News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

AXIM Biotechnologies Develops Diagnostic Test for Parkinson’s Disease That Uses Tear Drop Specimens and Returns Results in Less than 10 Minutes at the Point of Care

New non-invasive test could replace traditional painful spinal taps and clinical laboratory fluid analysis for diagnosis of Parkinson’s disease

Scientists at AXIM Biotechnologies of San Diego have added another specimen that can be collected non-invasively for rapid, point-of-care clinical laboratory testing. This time it is tears, and the diagnostic test is for Parkinson’s disease (PD).

The new assay measures abnormal alpha-synuclein (a-synuclein), a protein that is a biomarker for Parkinson’s, according to an AXIM news release which also said the test is the first rapid test for PD.

“The revolutionary nature of AXIM’s new test is that it is non-invasive, inexpensive, and it can be performed at a point of care. It does not require a lumbar puncture, freezing, or sending samples to a lab. AXIM’s assay uses a tiny tear drop versus a spinal tap to collect the fluid sample and the test can be run at a doctor’s office with quantitative results delivered from a reader in less than 10 minutes,” the news release notes.

A recent study conducted by the Michael J. Fox Foundation for Parkinson’s Research published in The Lancet Neurology titled, “Assessment of Heterogeneity among Participants in the Parkinson’s Progression Markers Initiative Cohort Using Α-Synuclein Seed Amplification: A Cross-Sectional Study,” found that “the presence of abnormal alpha-synuclein was detected in an astonishing 93% of people with Parkinson’s who participated in the study,” the news release noted.

“Furthermore, emerging evidence shows that a-synuclein assays have the potential to differentiate people with PD from healthy controls, enabling the potential for early identification of at-risk groups,” the news release continues. “These findings suggest a crucial role for a-synuclein in therapeutic development, both in identifying pathologically defined subgroups of people with Parkinson’s disease and establishing biomarker-defined at-risk cohorts.”

This is just the latest example of a disease biomarker that can be collected noninvasively. Other such biomarkers Dark Daily has covered include:

“With this new assay, AXIM has immediately become a stakeholder in the Parkinson’s disease community, and through this breakthrough, we are making possible new paradigms for better clinical care, including earlier screening and diagnosis, targeted treatments, and faster, cheaper drug development,” said John Huemoeller, CEO, AXIM (above), in a news release. Patients benefit from non-invasive clinical laboratory testing. (Photo copyright: AXIM Biotechnologies.)

Fast POC Test versus Schirmer Strip

AXIM said it moved forward with its novel a-synuclein test propelled by earlier tear-related research that found “a-synuclein in its aggregated form can be detected in tears,” Inside Precision Medicine reported.

But that research used what AXIM called the “outdated” Schirmer Strip method to collect tears. The technique involves freezing tear samples at -80 degrees Celsius (-112 Fahrenheit), then sending them to a clinical laboratory for centrifugation for 30 minutes; quantifying tear protein content with a bicinchoninic acid assay, and detecting a-synuclein using a plate reader, AXIM explained.

Alternatively, AXIM says its new test may be performed in doctors’ offices and offers “quantitative results delivered from a reader in less than 10 minutes.”

“Our proven expertise in developing tear-based diagnostic tests has led to the development of this test in record speed, and I’m extremely proud of our scientific team for their ability to expand our science to focus on such an important focus area as Parkinson’s,” said John Huemoeller, CEO, AXIM in the news release.

“This is just the beginning for AXIM in this arena,” he added. “But I am convinced when pharmaceutical companies, foundations, and neurologists see how our solution can better help diagnose Parkinson’s disease in such an expedited and affordable way, we will be at the forefront of PD research, enabling both researchers and clinicians a brand-new tool in the fight against PD.”

AXIM acquired Advanced Tear Diagnostics, Birmingham, Ala., in 2021. As part of this acquisition, it obtained two US Food and Drug Administration-cleared tests for dry eye syndrome, Fierce Biotech reported.

One of those tests was “a lateral flow diagnostic for point-of-care use that measures the level of lactoferrin proteins in tear fluid, which work to protect the surface of the eye. … Axim said that low lactoferrin levels have also been linked to Parkinson’s disease and that the assay can be used alongside its alpha-synuclein test,” Fierce Biotech noted.

Why Tears for PD Test?

Mark Lew, MD, Professor of Clinical Neurology, University of Southern California Keck School of Medicine, published earlier studies about using tear samples as biomarkers for Parkinson’s disease.

“It made sense to try and look at the proteinaceous [consisting of or containing protein] constituents of tear fluid,” Lew told Neurology Live. “Tear fluid is easy to collect. It’s noninvasive, inexpensive. It’s not like when you do a lumbar puncture, which is a much more involved ordeal. There’s risk of contamination with blood (saliva is dirty) issues with blood and collection. [Tear fluid analysis] is much safer and less expensive to do.”

In Biomarkers in Medicine, Lew et al noted why tears make good biomarkers for Parkinson’s disease, including “the interconnections between the ocular [eye] surface system and neurons affected in Parkinson’s disease.”

The researchers also highlighted “recent data on the identification of tear biomarkers including oligomeric α-synuclein, associated with neuronal degeneration in PD, in tears of PD patients” and discussed “possible sources for its release into tears.”

Future Clinical Laboratory Testing for Parkinson’s

Parkinson’s disease is the second most common neurodegenerative disorder after Alzheimer’s. It affects nearly one million people in the US. About 1.2 million people may have it by 2030, according to the Parkinson’s Foundation.

Thus, an accurate, inexpensive, non-invasive diagnostic test that can be performed at the point of care, and which returns clinical laboratory test results in less than 10 minutes, will be a boon to physicians who treat PD patients worldwide.

Clinical laboratory managers and pathologists may want to follow AXIM’s future research to see when the diagnostic test may become available for clinical use.

—Donna Marie Pocius

Related Information:

Parkinson’s Disease Biomarker Found

AXIM Biotechnologies Develops First Non-Invasive, Rapid, Point-of-Care, Diagnostic Test for Parkinson’s Disease

Assessment of Heterogeneity Among Participants in the Parkinson’s Progression Markers Initiative Cohort Using A-Synuclein Seed Amplification: a Cross-sectional Study

Tear Drop Test is First Rapid, Point-of-Care Diagnostic for Parkinson’s Disease

New Test Aims to Spot Signs of Parkinson’s Disease within a Tear Drop

Motivations for Using Tears to Confirm Parkinson’s Disease Diagnosis

Tears—More to Them than Meets the Eye: Why Tears are a Good Source of Biomarkers in Parkinson’s Disease

Researchers at Stanford University Discover Gene Variant That Appears to Protect Individuals from Both Alzheimer’s and Parkinson’s Disease

Study findings may lead to new clinical laboratory tests, as well as vaccines and immunotherapies for neurodegenerative diseases

Research into the human genome continues to produce useful new insights. This time, a study led by researchers at Stanford University identified a genetic variation that is believed to help “slow or even stall” progression of neurodegenerative diseases, including Alzheimer’s and Parkinson’s, according to a press release. Because these genetic variations are common, it is likely that diagnostic tests can be developed for use by clinical laboratories.

Researchers at Stanford Medicine led the study which discovered that approximately one in five individuals carry the gene variant, a protective allele identified as DR4 (aka, HLA-DR4). It’s one of a large number of alleles found in a gene known as DRB1.

DRB1 is part of a family of genes collectively known as the human lymphocyte antigen complex or HLA. The HLA-DRB1 gene plays a crucial role in the ability of the immune system to see a cell’s inner contents.

The Stanford scientists published their findings in the journal PNAS titled, “Multiancestry Analysis of the HLA Locus in Alzheimer’s and Parkinson’s Diseases Uncovers a Shared Adaptive Immune Response Mediated by HLA-DRB1*04 Subtypes.” Approximately 160 researchers from roughly 25 countries contributed to the work. 

Emmanuel Mignot, MD, PhD

“In an earlier study, we’d found that carrying the DR4 allele seemed to protect against Parkinson’s disease,” said Emmanuel Mignot, MD, PhD (above), Director of the Stanford Center for Narcolepsy, in a Stanford press release. “Now, we’ve found a similar impact of DR4 on Alzheimer’s disease.” Clinical laboratories may soon have new vaccines for both neurodegenerative diseases. (Photo copyright: Stanford University.)


DR4 Found to Impact Both Parkinson’s and Alzheimer’s Diseases

To perform their research, the team examined a large collection of medical and genetic databases from 176,000 people who had either Alzheimer’s or Parkinson’s disease. The people involved in the study were from numerous countries located in East Asia, Europe, the Middle East and South America. Their genomes were then compared with people who did not have the diseases, focusing on the incidence and age of onset.

“In an earlier study we’d found that carrying the DR4 allele seemed to protect against Parkinson’s disease,” said Mignot in the Stanford press release. “Now, we’ve found a similar impact of DR4 on Alzheimer’s disease.”

The team found that about 20% to 30% of people carry DR4, and that they have around a 10% risk reduction for developing the two diseases. 

“That this protective factor for Parkinson’s wound up having the same protective effect with respect to Alzheimer’s floored me,” said Emmanuel Mignot, MD, PhD, the Craig Reynolds Professor of Sleep Medicine in the Department of Psychiatry and Behavioral Sciences at Stanford University and the Director of the Stanford Center for Narcolepsy, in the Stanford Medicine press release. “The night after we found that out, I couldn’t sleep.”

The scientists also analyzed data from autopsied brains of more than 7,000 Alzheimer’s patients and discovered that individuals who carry DR4 had fewer neurofibrillary tangles and that those tangles are composed mainly of modified tau proteins, a common biomarker for Alzheimer’s.

The presence of these tangles corresponds with the severity of Alzheimer’s disease. They are not typically seen in Parkinson’s patients, but the Stanford team found that Parkinson’s patients who did carry DR4 experienced later onset of symptoms.

Mignot stated that tau, which is essential in Alzheimer’s, may also play a role in Parkinson’s, but that further research is required to prove its function.

Both diseases are characterized by the progressive loss of certain nerve cells or neurons in the brain and are linked to an accumulation of abnormal proteins. The Stanford researchers suggested that the DR4 gene variant may help protect individuals from Alzheimer’s and Parkinson’s by preventing the buildup of tau proteins.

“This is a very interesting study, providing additional evidence of the involvement of the immune system in the pathogenesis of Alzheimer’s and Parkinson’s,” neurologist Wassim Elyaman, PhD, Assistant Professor of Neurological Sciences in Neurology, the Taub Institute and the Institute for Genomic Medicine at Columbia University, told Live Science.

New Vaccines and Immunotherapies

According to the Alzheimer’s Association, more than six million Americans are currently living with Alzheimer’s disease and approximately one in three Americans die with Alzheimer’s or another dementia. 

The Parkinson’s Foundation states that nearly one million Americans are currently living with Parkinson’s disease, and that number is expected to rise to 1.2 million by 2030. Parkinson’s is the second-most common neurodegenerative disease after Alzheimer’s disease.

Even though the genetic analysis of the Stanford research is strong, more immune cell and blood-based research is needed to definitively establish how tau is connected to the two diseases.

This research could have implications for clinical laboratories by giving them biomarkers for a useful new diagnostic test, particularly for diagnosing Alzheimer’s and Parkinson’s.

Further, Mignot suggested that an effective vaccine could delay the onset or slow the progression of both diseases. He hopes to test his hypothesis on genetically modified mice and eventually human subjects.

—JP Schlingman

Related Information:

Stanford Medicine-led Study Finds Genetic Factor Fends Off Alzheimer’s and Parkinson’s

Gene Variant Carried by One in Five People May Guard Against Alzheimer’s and Parkinson’s, Massive Study Finds

Multiancestry Analysis of the HLA Locus in Alzheimer’s and Parkinson’s Diseases Uncovers a Shared Adaptive Immune Response Mediated by HLA-DRB1*04 Subtypes

Alzheimer’s Disease: Tau Biology and Pathology

Tau Protein and Alzheimer’s Disease: What’s the Connection?

C₂N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease

UK Researchers Develop Clinical Laboratory Diagnostic Skin Test for Parkinson’s Inspired by Woman’s Ability to Smell the Disease before Onset of Symptoms

An assay using mass spectrometry could go to clinical trial within two years

Dark Daily has regularly observed that humans generate a variety of volatile substances—particularly in breath—which can be used for diagnostic purposes. But what if people, like certain trained animals, could smell the presence of disease before the onset of symptoms? What types of clinical laboratory testing biomarkers could be developed based on human-generated volatile organic compounds?

In “Woman Who Can Smell Parkinson’s Disease in Patients Even Before Symptoms Appear May Help Researchers Develop New Clinical Laboratory Test,” Dark Daily covered the unique story of Joy Milne, a retired nurse from Perth, Scotland, who claimed she could “smell” her husband’s Parkinson’s disease a decade before he was diagnosed with the illness.

As strange as that may sound, Milne’s olfactory abilities were confirmed by researchers at the Center for Regenerative Medicine at the University of Edinburgh and have now led to a clinical laboratory diagnostic Parkinson’s test based on body odor.

Researchers at the University of Manchester (UM) in the United Kingdom (UK) say their “breakthrough” test to diagnose Parkinson’s disease “can diagnose disease from skin swabs in three minutes,” according to a university press release.

The researchers published their findings in JACS AU, a Journal of the American Chemical Society, titled, “Paper Spray Ionization Ion Mobility Mass Spectrometry of Sebum Classifies Biomarker Classes for the Diagnosis of Parkinson’s Disease.”

Perdita Barran, PhD and Joy Milne

Perdita Barran, PhD (right), head of the University of Manchester research team that developed the mass spectrometry Parkinson’s test, is shown above with Joy Milne (left), the retired nurse from Scotland who inspired Barran’s team to develop a new Parkinson’s biomarker and method for identifying it. “We are tremendously excited by these results which take us closer to making a diagnostic test for Parkinson’s Disease that could be used in clinic,” she said in a press release. A viable clinical laboratory test for Parkinson’s disease is greatly needed, as more than 10 million people worldwide currently live with the neurodegenerative disorder. (Photo copyright: University of Manchester.)

Using Mass Spectrometry to Analyze Sebum

The UM scientists hypothesized that the smell could be due to sebum, a light oily substance on skin that was going through a chemical change due to the Parkinson’s disease, Hull Daily Mail explained.

Increased sebum, which is produced by the sebaceous glands, is a hallmark of Parkinson’s, the researchers noted.

Their new method involves analysis of sebum using mass spectrometry, according to the JACS AU paper. The method, the researchers claim, makes it possible to diagnose Parkinson’s disease from skin swabs in three minutes.

“There are no cures for Parkinson’s, but a confirmatory diagnosis would allow [Parkinson’s patients] to get the right treatment and get the drugs that will help to alleviate their symptoms,” Perdita Barran, PhD, told the Hull Daily Mail. Barran is Chair of Mass Spectrometry in the Department of Chemistry and Director of the Michael Barber Centre for Collaborative Mass Spectrometry at UM’s Manchester Institute of Biotechnology. “What we are now doing is seeing if (hospital laboratories) can do what we’ve done in a research lab in a hospital lab,” she added.

Sebum Analyzed with Mass Spectrometry

Parkinson’s disease—the world’s fastest growing neurodegenerative disorder—needs “robust biomarkers” that could advance detection and head off onset of motor symptoms such as tremor, rigidity, and postural instability, the researchers note in their paper.

Their recent study builds on earlier 2019 findings they published in ACS Central Science about volatile compounds in sebum possibly being used as Parkinson’s biomarkers.

“Sebum is an underexplored biofluid, which is readily obtained from non-invasive skin swabs, which primarily consists of a mixture of triglycerides, cholesterol, free fatty acids, waxy esters,  and squalene,” the researchers explained in their JACS AU paper. 

The scientists sought, “to develop a method to analyze sebum in its native state to facilitate rapid assessment of the Parkinson’s disease status. Paper spray ionization mass spectrometry, which allows the direct analysis of compounds from paper, has previously been demonstrated to detect small molecules from unprocessed biofluids, such as blood and urine, but not to date with sebum,” they wrote.

The UM researchers used mass spectrometry to analyze sebum collected on cotton swabs from the backs of 79 people with Parkinson’s and 71 healthy individuals, BBC Scotland News reported.

Depanjan Sarkar, PhD, Research Associate, University of Manchester, further explained the technique in the UM news release:

  • Sebum is taken from the swab to filter paper cut in a triangle.
  • Using a solvent and voltage, sebum compounds transfer into the mass spectrometer.

“When we did this, we found more than 4,000 unique compounds of which 500 are different between people with Parkinson’s compared to the control participants,” Sarkar said.

Fatty Acids Make Assay Possible

Could fatty acids pave the way to an assay? The UM researchers believe so.

“We have identified two classes of lipids, namely [triglycerides] and diglycerides, as components of human sebum that are significantly differentially expressed in PD,” the researchers wrote in JACS AU. “Non-invasive sampling followed by PS-IM-MS [paper spray-ion mobility–mass spectrometry] analysis targeting these compounds could provide an inexpensive assay to support clinical phenotyping for the confirmatory diagnosis of Parkinson’s disease.”

A clinical trial for their test, which costs about $20, may be done within two years in Manchester area, the Daily Mail reported.

When Dark Daily reported in 2020 on Joy Milne’s unique ability to smell her husband’s Parkinson’s disease before it was formally diagnosed, we predicted a diagnostic test for Parkinson’s may be years away. And here it is, albeit with regulatory clearance needed following clinical trials.

It may in fact be possible to leverage sebum analysis to detect other diseases, the UM researchers noted.

For diagnostics developers, this story of Joy Milne and her husband Les Milne is a useful example of how, in tracking the life of a specific patient with a specific disease and close family members, researchers were able to identify a new class of biomarkers that could be used in a diagnostic assay.

It will be interesting to follow the University of Manchester researchers in their quest for a diagnostic mass spectrometry clinical laboratory test for Parkinson’s disease. According to Parkinson’s Foundation statistics, about 10 million people worldwide live with the neurodegenerative disorder. Such a new diagnostic test could be vitally important to medical laboratory care, and to patients and their families.

-Donna Marie Pocius

Related Information:

That’s Breathtaking; Meet the Woman Who Sniffed Out Her Husband’s Parkinson’s and Now Experts Have Created First Ever Test Based on Odor That Alerted Her

Parkinson’s Breakthrough Can Diagnose Disease from Skin Swabs in Three Minutes

Test for Parkinson’s is Developed Thanks to Woman Who Can Smell the Disease; It Has Been Years in the Making

Paper Spray Ionization Ion Mobility Mass Spectrometry of Sebum Classifies Biomarker Classes for the Diagnosis of Parkinson’s Disease

Discovery of Volatile Biomarkers of Parkinson’s Disease from Sebum

Parkinson’s Test: Woman Who Smelled Disease on Husband Helps Scientists

Woman Who Can Smell Parkinson’s Disease in Patients Even Before Symptoms Appear May Help Researchers Develop New Clinical Laboratory Test

Spatial Transcriptomics Provide a New and Innovative Way to Analyze Tissue Biology, May Have Value in Surgical Pathology

Newly combined digital pathology, artificial intelligence (AI), and omics technologies are providing anatomic pathologists and medical laboratory scientists with powerful diagnostic tools

Add “spatial transcriptomics” to the growing list of “omics” that have the potential to deliver biomarkers which can be used for earlier and more accurate diagnoses of diseases and health conditions. As with other types of omics, spatial transcriptomics might be a new tool for surgical pathologists once further studies support its use in clinical care.

Oncologists and anatomic pathologists are increasingly becoming aware of the power of computer image analysis algorithms that use artificial intelligence (AI) when analyzing digital pathology images, such as whole-slide imaging (WSI), and radiology images. They also are aware that various omics, such as genomics, epigenomics, proteomics, metabolomics, metagenomics, and transcriptomics, are taking greater roles in precision medicine diagnostics as well.

Among this spectrum of omics is spatial transcriptomics, or ST for short.

Spatial Transcriptomics is a groundbreaking and powerful molecular profiling method used to measure all gene activity within a tissue sample. The technology is already leading to discoveries that are helping researchers gain valuable information about neurological diseases and breast cancer.

Marriage of Genetic Imaging and Sequencing

Spatial transcriptomics is a term used to describe a variety of methods designed to assign cell types that have been isolated and identified by messenger RNA (mRNA), to their locations in a histological section. The technology can determine subcellular localization of mRNA molecules and can quantify gene expression within anatomic pathology samples.

In “Spatial: The Next Omics Frontier,” Genetic Engineering and Biotechnology News (GEN) wrote, “Spatial transcriptomics gives a rich, spatial context to gene expression. By marrying imaging and sequencing, spatial transcriptomics can map where particular transcripts exist on the tissue, indicating where particular genes are expressed.”

In an interview with Technology Networks, George Emanuel, PhD, co-founder of life-science genomics company Vizgen, said, “Spatial transcriptomic profiling provides the genomic information of single cells as they are intricately spatially organized within their native tissue environment.

“With techniques such as single-cell sequencing, researchers can learn about cell type composition; however, these techniques isolate individual cells in droplets and do not preserve the tissue structure that is a fundamental component of every biological organism,” he added.

“Direct spatial profiling the cellular composition of the tissue allows you to better understand why certain cell types are observed there and how variations in cell state might be a consequence of the unique microenvironment within the tissue,” he continued. “In this way, spatial transcriptomics allows us to measure the complexity of biological systems along the axes that are most relevant to their function.”

George Emanuel, PhD

“Although spatial genomics is a nascent field, we are already seeing broad interest among the community and excitement across a range of questions, all the way from plant biology to improving our understanding of the complex interactions of the tumor microenvironment,” George Emanuel, PhD (above), told Technology Networks. Oncologists, anatomic pathologists, and medical laboratory scientists my soon see diagnostics that take advantage of spatial genomics technologies. (Photo copyright: Vizgen.)

According to 10x Genomics, “spatial transcriptomics utilizes spotted arrays of specialized mRNA-capturing probes on the surface of glass slides. Each spot contains capture probes with a spatial barcode unique to that spot.

“When tissue is attached to the slide, the capture probes bind RNA from the adjacent point in the tissue. A reverse transcription reaction, while the tissue is still in place, generates a cDNA [complementary DNA] library that incorporates the spatial barcodes and preserves spatial information.

“Each spot contains approximately 200 million capture probes and all of the probes in an individual spot share a barcode that is specific to that spot.”

“The highly multiplexed transcriptomic readout reveals the complexity that arises from the very large number of genes in the genome, while high spatial resolution captures the exact locations where each transcript is being expressed,” Emanuel told Technology Networks.  

Spatial Transcriptomics for Breast Cancer and Neurological Diagnostics

An open-access article published in the journal Breast Cancer Research, titled, “Identification and Transfer of Spatial Transcriptomics Signatures for Cancer Diagnosis,” stated that spatial transcriptomics (ST) could successfully detect breast cancer expression signatures from annotated tissue sections.

In that paper, the authors wrote “we envision that in the coming years we will see simplification, further standardization, and reduced pricing for the ST protocol leading to extensive ST sequencing of samples of various cancer types.”

Spatial transcriptomics is also being used to research neurological conditions and neurodegenerative diseases. ST has been proven as an effective tool to hunt for marker genes for these conditions as well as help medical professionals study drug therapies for the brain.

“You can actually map out where the target is in the brain, for example, and not only the approximate location inside the organ, but also in what type of cells,” Malte Kühnemund, PhD, Director of Research and Development at 10x Genomics, told Labiotech.eu. “You actually now know what type of cells you are targeting. That’s completely new information for them and it might help them to understand side effects and so on.”

The field of spatial transcriptomics is rapidly moving and changing as it branches out into more areas of healthcare. New discoveries within ST methodologies are making it possible to combine it with other technologies, such as Artificial Intelligence (AI), which could lead to powerful new ways oncologists and anatomic pathologists diagnose disease.

“I think it’s going to be tricky for pathologists to look at that data,” Kühnemund said. “I think this will go hand in hand with the digital pathology revolution where computers are doing the analysis and they spit out an answer. That’s a lot more precise than what any doctor could possibly do.”

Spatial transcriptomics certainly is a new and innovative way to look at tissue biology. However, the technology is still in its early stages and more research is needed to validate its development and results.  

Nevertheless, this is an opportunity for companies developing artificial intelligence tools for analyzing digital pathology images to investigate how their AI technologies might be used with spatial transcriptomics to give anatomic pathologists a new and useful diagnostic tool. 

—JP Schlingman

Related Information:

What is Spatial Transcriptomics?

Spatial: The Next Omics Frontier

Spatial Transcriptomics Puts More Biology on the Map

Exploring Tissue Architecture Using Spatial Transcriptomics

Trends, Applications and Advances in Spatial Transcriptomics

Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration

Identification and Transfer of Spatial Transcriptomics Signatures for Cancer Diagnosis

Spatial Transcriptomics: A Window into Disease

Researchers in Two Countries Develop Blood Tests That Detect Alzheimer’s Decades Before Symptoms Appear; Could Eventually Give Clinical Laboratories a Diagnostic Tool

New scientific insights from these studies represent progress in the effort to develop a clinical laboratory test that would enable physicians to diagnose Alzheimer’s Disease earlier and with greater accuracy

Most medical laboratory professionals are aware that, for more than 30 years, in vitro diagnostic (IVD) developers and pharmaceutical researchers have sought the Holy Grail of clinical laboratory testing—an accurate test for Alzheimer’s disease that is minimally-invasive and produces information that is actionable by clinicians at a reasonable cost. Such a test could spark a revolution in the diagnosis and treatment of this debilitating disease and would improve the lives of tens of thousands of people each year.

Now, two different research studies being conducted in Germany and Japan may have developed such tests that use blood samples. The tests detect specific biomarkers found in Alzheimer’s patients and one day could enable physicians to diagnose the disease in its preclinical stages.

German Test Identifies Amyloid-Beta Biomarker 

The test under development at Ruhr University in Bochum, Germany, detects the presence of amyloid-beta, a component of amyloid plaque (AKA, amyloid-β plaques), which has consistently been found in Alzheimer’s patents, according to United Press International (UPI).

A healthy brain has amyloid-beta plaques, too. However, in a person with Alzheimer’s disease, the amyloid-beta is misfolded, formed like a sheet, and toxic to nerve cells, the researchers explained in a press release.

The test works with small amounts of blood plasma and employs an immuno-infrared-sensor, also developed at Ruhr University. The sensor measures the amounts of both pathological (the misfolded kind) and healthy amyloid-beta in the blood.

Amyloid plaques can start to form decades prior to the onset of Alzheimer’s symptoms, making them identifiable biomarkers that can be used as a “preselection funnel in two‐step diagnostics,” the researchers noted.

“The use of the immuno‐infrared‐sensor as an initial screening funnel to identify people who should undergo further diagnostics and eventually take part in clinical trials on therapeutics targeting Aβ misfolding might already be an important step forward because subjects with early AD stages are hard to identify,” the researchers note. “To our knowledge, there is today no other plasma test available, which has been tested both in an AD research cohort and in the general population.”

Klaus Gerwert, PhD, (left) Chair of Biophysics at Ruhr University in Bochum, Germany, and Dr. Katsuhiko Yanagisawa, PhD, (right) molecular biologist and Director of the Center for Development of Advanced Medicine for Dementia in Obu City, Japan, both lead research teams that developed tests for identifying amyloid-β biomarkers in early onset Alzheimer’s patients. More research must be conducted before these assays could be offered by clinical laboratories. (Photo copyrights: International Max Planck Research School in Chemical and Molecular Biology/Nagoya University School of Medicine.)

Another Blood Test Finds Amyloid-Beta

Interestingly, just a few months ahead of the German researchers’ paper, scientists at the Center for Development of Advanced Medicine for Dementia (CAMD) in Obu City, Japan, published their own paper on a similar blood test they developed that also identifies high levels of amyloid-beta in patients with Alzheimer’s.

However, according to a news release, the Japanese study involved the use of immunoprecipitation and mass spectrometry to measure amyloid-beta related fragments in the blood.

The study, which was published in Nature, involved 373 people: 121 Japanese in the discovery cohort set and 252 Australians in the validation data set. The test found amyloid-beta levels in the brain with 90% accuracy, The Scientist reported.

“These results demonstrate the potential clinical utility of plasma biomarkers in predicting brain amyloid-β burden at an individual level. These plasma biomarkers also have cost-benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening,” the researchers wrote in their paper.

Previous Alzheimer’s Research

These studies are not the first to seek biomarkers that could detect the early-onset of Alzheimer’s disease. In 2016, Dark Daily reported on two other studies: one conducted at Rowan University School of Osteopathic Medicine (RowanSOM) and another by IVD company Randox Laboratories. (See Dark Daily, “Two Different Research Teams Announce Tests for Alzheimer’s Disease That Could Be Useful for Clinical Laboratories after Clearance by the FDA,” November 30, 2016.)

Nevertheless, as of 2018, Alzheimer’s disease has impacted the lives of approximately 5.7 million Americans of all ages, according to the Alzheimer’s Association. And yet, doctors currently only have expensive positron emission tomography (PET) brain scans and invasive cerebrospinal fluid (CSF) analysis to identify the disease, generally in the latter stages of its development.

Thus, a less invasive, inexpensive test that accurately identifies biomarkers found in the majority of people during the early stages of the disease would be a boon to physicians who treat chronic neurodegenerative disease, medical laboratories that perform the tests, and, of course, the thousands of people each year who are diagnosed and suffer with this debilitating condition.

—Donna Marie Pocius

Related Information:

Blood Test Can Detect Alzheimer’s Years Before Symptoms

New Blood Test Useful to Detect People at Risk of Developing Alzheimer’s Disease

Blood Test Detects Alzheimer’s Before Symptoms Appear

Blood Test May Detect Very Early Alzheimer’s

Simple Blood Test Spots Dementia Protein

High Performance Plasma Amyloid-Beta Biomarkers for Alzheimer’s Disease

Researchers Develop Potential Blood Test for Alzheimer’s Disease

Japan Researchers Develop Cheap and Easy Way to Diagnose Alzheimer’s

Two Different Research Teams Announce Tests for Alzheimer’s Disease That Could Be Useful for Clinical Laboratories After Clearance by the FDA

 

 

;