomics, As Told by the Experts

The Evolution of Proteomics—Professor John Yates

The Evolution of Proteomics—Professor Ruedi Aebersold

The Evolution of Proteomics—Professor Emanuel Petricoin

The Evolution of Proteomics—Professor Alexander Makarov

The Evolution of Proteomics—Dr. Evangelia Petsalaki

For a Clear Read on Our Health, Look to Proteomics

Recent Technical Advances in Proteomics

Emerging Applications in Clinical Mass Spectrometry

HPP Human Proteome Project

Open Data Policies in Proteomics Are Starting to Revolutionize the Field

Native Mass Spectrometry: A Glimpse Into the Machinations of Biology

;