The federal agency says it will mandate randomized, controlled clinical trials for vaccination of younger, healthy individuals
It’s been a confusing past few weeks in terms of what the general public’s access to COVID-19 vaccinations will be like in the future.
Public health experts have been verbally jousting with the federal Department of Health and Human Services (HHS) about moves its health officials made recently regarding the vaccines. This could put clinical laboratories on the front lines to help determine whether COVID cases—particularly severe ones—eventually rise as a result.
Food and Drug Administration (FDA) commissioner Martin A. Makary, MD, MPH, and Vinay Prasad, MD, MPH, who leads the agency’s vaccine oversight, announced on May 20 that the agency will require randomized, controlled clinical trials before approving COVID vaccines for healthy individuals under age 65.
“While all other high-income nations confine vaccine recommendations to older adults (typically those older than 65 years of age), or those at high risk for severe COVID-19, the United States has adopted a one-size-fits-all regulatory framework and has granted broad marketing authorization to all Americans over the age of 6 months,” Makary and Prasad wrote in NEJM.
Under the new framework, they noted, the agency expects that it will continue to approve vaccines for adults over 65 as well as younger people with health conditions that put them at high risk of severe outcomes from COVID-19.
The range of diseases is “vast, including obesity and even mental health conditions such as depression,” they wrote. “Estimates suggest that 100 million to 200 million Americans will have access to vaccines in this manner.”
In their NEJM commentary, FDA commissioner Martin Makary, MD (left), and Vinay Prasad, MD (right), wrote, “Moving forward, the FDA will adopt the following COVID-19 vaccination regulatory framework: On the basis of immunogenicity—proof that a vaccine can generate antibody titers in people.” (Photo copyrights: Wikimedia Commons.)
Former CDC APIC Member Pushes Back
The announcement drew criticism from public health and medical experts.
“The FDA guidance presented in the NEJM was not released in the Federal Register, did not invite comment, and provided only a general outline for COVID-19 vaccine licensure,” wrote pediatrician and vaccinologist Kathryn M. Edwards, MD, in a commentary for STAT. Edwards is a former member of the Centers for Disease Control and Prevention’s (CDC) Advisory Committee on Immunization Practices (ACIP), which makes vaccine recommendations to the agency.
On June 9, in an opinion piece for The Wall Street Journal, HHS Secretary Robert F. Kennedy Jr. announced that he’s removing all 17 current members of ACIP.
“The FDA mandate is to ensure safe and effective vaccines based on the clinical studies performed, but not to develop specific recommendations for their use,” Edwards added. “Providing recommendations on vaccine use for the civilian population is the mandate of the ACIP.”
Edwards contended that extensive data is already available on the safety and effectiveness of COVID-19 vaccines. She stated that “there is no precedent for mandating continued placebo-controlled randomized clinical trials for vaccines that have already been licensed.”
New Policy Announcement Raises Questions
The New York Times notes that many questions remain about the specifics of the new policy and how broadly the vaccines will be available.
A likely scenario, the paper reported, is that health insurers will play a role as “gatekeepers by demanding medical documentation of an underlying condition before agreeing to cover the cost.” Without insurance coverage, people would likely pay approximately $140 per shot out of pocket.
This stands in contrast to European countries, where outreach campaigns target specific populations based on public health recommendations. according to Forbes. However, “in virtually all instances, COVID-19 vaccines can be gotten free of charge across Europe regardless of health or age status,” the article notes.
In their NEJM commentary, Prasad and Makary noted that adoption of the annual COVID-19 booster shot is already low. The CDC reported that 23% of Americans 18 and older received vaccinations in the 2024-2025 season, up slightly from 21.6% in 2023-2024.
Kennedy Steps In
On May 27, Kennedy announced in a video on X that the CDC would remove the COVID-19 vaccine from the recommended immunization schedule for healthy children and healthy pregnant women. Previously, the CDC recommended the vaccine for everyone ages six months and older.
Kennedy was joined in the video by Makary and National Institutes of Health director Jay Bhattacharya MD, PhD.
However, CDC staffers were “blindsided” by the announcement, NPR reported, citing an agency official who requested anonymity.
“Hours after the post on X, CDC staffers received a directive from Secretary Kennedy—dated May 19, but sent May 27—rescinding the department’s 2022 acceptance of the CDC’s recommendations for the use of COVID shots in children and during pregnancy,” NPR reported.
It now appears that HHS has at least partially backtracked on Kennedy’s announcement.
The CDC’s immunization schedule now states that vaccination of healthy children should be a matter of “shared clinical decision-making” between the doctor and parent or patient.
“After confusing, mixed messages from leaders at HHS earlier this week, we are relieved to see today that the CDC updated its schedules for child and adolescent immunizations to allow families to maintain the choice to immunize their children against COVID in consultation with their doctor,” American Academy of Pediatrics president Susan Kressly said in a statement from the organization.
In a June 1 interview with the CBS News program “Face the Nation,” Makary confirmed that the recommendation to vaccinate “should be with the patient and their doctor.”
However, he also criticized ACIP as a “kangaroo court where they just rubber stamp every single vaccine put in front of them.”
Discovery could lead to new clinical laboratory testing for cancer screening in new mothers
Any clinical laboratory test that returns unexpected results is worth looking into more deeply. Such was the case with a recent study conducted by the National Institutes of Health (NIH), which investigated cases of pregnant women who received “unusual” results to prenatal lab tests conducted at a dozen labs in North America.
Following cancer screening protocols that included rapid whole-body magnetic resonance imaging, NIH scientists discovered “previously undetected cancers in 48.6% of pregnant people who had abnormal results for prenatal cell-free DNA (cfDNA) testing used to screen for chromosomal disorders in the fetus,” according to an NIH news release.
“They looked like healthy young women, and they reported themselves as being healthy,” Diana Bianchi, MD, head of the Prenatal Genomics and Therapy Section for the Medical Genetics Branch at the NIH’s National Human Genetics Research Institute, and senior author of the government study, told the Associated Press (AP).
While cfDNA tests are not diagnostic, pathologists and clinical laboratory managers involved in genetic testing are likely familiar with them. The blood tests are used by expectant mothers to assess risk of a fetus with an abnormal number of chromosomes that could suggest disorders such as Down Syndrome, according to ARUP Laboratories.
Unexpected results from tests draw attention. This one seems to have a chance to get more traction with labs because the results point to a prenatal test having some success predicting cancer, even if incidentally.
“[The study participants] and their care providers need to take the results seriously and have additional testing because in that population there is a 48% risk of cancer,” Diana Bianchi, MD, senior author of the NIH study, told the AP. (Photo copyright: National Institutes of Health.)
Cancer Found in about Half of Those with Abnormal cfDNA
The NIH researchers started a long-term study, called IDENTIFY, to learn more about abnormal cfDNA results that could suggest cancer. Study participants must be:
Pregnant or postpartum with no known cancer.
Recipients of “unusual clinical cfDNA-sequencing results or results that are non-reportable (fetal aneuploidy status could not be assessed) from one of 12 different commercial laboratories,” they wrote in NEJM.
For the study’s initial cohort of 107 participants, researchers repeated cfDNA sequencing testing and coordinated standard medical diagnostic tests (such as Pap smears) and whole-body magnetic resonance imaging.
52 women (48.6%) were found to have “hidden cancers.”
32 had blood cancers.
20 had solid tumors in the breast, bile duct, colon, pancreas, lung, kidney, bone, and adrenal gland.
13 of the 20 with solid tumors were able to access “potentially curative treatments.”
55 women did not have cancer and may have obtained an unreliable cfDNA result.
“In this study, 48.6% of participants who received unusual or nonreportable clinical cfDNA-sequencing results had an occult cancer (cancer of unknown primary).
“Further study of DNA-sequencing patterns that are suggestive of occult cancer during prenatal screening is warranted,” the researchers wrote in NEJM.
Follow-Up Testing Needed
Cancers found in the study participants “included colorectal, breast, lung and pancreatic cancers, as well as lymphoma, cholangiocarcinoma and renal carcinoma. The screening test analyzes placental DNA fragments circulating in the maternal bloodstream to identify an extra chromosome or to determine the baby’s sex,” according to the NIH news release.
Bianchi told AP the study results also pointed to a “very chaotic” pattern in DNA-sequencing of women with cancer, and that more research is needed to find out who should be screened for cancer.
Clinical laboratories and pathologists who analyze cfDNA tests could take a leadership role in assessing current standards for the tests, determining how suspicious results are reported, and suggesting needed changes.
Scientists suspect that the plastics can be linked to a host of medical conditions, but clear evidence is elusive without appropriate biomarkers for clinical laboratory testing
Recent research indicates that microplastics and nanoplastics (MNPs) are accumulating in human organs at an increasing rate. The health impact is not entirely clear, but the research suggests that clinical laboratories could someday find themselves testing for levels of MNPs in patients.
In one study, scientists at the University of New Mexico and Oklahoma State University analyzed autopsy samples of liver, kidney, and frontal cortex brain tissue collected in 2016 and 2024. “Brains exhibited higher concentrations of MNPs than liver or kidney samples,” they wrote. However, “all organs exhibited significant increases from 2016 to 2024.”
“The concentrations we saw in the brain tissue of normal individuals, who had an average age of around 45 or 50 years old, were 4,800 micrograms per gram, or 0.5% by weight,” lead author Matthew Campen, PhD, Regents’ Professor, Pharmaceutical Sciences, University of New Mexico, and Director of the New Mexico Center for Metals in Biology and Medicine (CMBM), told CNN. “Compared to autopsy brain samples from 2016, that’s about 50% higher.”
Researchers have not yet uncovered clear evidence of specific health risks, but “what scientists worry about is several trends in disease prevalence that have been unexplained—Alzheimer’s disease and dementia, colorectal cancer in people under 50, inflammatory bowel disease, and global reductions in sperm count,” Campen told Everyday Health.
In another recent study, a different team of researchers at the University of New Mexico found high levels of microplastics in human and canine testicular tissue.
“At the beginning, I doubted whether microplastics could penetrate the reproductive system,” said lead author Xiaozhong Yu, MD, PhD, Professor, University of New Mexico College of Nursing in a university news story. “When I first received the results for dogs I was surprised. I was even more surprised when I received the results for humans.”
“The rate of increase in microplastics in the environment is exponential and we have every reason to believe that the concentrations in our bodies will continue to increase in the coming years and decades,” Matthew Campen, PhD (above), of the University of New Mexico told Everyday Health. As studies continue to produce evidence that nanoplastics affect human health, testing companies may develop biomarkers for clinical laboratory tests that measure the amount of microplastics in different organ locations. (Photo copyright: University of New Mexico.)
Landrigan told CNN that most people are exposed to MNPs through their diet, “but inhalation is also an important route.”
However, he added, “it’s important not to scare the hell out of people, because the science in this space is still evolving, and nobody in the year 2024 is going to live without plastic.”
CNN noted that experts consider nanoplastics to be the biggest concern [as opposed to microplastics] because they can infiltrate human cells.
“Somehow these nanoplastics hijack their way through the body and get to the brain, crossing the blood-brain barrier,” Campen told CNN. “Plastics love fats, or lipids, so one theory is that plastics are hijacking their way with the fats we eat which are then delivered to the organs that really like lipids—the brain is top among those.”
The US Food and Drug Administration (FDA) states that microplastics typically measure less than 5mm, whereas nanoplastics are less than a micron (micrometer). However, the agency notes that “there are currently no standard definitions for the size of microplastics or nanoplastics.”
What Are the Health Risks?
Scientists suspect that MNPs could be associated with cancer, cardiovascular disease, kidney disease, Alzheimer’s disease, and infertility, The Washington Post reported, but that they “still don’t have a clear sense of what these materials are doing to the human body.”
“In a 2021 study, researchers in Switzerland identified more than 10,000 chemicals used in the manufacture of plastic—of which over 2,400 were potentially ‘of concern’ for human health,” The Post noted.
“To be able to say we have a health impact, we need to have a direct correlation between a product and a health outcome,” Phoebe Stapleton, PhD, Associate Professor at the Rutgers University Ernest Mario School of Pharmacy (EMSOP), told The Post. “It’s very narrow, that straight line. And there’s so many different health outcomes there could be, and we’re finding these particles in so many different tissues.”
One study published in the New England Journal of Medicine (NEJM) suggested that MNPs in arteries could be risk factors for heart attacks or strokes. But even here, the authors wrote, “direct evidence that this risk extends to humans is lacking.”
Yu suspects that MNPs could be a factor in a global decline in sperm count, along with other environmental contaminants such as heavy metals and pesticides. His study found that polyethylene was the most prevalent plastic in dogs, followed by polyvinyl chloride (PVC). Higher levels of PVC correlated with lower sperm count, but there was no correlation with polyethylene.
“PVC can release a lot of chemicals that interfere with spermatogenesis, and it contains chemicals that cause endocrine disruption,” he said in the UNM news story.
Clinical laboratory managers should recognize that interest in identifying micro- and nanoplastics in every organ of the human body will increase. At some point, physicians may want labs to test their patients for microplastic levels in certain organ sites. This will likely be when enough published studies show a correlation between high levels of microplastics in certain locations of the body and specific disease states.
Accurate blood-based clinical laboratory testing for cancer promises to encourage more people to undergo early screening for deadly diseases
One holy grail in diagnostics is to develop less-invasive specimen types when screening or testing for different cancers. This is the motivation behind the creation of a new assay for colorectal (colon) cancer that uses a blood sample and that could be offered by clinical laboratories. The data on this assay and its performance was featured in a recent issue of the New England Journal of Medicine(NEJM).
The company developing this new test recognized that more than 50,000 people will die in 2024 from colon cancer, according to the American Cancer Society. That’s primarily because people do not like colonoscopies even though the procedure can detect cancer in its early stages. Similarly, patients tend to find collecting their own fecal samples for colon cancer screening tests to be unpleasant.
But the clinical laboratory blood test for cancer screening developed by Guardant Health may make diagnosing the deadly disease less invasive and save lives. The test “detects 83% of people with colorectal cancer with specificity of 90%,” a company press release noted.
“Early detection could prevent more than 90% of colorectal cancer-related deaths, yet more than one third of the screening-eligible population is not up to date with screening despite multiple available tests. A blood-based test has the potential to improve screening adherence, detect colorectal cancer earlier, and reduce colorectal cancer-related mortality,” the study authors wrote in the NEJM.
As noted above, this is the latest example of test developers working to develop clinical laboratory tests that are less invasive for patients, while equaling or exceeding the sensitivity and specificity of existing diagnostic assays for certain health conditions.
“I do think having a blood draw versus undergoing an invasive test will reach more people, My hope is that with more tools we can reach more people,” Barbara H. Jung, MD (above), President of the American Gastroenterological Association, told NPR. Clinical laboratory blood tests for cancer may encourage people who do not like colonoscopies to get regular screening. (Photo copyright: American Gastroenterology Association.)
Developing the Shield Blood Test
Colorectal cancer is the “third most common cancer among men and women in the US,” according to the American Gastrological Association (AGA). And yet, millions of people do not get regular screening for the disease.
To prove their Shield blood test, Guardant Health, a precision oncology company based in Redwood City, Calif., enrolled more than 20,000 patients between the ages of 45-84 from across the US in a prospective, multi-site registrational study called ECLIPSE (Evaluation of ctDNA LUNAR Assay In an Average Patient Screening Episode).
“We assessed the performance characteristics of a cell-free DNA (cfDNA) blood-based test in a population eligible for colorectal cancer screening. The coprimary outcomes were sensitivity for colorectal cancer and specificity for advanced neoplasia (colorectal cancer or advanced precancerous lesions) relative to screening colonoscopy. The secondary outcome was sensitivity to detect advanced precancerous lesions,” the study authors wrote in the NEJM.
In March, Guardant completed clinical trials of its Shield blood test for detecting colorectal cancer (CRC) in men and women. According to the company press release, the test demonstrated:
83% sensitivity in detecting individuals with CRC.
88% sensitivity in detecting pathology-confirmed Stages I-III.
Additionally, the Shield test showed sensitivity by stage of:
65% for pathology-confirmed Stage I,
55% for clinical Stage I,
100% for Stage II, and
100% for Stage III.
“The results of the study are a promising step toward developing more convenient tools to detect colorectal cancer early while it is more easily treated,” said molecular biologist and gastroenterologist William M. Grady, MD, Medical Director, Gastrointestinal Cancer Prevention Program at Fred Hutchinson Cancer Center and corresponding author of the ECLIPSE study in the press release. “The test, which has an accuracy rate for colon cancer detection similar to stool tests used for early detection of cancer, could offer an alternative for patients who may otherwise decline current screening options.”
Are Colonoscopies Still Needed?
“More than three out of four Americans who die from colorectal cancer are not up to date with their recommended screening, highlighting the need for a more convenient and less invasive screening method that can overcome barriers associated with traditional options,” Daniel Chung, MD, gastroenterologist at Massachusetts General Hospital and Professor of Medicine at Harvard Medical School, said in the Guardant press release.
Barbara H. Jung, MD, President of the American Gastroenterological Association, says that even if Guardant’s Shield test makes it to the public the “dreaded colonoscopy” will still be needed because the procedure is used to locate and test polyps. “And when you find those you can also remove them, which in turn prevents the cancer from forming,” she told NPR.
There is hope that less invasive clinical laboratory testing will encourage more individuals to get screened for cancer earlier and regularly, and that the shift will result in a reduction in cancer rates.
“Colorectal cancer is highly treatable if caught in the early stages,” said Chris Evans, President of the Colon Cancer Coalition, in the Guardant press release.
Guardant Health’s ECLIPSE study is a prime example of the push clinical laboratory test developers are making to create user-friendly test options that make it easier for patients to follow through with regular screening for early detection of diseases. It echoes a larger effort in the medical community to think outside the box and come up with creative solutions to reach wider audiences in the name of prevention.
This is good news for clinical laboratories that already perform medical testing for telehealth providers and an opportunity for medical labs that do not, it is an opportunity to do so
Telemedicine visits have become commonplace since the arrival of COVID-19. Before the pandemic, telehealth was primarily used to give remote patients access to quality healthcare providers. But three years later both patients and physicians are becoming increasingly comfortable with virtual office visits, especially among Millennial and Gen Z patients and doctors.
Now, a recent study by the Perelman School of Medicine at the University of Pennsylvania (Penn Medicine) suggests that there could be a significant financial advantage for hospitals that conduct telemedicine. This would be a boon to clinical laboratories that perform medical testing for telemedicine providers.
According to Digital Health News, in July 2017 Penn Medicine launched a 24/7/365 copayment-free telemedicine program for its employees called Penn Medicine OnDemand. To engage with a telemedicine provider, patients must have a smartphone or tablet with a front-facing camera and updated operating system.
Telemedicine Visits Cost Less than In-Office Doctor Appointments
An analysis of the OnDemand program’s data collected from its inception through the end of 2019 found that the telemedicine appointment per-visit cost averaged around $380, whereas the cost of an in-person visit at an emergency department, primary care office, or urgent care clinic averaged around $493.
Typically, Penn Medicine’s employees used the telemedicine program for common, low risk health complaints. Healthcare conditions that many patients might otherwise not seek treatment for if an in-office visit was inconvenient.
“The data we analyzed pre-date the pandemic. It was a time when people were just putting a toe in the water and wondering, ‘Let me see if telemedicine could treat my needs,’” Krisda Chaiyachati MD, an internal medicine physician and Adjunct Assistant Professor at Penn Medicine, told Digital Health News. Chaiyachati lead the research team that conducted the telemedicine study.
“These days, people seem willing to jump in for an appropriate set of conditions,” he added. “The good news is that we made care easier while saving money, and we think the savings could be higher in the future.”
Chaiyachati and his colleagues found that telemedicine can save employers healthcare costs without sacrificing quality of care.
“The conditions most often handled by OnDemand are low acuity—non-urgent or semi-urgent issues like respiratory infections, sinus infections, and allergies—but incredibly common, so any kind of cost reduction can make a huge difference for controlling employee benefit costs,” Krisda Chaiyachati MD (above), a Penn Medicine physician and the study’s lead researcher, told Digital Health News. Clinical laboratories that already perform testing for telemedicine providers may see an increase in test orders once hospitals learn of the costs savings highlighted in the Penn Medicine study. (Photo copyright: Penn Medicine.)
Telemedicine on the Rise
The idea is not new. In late 2018, Planned Parenthood launched the Planned Parenthood Direct mobile app in New York State. The app provides New York patients with access to birth control, emergency contraception, and UTI treatment with no in-person visit required.
The program has since expanded across the country. Users of the app can connect with a physician to go over symptoms/needs, and the be sent a prescription within a business day to the pharmacy of their choice.
The concept is similar to Penn Medicine OnDemand, which gives patients 24/7 year around access to treatment for common and low-acuity medical issues in a convenient, virtual process.
Telemedicine was on the rise in other parts of the healthcare industry before the pandemic. According to “The State of Telehealth Before and After the COVID-19 Pandemic” published by Julia Shaver, MD, Kaiser Permanente, in the journal Primary Care: Clinics in Office Practice, 76% of US hospital systems had utilized some form of telemedicine by 2018. This rate grew exponentially while the healthcare system had to navigate a world with COVID-19 on the rise.
And, apparently, quality of care does not suffer when moved from in-person to virtual settings. Two studies conducted by The University of Rochester Medical Center (URMC) found telemedicine to be effective and that “common concerns about telemedicine don’t hold up to scrutiny,” according a news release.
In her New England Journal of Medicine (NEJM) paper on the studies, Kathleen Fear, PhD, URMC’s Director of Data Analytics, Health Lab, and her co-authors, wrote: “Three beliefs—that telemedicine will reduce access for the most vulnerable patients; that reimbursement parity will encourage overuse of telemedicine; and that telemedicine is an ineffective way to care for patients—have for years formed the backbone of opposition to the widespread adoption of telemedicine.”
However, URMC’s study found the opposite to be true. The NEJM authors wrote, “there is no support for these three common notions about telemedicine. At URMC, the most vulnerable patients had the highest uptake of telemedicine; not only did they complete a disproportionate share of telemedicine visits, but they also did so with lower no-show and cancellation rates. It is clear that … telemedicine makes medical care more accessible to patients who previously have experienced substantial barriers to care.
“Importantly, this access does not come at the expense of effectiveness. Providers do not order excessive amounts of additional testing to make up for the limitations of virtual visits. Patients do not end up in the ER or the hospital because their needs are not met during a telemedicine visit, and they also do not end up requiring additional in-person follow-up visits to supplement their telemedicine visit,” the NEJM authors concluded.
“Not only did our most vulnerable patients not get left behind—they were among those engaging the most with, and benefiting the most from, telemedicine services. We did not see worse outcomes or increased costs, or patients needing an increased amount of in-person follow up. Nor did we find evidence of overuse. This is good care, and it is equitable care for vulnerable populations,” Fear said in the news release.
“For patients, the message is clear and reassuring: Telemedicine is an effective and efficient way of receiving many kinds of healthcare,” she added.
Opportunities for Clinical Laboratories
Dark Daily has covered the fast growing world of telemedicine in many ebriefs over the years.
As telemedicine broadens its reach across the healthcare world, clinical laboratories and pathology groups would be wise to seek collaboration with health plans and providers of telemedicine to figure out where sample collection and testing fits into this new virtual healthcare space.