News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

BMJ Oncology Study Shows 79% Increase in Cancer among People under 50 Years of Age

Findings suggest new medical guidelines may be needed to determine when to perform clinical laboratory cancer screenings on people under 50

From 1990-2019, new diagnoses of early-onset cancer in individuals under 50 years of age increased by 79%, according to a British Medical Journal (BMJ) news release describing research published last year in BMJ Oncology. The question for anatomic pathology laboratories to consider is, why are more people under 50 being diagnosed with cancer than in earlier years? And do medical guidelines need to be changed to allow more cancer screening for individuals under 50-years old?

This new revelation challenges previously held beliefs about the number of younger adults under 50 experiencing early-onset cancer. Patients can sometimes miss symptoms by attributing them to a more benign condition.

“While cancer tends to be more common in older people, the evidence suggests that cases among the under 50s have been rising in many parts of the world since the 1990s. But most of these studies have focused on regional and national differences; and few have looked at the issue from a global perspective or the risk factors for younger adults, say the researchers. In a bid to plug these knowledge gaps, they drew on data from the Global Burden of Disease 2019 Study for 29 cancers in 204 countries and regions,” the BMJ news release states.

According to the news release, “Breast cancer accounted for the highest number of ‘early-onset’ cases in this age group in 2019. But cancers of the windpipe (nasopharynx) and prostate have risen the fastest since 1990, the analysis reveals. Cancers exacting the heaviest death toll and compromising health the most among younger adults in 2019 were those of the breast, windpipe, lung, bowel, and stomach.”

Although these statistics are being seen worldwide, the highest rates are in North America, Australasia, and Western Europe. However, high death rates due to cancer are also being seen in Eastern Europe, Central Asia, and Oceania. Economic disparities in the latter geographical regions may account for both fewer diagnoses and higher death rates.

“And in low to middle income countries, early onset cancer had a much greater impact on women than on men, in terms of both deaths and subsequent poor health,” the BMJ news release noted.

In an editorial they published in BMJ Oncology on the study findings, Ashleigh Hamilton, PhD (left), Academic Clinical Lecturer, and Helen Coleman, PhD (right), Professor, School of Medicine, Dentistry and Biomedical Sciences, both at the Center for Public Health at Queen’s University Belfast in the UK wrote, “The epidemiological landscape of cancer incidence is changing. … Prevention and early detection measures are urgently required, along with identifying optimal treatment strategies for early-onset cancers, which should include a holistic approach addressing the unique supportive care needs of younger patients.” Anatomic pathology laboratories will play an important role in diagnosing and treating younger cancer patients. (Photo copyrights: Queen’s University Belfast.)

What Caused the Increase?

“It’s such an important question, and it points to the need for more research in all kinds of domains—in population science, behavioral health, public health, and basic science as well,” said medical oncologist Veda Giri, MD, Professor of Internal Medicine, Yale School of Medicine, in a news release. Giri directs the Yale Cancer Center Early-Onset Cancer Program at Smilow Cancer Hospital.

Although experts are still trying to determine exactly where these cases are coming from, signs point to both genetic and lifestyle factors, the BMJ news releases noted. Tobacco and alcohol use, diets high in cholesterol and sodium, and physical inactivity are all lifestyle risk factors. Experts recommend a healthy diet and exercise routine with minimal alcohol consumption.

As for family history? “We’re beginning to recognize that family history is very important,” says Jeremy Kortmansky, MD, also a Yale Medicine medical oncologist.

According to CNN Health, these rates of early-onset cancer are more common in female patients, with rates going up an average of 0.67% each year.

“For young women who have a significant family history of cancer in the family, we are starting to refer them to a high-risk clinic—even if the cancer in their family is not breast cancer,” Kortmansky noted.

Doctors advise patients to implement healthy habits into their lives, not ignore symptoms, advocate for themselves, and be aware of their family history. Cancer patients may be prescribed cancer treatments at a much earlier age. Medical guidelines for patients may continue to shift and change. And oncologists may be incorporating alternative therapies to help younger patients deal with the shock of their diagnosis.

Will Cancer Rates Continue to Rise?

“Based on the observed trends for the past three decades, the researchers estimate that the global number of new early-onset cancer cases and associated deaths will rise by a further 31% and 21% respectively in 2030, with those in their 40s the most at risk,” the BMJ news release noted.

In an editorial they penned for BMJ Oncology on the findings of the cancer study titled, “Shifting Tides: The Rising Tide of Early-Onset Cancers Demands Attention,” Ashleigh Hamilton, PhD, Academic Clinical Lecturer, and Helen Coleman, PhD, Professor, School of Medicine, Dentistry and Biomedical Sciences, both at the Center for Public Health at Queen’s University Belfast in the UK wrote, “Full understanding of the reasons driving the observed trends remains elusive, although lifestyle factors are likely contributing, and novel areas of research such as antibiotic usage, the gut microbiome, outdoor air pollution, and early life exposures are being explored. It is crucial that we better understand the underlying reasons for the increase in early-onset cancers, in order to inform prevention strategies.”

Clinical laboratories should be aware of these findings and the changing landscape of cancer screenings, as they will play a key role in diagnoses. Younger patients may be advocating for cancer screenings and doctors may be ordering them depending on the patient’s symptoms and family history. Anatomic pathology professionals should expect new guidelines when it comes to cancer diagnostics and treatment.

—Ashley Croce

Related Information:

Global Surge in Cancers among the Under 50s over Past Three Decades

Shifting Tides: The Rising Tide of Early-Onset Cancers Demands Attention

Global Trends in Incidence, Death, Burden and Risk Factors of Early-Onset Cancer from 1990 to 2019

Cancer Diagnosis Rates are Going up in Younger Adults, Study Finds, Driven Largely By Rises in Women and People in Their 30s

Early Onset Cancer Cases Rise 80% in Past Three Decades, BMJ Survey Finds

Cancer in Younger People Is on the Rise: Knowing Your Family History Can Help

Study Points to Big Surge in Under-50 Cancer Cases

Researchers See Surge in Number of People under 50 Diagnosed with Cancer

Johns Hopkins Researchers Determine 795,000 Americans Harmed from Diagnostic Errors Annually

Clinical laboratories can play a critical role in helping doctors to order correct tests and interpret the results

Nearly 800,000 Americans die or are permanently disabled each year due to diagnostic errors. That’s according to research conducted at Johns Hopkins School of Medicine that found most misdiagnoses are due to cognitive errors on the part of the treating physicians. Many diagnoses typically begin with–and are often achieved through—clinical laboratory testing. For that reason, the range of diagnostic errors identified in this study will interest pathologists and lab managers.

Of course, many types of diagnostic errors have nothing to do with lab tests. That said, the research team noted that some diagnostic errors take place when physicians do not pay attention to test results that indicate a patient is not doing well, or do not understand the significance of the test results. There are also examples where doctors order the wrong lab tests for patients’ symptoms.

The Johns Hopkins study findings were published in the journal BMJ Quality and Safety titled, “Burden of Serious Harms from Diagnostic Error in the USA.” The research team determined that only 15 diseases “accounted for 50.7% of total serious harms” and nearly 40% of those harms involved just five medical conditions:

These can be narrowed down even further to just three categories, the researchers noted in BMJ Quality and Safety. They are:

  • Major vascular events,
  • Infections, and
  • Cancers.

In an interview with CNN Health, lead author of the study David Newman-Toker, MD, PhD, a neurology professor at Johns Hopkins and Director of the Division of Neuro-Visual and Vestibular Disorders, said “These are relatively common diseases that are missed relatively commonly and are associated with significant amounts of harm.”

David Newman-Toker, MD, PhD

“We focused here on the serious harms, but the number of diagnostic errors that happen out there in the US each year is probably somewhere on the order of magnitude of 50 to 100 million,” neurologist David Newman-Toker, MD, PhD (above), professor and Director of the Division of Neuro-Visual and Vestibular Disorders at Johns Hopkins, who led the study, told STAT. “If you actually look, you see it’s happening all the time.” Clinical laboratories play a key role in ensuring correct understanding of the tests they perform. (Photo copyright: Johns Hopkins University.)

Changes to Healthcare Risk Management

According to Newman-Toker, the Johns Hopkins study is “the first population health estimate of the number of patients seriously harmed. It also provides more information about the distribution of the diseases that are involved,” Relias Media reported.

The sheer volume of this issue is not lost on the researchers. Newman-Toker likens it to measuring an iceberg.

“You dive below the surface, and you measure the circumference of the iceberg, and [you] will say, ‘Oh my gosh, it’s really big down here.’ And then you go five more feet, and you measure the circumference, and it keeps getting bigger. By the time you’re 20 feet below the surface, you realize this is huge,” he told Relias Media.  

Newman-Toker believes his team’s research offers an opportunity for physicians and healthcare risk managers to better understand how exactly to prioritize their resources and focus their efforts. “In terms of how it informs their day-to-day decision-making, it really is rebalancing some of the efforts a little bit in the direction of conditions that are more common and more commonly misdiagnosed than perhaps indicated by simply looking at claims data,” he noted.

Vascular events can present in symptoms typical of much less serious conditions. Strokes, for example, can present with vague symptoms such as a headache or dizziness. This is similar to heart attacks, which can just present as chest pains. However, heart attacks are far less misdiagnosed than strokes because of a decades-long effort to eradicate those diagnostic errors.

“Diagnostic errors are errors of omission,” Daniel Yang, MD, an internist and Program Director for the Diagnostic Excellence Initiative at the Gordon and Betty Moore Foundation, told CNN Health. “The question is: Could [the outcome] be prevented if we had done something differently earlier on? Oftentimes, that’s a judgment call that two doctors might disagree on.”

Physicians and risk managers can work together to determine the best course of action to identify vague symptoms and prevent the deaths and serious injuries that can come from diagnostic errors.

Economic Cost of Misdiagnosis

Misdiagnosis also comes with a huge economic burden. William Padula, PhD, Assistant Professor of Pharmaceutical and Health Economics at USC Mann School of Pharmacy and Pharmaceutical Sciences, laid out the cost burden for STAT News.

“A patient comes into the ED with a headache or dizziness, and they get told it’ll go away, and then they go home. And then a week later, you find out that they [had] a stroke,” he explained. “By then, the stroke has compounded so much that what could have been addressed in the moment … for $10,000 now becomes a $100,000 issue. … So, there’s a margin of $90,000 that has been added to the US health system burden because of the misdiagnosis.”

Padula estimates that the total cost for these misdiagnoses could come to as much as $100 billion on the healthcare system.

What’s the Solution?

How can physicians avoid misdiagnoses and keep their patients safe? Newman-Toker suggests that physicians consult with other doctors. “I believe that the quickest way to solve the diagnostic error problem in the real world would be to construct approaches that basically rely on the ‘phone a friend’ model,” he told STAT News.

“This doesn’t mean that the patient should have to seek a second opinion, but rather that providers should make it standard practice to consult with a colleague before providing a diagnosis or dismissing a patient,” STAT News added.

Clinical laboratory professionals should note that while these misdiagnoses do not take place in the lab, doctor may order incorrect tests for patients by misreading their symptoms. Thus, clinical pathologists and lab scientists can play a critical role in helping doctors to order the correct tests for their patients and accurately interpret the results.

—Ashley Croce

Related Information:

Burden of Serious Harms from Diagnostic Error in the USA

Burden of Harm from Diagnostic Error Still High

Diagnostic Errors Linked to Nearly 800,000 Deaths or Cases of Permanent Disability in US Each Year, Study Estimates

Misdiagnoses Cost the US 800,000 Deaths and Serious Disabilities Every Year, Study Finds

Cognitive Errors in Clinical Decision Making

What is Diagnostic Error?

Massachusetts General Hospital Researchers Develop Tool for Detecting Lung Cancer from the Metabolites in a Drop of Blood

Potential is for a clinical laboratory test that can help pathologists identify early-stage lung cancer in people long before symptoms appear

In a proof-of-concept study, researchers from Harvard-affiliated Massachusetts General Hospital (MGH) have created a metabolomic screening model that can uncover early-stage lung cancer in asymptomatic patients from a single drop of the patient’s blood.

The NIH’s National Center for Biotechnology Information defines metabolomics as the “comprehensive analysis of metabolites in a biological specimen” and states that the emerging technology “holds promise in the practice of precision medicine.”

The technology is similar to the concept of a liquid biopsy, which uses blood specimens to identify cancer by capturing tumor cells circulating in the blood.

According to the American Cancer Society, lung cancer is responsible for approximately 25% of cancer deaths in the US and is the leading cause of cancer deaths in both men and women. The ACS estimates there will be about 236,740 new cases of lung cancer diagnosed in the US this year, and about 130,180 deaths due to the disease.

Early-stage lung cancer is typically asymptomatic which leads to later stage diagnoses and lowers survival rates, largely due to a lack of early disease detection tools. The current method used to detect early lung cancer lesions is low-dose spiral CT imaging, which is costly and can be risky due to the radiation hazards of repeated screenings, the news release noted.

MGH’s newly developed diagnostic tool detects lung cancer from alterations in blood metabolites and may lead to clinical laboratory tests that could dramatically improve survival rates of the deadly disease, the MGH scientist noted in a news release.

Leo Cheng, PhD

“Our study demonstrates the potential for developing a sensitive screening tool for the early detection of lung cancer,” said Leo Cheng, PhD (above), in the news release. Cheng is Associate Professor of Radiology at Harvard Medical School and Associate Biophysicist in Radiology at Massachusetts General Hospital. “The predictive model we constructed can identify which people may be harboring lung cancer. Individuals with suspicious findings would then be referred for further evaluation by imaging tests, such as low-dose CT, for a definitive diagnosis,” he added. Oncologists may soon have a clinical laboratory test for screening patients with early-stage lung cancer. (Photo copyright: OCSMRM.)

The researchers published their findings in Proceedings of the National Academy of Sciences, titled, “Screening Human Lung Cancer with Predictive Models of Serum Magnetic Resonance Spectroscopy Metabolomics.”  

Detecting Lung Cancer in Blood Metabolomic Profiles

The MGH scientists created their lung-cancer predictive model based on magnetic resonance spectroscopy which can detect the presence of lung cancer from alterations in blood metabolites.

The researchers screened tens of thousands of stored blood specimens and found 25 patients who had been diagnosed with non-small-cell lung carcinoma (NSCLC), and who had blood specimens collected both at the time of their diagnosis and at least six months prior to the diagnosis. They then matched these individuals with 25 healthy controls.

The scientists first trained their statistical model to recognize lung cancer by measuring metabolomic profiles in the blood samples obtained from the patients when they were first diagnosed with lung cancer. They then compared those samples to those of the healthy controls and validated their model by comparing the samples that had been obtained from the same patients prior to the lung cancer diagnosis.

The predictive model yielded values between the healthy controls and the patients at the time of their diagnoses.

“This was very encouraging, because screening for early disease should detect changes in blood metabolomic profiles that are intermediate between healthy and disease states,” Cheng noted.

The MGH scientists then tested their model with a different group of 54 patients who had been diagnosed with NSCLC using blood samples collected before their diagnosis. The second test confirmed the accuracy of their model.

Predicting Five-Year Survival Rates for Lung Cancer Patients

Values derived from the MGH predictive model measured from blood samples obtained prior to a lung cancer diagnosis also could enable oncologists to predict five-year survival rates for patients. This discovery could prove to be useful in determining clinical strategies and personalized treatment decisions.

The MGH study was co-led by Cheng and David Christiani, MD, Professor of Environmental Health at Harvard T.H. Chan School of Public Health, and was funded by the National Cancer Institute.

The researchers plan to analyze the metabolomic profiles of the clinical characteristics of lung cancer to understand the entire metabolic spectrum of the disease. They hope to create similar models for other illnesses and have already created a model that can distinguish aggressive prostate cancer by measuring the metabolomics profiles of more than 400 patients with that disease.

In addition, they are working on a similar model to screen for Alzheimer’s disease using blood samples and cerebrospinal fluid.  

More research and clinical studies are needed to validate the utilization of blood metabolomics models as early screening tools in clinical practice. However, this technology might provide pathologists and clinical laboratories with diagnostic tests for the screening of early-stage lung cancer that could save thousands of lives each year.

JP Schlingman

Related Information:

Early-stage Lung Cancer May be Detected from a Drop of Blood

Cancer Clues in a Drop of Blood

Screening Human Lung Cancer with Predictive Models of Serum Magnetic Resonance Spectroscopy Metabolomics

Metabolomics: An Emerging but Powerful Tool for Precision Medicine

Metabolomics Promises to Provide New Diagnostic Biomarkers, Assays for Personalized Medicine and Medical Laboratories

[/et_pb_text][/et_pb_column]
[/et_pb_row]
[/et_pb_section]

Mitchell Cancer Institute in Alabama Combines New Robotic Method for Detecting and Excising Biopsies with Rapid On-site Evaluation (ROSE) to Speed Diagnosis of Lung Cancer

Mitchell Cancer Institute in Alabama Combines New Robotic Method for Detecting and Excising Biopsies with Rapid On-site Evaluation (ROSE) to Speed Diagnosis of Lung Cancer

Combining robotic-assisted bronchoscopy with rapid on-site evaluation by cytopathologists enables cancer evaluation and diagnosis in one procedure

New technologies are making it possible to both collect a tissue biopsy and diagnose lung cancer during the same procedure. Cytopathologist are essential in this unique approach, which has the potential to greatly shorten the time required to diagnose lung cancer.

At USA Health Mitchell Cancer Institute in Alabama, a team consisting of pulmonology, pathology, surgical, and medical oncology specialists can diagnose lung cancer significantly faster thanks to the combining of a robotic-assisted bronchoscopy (RAB) system with rapid on-site evaluation of biopsies (ROSE) by a cytopathologist during the same procedure.

The RAB platform was created by Auris Health in Redwood City, Calif. According to a USA Health new release, the Auris Health Monarch “enables physicians to see inside the lung and biopsy hard-to-reach nodules using a flexible endoscope. When combined with rapid on-site evaluation (ROSE) it allows for diagnosis at the time of bronchoscopy.”

USA Health says it is the only academic health system in Alabama to combine the Auris Health Monarch (Monarch) with ROSE to diagnose lung cancer in a single procedure. 

“Nine-nine percent of the time we make a diagnosis—negative or positive (at time of bronchoscopy). We don’t have to do repeat procedures,” said Elba Turbat-Herrera, MD, Director of Pathological Services at USA Health’s Mitchell Cancer Institute (MCI) and Professor, MCI Interdisciplinary Clinical Oncology, in an exclusive interview with Dark Daily.

The American Society for Cytopathology defines ROSE as “a clinical service provided for patients where a pathologist, or in certain settings, an experienced and appropriately qualified cytotechnologist provides immediate real‐time evaluation of a fine needle aspiration (FNA) biopsy or touch imprints of a core biopsy.”

As a cytopathologist, Turbat-Herrera performs ROSE during procedures at USA Health. “I think we have improved diagnostics very much. With the Monarch equipment, one can see where the needle is traveling in the bronchial tube. It is more precise,” Turbat-Herrera explained.

Patients Benefit from Robotic-assisted Bronchoscopy

Traditionally, anatomic pathologists receive core (tissue sampling) biopsies and fine-needle aspiration biopsies from doctors looking to determine if a lung nodule may be cancerous. But the procedures to secure the biopsies are invasive and stressful for patients waiting for results from clinical laboratories. And some nodules are difficult for surgeons to reach, which can delay care to patients.

Brian Persing, MD

“The Monarch and ROSE technologies represent a huge step forward in lung bronchoscopy. Being able to see directly inside the lung and evaluate samples immediately provides the most advanced care for patients,” said Brian Persing, MD (above), Medical Oncologist, Mitchell Cancer Institute, and Assistant Professor of Interdisciplinary Clinical Oncology at the University of South Alabama College of Medicine, in the news release. (Photo copyright: University of South Alabama.)

Currently, more than 112 US healthcare providers use the Monarch robotic-assisted bronchoscopy (RAB) platform, which garnered US Food and Drug Administration (FDA) clearance in 2018, the USA Health news release noted.

The Monarch platform, according to USA Health, “integrates robotics, micro-instrumentation, endoscope design, and data science into one platform to empower physicians.”

Monarch's "controller-like interface"

Monarch’s “controller-like interface” (seen above) enables physicians to operate the endoscope and access small and “hard-to-reach” lung nodules. “The Monarch platform,” Duluth News Tribune explained, “is an endoscope guided by a handheld controller very similar to an Xbox controller. As the Monarch Platform drives through the lungs, the camera and other diagrams on a screen help the physician locate the nodule, then collect the biopsy with better accuracy and precision.” (Photo copyright: Jed Carlson/Superior Telegram/Duluth News Tribune.)

Eric Swanson, a pulmonologist at Essentia Health-St. Mary’s Medical Center in Duluth, MD, calls Monarch a game changer. “It’s a big, big upgrade from what we had before,” Swanson told the Duluth News Tribune. “(Before), you’d just pass a small catheter through a regular bronchoscope, and you turn it and hope you land in the right spot.”

The Monarch platform has enabled USA Health to step-up diagnosis of lung cancer, as compared to FNA (fine needle aspiration) biopsy on its own, according to Turbat-Herrera.

“With FNA alone, you try to get (sample tissue), and you are not sure. Now, if it is there, you should get it because the (Monarch) equipment helps you get there. Our role in pathology is to help guide the hand of the pulmonologist: ‘you don’t have what we need,’ or ‘keep going in that area of the lung,’” she said, adding that physicians have been able to reach tiny lesions.

High Incidence of Lung Cancer

The American Cancer Society, says lung cancer is the second most common cancer, with an estimated 235,760 new lung cancer cases and 131,880 deaths from the disease in 2021.

It’s hoped that healthcare providers’ investment in new robotic technology—such as Monarch and others—may shorten the time required to diagnose lung cancer and eventually save lives.

Providers such as USA Health go a step further by integrating ROSE with RAB. The robotic technology—coupled with on-site rapid evaluation by a cytopathologist that averts repeat biopsy procedures—immediately secures an assessment of sample adequacy and a cancer diagnosis that may benefit patients as well.  

This is yet another example of how a new technology in one field can have a benefit for anatomic pathologists.   

Donna Marie Pocius

Related Information:

USA Health Mitchell Cancer Institute Offers State-of-the-Art Lung Cancer Diagnosis

FDA Clears Auris Health’s Robotic Monarch Platform for Endoscopy

New Robotic Diagnostic Device Searches for Lung Cancer

High Diagnostic Yield in Sampling Sub-Centimeter Peripheral Pulmonary Nodules with Robotic-Assisted Bronchoscopy

ASC Rapid On‐Site Evaluation (ROSE) Position Statement

Clinical Laboratories Could Soon Diagnose 17 Diseases with a Single Breath Analyzer Test from Israel’s Institute of Technology

The Technion breathalyzer would give pathology groups and medical laboratories unprecedented ability to support physicians in diagnosing and treating cancers, chronic diseases, and other illnesses

Readers of Dark Daily know that several pathology research teams in America and the UK are developing breath analyzer tests that can detect everything from lung cancer to early-stage infections. Clinical laboratories will soon have a plethora of breath-related tests from which to choose. Now there’s a new kid on the block. A breathalyzer test that can detect up to 17 distinct cancerous, inflammatory, and neurological diseases!

Assuming the cost per test was at a competitive level to existing technologies, what would give this new diagnostic system appeal to physicians and patients alike is that it would be a non-invasive way to diagnose disease. Only a sample of the patient’s breath would be needed to perform the assays.

Researchers at the Israel Institute of Technology, or Technion, published the results of their study in ACS Nano, a monthly journal of the American Chemical Society devoted to “nanoscience and nanotechnology research at the interfaces of chemistry, biology, materials science, physics, and engineering.” (more…)

;