News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Perfect Storm of Clinical Lab and Pathology Practice Regulatory Changes to Be Featured in Discussions at 29th Annual Executive War College

Forces in play will directly impact the operations and financial stability of many of the nation’s clinical laboratories

With significant regulatory changes expected in the next 18 to 24 months, experts are predicting a “Perfect Storm” for managers of clinical laboratories and pathology practices.

Currently looming are changes to critical regulations in two regulatory areas that will affect hospitals and medical laboratories. One regulatory change is unfolding with the US Food and Drug Administration (FDA) and the other regulatory effort centers around efforts to update the Clinical Laboratory Improvement Amendments of 1988 (CLIA).

The major FDA changes involve the soon-to-be-published Final Rule on Laboratory Developed Tests (LDTs), which is currently causing its own individual storm within healthcare and will likely lead to lawsuits, according to the FDA Law Blog.

In a similar fashion—and being managed under the federal Centers for Medicare and Medicaid Services (CMS)—are the changes to CLIA rules that are expected to be the most significant since 2003.

The final element of the “Perfect Storm” of changes coming to the lab industry is the increased use by private payers of Z-Codes for genetic test claims.

In his general keynote, Robert L. Michel, Dark Daily’s Editor-in-Chief and creator of the 29th Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, will set the stage by introducing a session titled, “Regulatory Trifecta Coming Soon to All Labs! Anticipating the Federal LDT Rule, Revisions to CLIA Regulations, and Private Payers’ Z-Code Policies for Genetic Claims.”

“There are an unprecedented set of regulatory challenges all smashing into each other and the time is now to start preparing for the coming storm,” says Robert L. Michel (above), Dark Daily’s Editor-in-Chief and creator of the 29th Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, a national conference on lab management taking place April 30-May 1, 2024, at the Hyatt in New Orleans. (Photo copyright: The Dark Intelligence Group.)

Coming Trifecta of Disruptive Forces to Clinical Laboratory, Anatomic Pathology

The upcoming changes, Michel notes, have the potential to cause major disruptions at hospitals and clinical laboratories nationwide.

“Importantly, this perfect storm—which I like to describe as a Trifecta because these three disruptive forces that will affect how labs will conduct business—is not yet on the radar screen of most lab administrators, executives, and pathologists,” he says.

Because of that, several sessions at this year’s Executive War College conference, now in its 29th year, will offer information designed to give attendees a better understanding of how to manage what’s coming for their labs and anatomic pathology practices.

“This regulatory trifecta consists of three elements,” adds Michel, who is also Editor-in-Chief of Dark Daily’s sister publication The Dark Report, a business intelligence service for senior level executives in the clinical laboratory and pathology industry, as well in companies that offer solutions to labs and pathology groups.

According to Michel, that trifecta includes the following:

Element 1

FDA’s Draft LDT Rule

FDA’s LDT rule is currently the headline story in the lab industry. Speaking about this development and two other FDA initiatives involving diagnostics at the upcoming Executive War College will be pathologist Tim Stenzel, MD, PhD, former director of the FDA’s Office of In Vitro Diagnostics. It’s expected that the final rule on LDTs could be published by the end of April.

Stenzel will also discuss harmonization of ISO 13485 Medical Devices and the FDA’s recent memo on reclassifying most high-risk in vitro diagnostics to moderate-risk to ease the regulatory burden on companies seeking agency review of their diagnostic assays.

Element 2

CLIA Reforms and Updates

The second element is coming reforms and updates to the CLIA regulations, which Michel says will be the “most-significant changes to CLIA in more than two decades.” Speaking on this will be Reynolds Salerno, PhD, Acting Director, Center for Laboratory Systems and Response at the federal Centers for Disease Control and Prevention (CDC).

Salerno will also cover the CDC’s efforts to foster closer connections with clinical labs and their local public health laboratories, as well as the expanding menu of services for labs that his department now offers.

Element 3

Private Payer Use of Z-Codes for Test Claims

On the third development—increased use by private payers of Z-Codes for genetic test claims—the speaker will be pathologist Gabriel Bien-Willner, MD, PhD. He is the Medical Director of the MolDX program at Palmetto GBA, a Medicare Administrative Contractor (MAC). It is the MolDX program that oversees the issuance of Z-Codes for molecular and diagnostic tests.

UnitedHealthcare (UHC) was first to issue such a Z-Code policy last year, although it has delayed implementation several times. Other major payers are watching to see if UHC succeeds with this requirement, Michel says.

Other Critical Topics to be Covered at EWC

In addition to these need-to-know regulatory topics, Michel says that this year’s Executive War College will present almost 100 sessions and include 148 speakers. Some of the other topics on the agenda in New Orleans include the following and more:

  • Standardizing automation, analyzers, and tests across 25 lab sites.
  • Effective ways to attract, hire, and retain top-performing pathologists.
  • Leveraging your lab’s managed care contracts to increase covered tests.
  • Legal and compliance risks of artificial intelligence (AI) in clinical care.

“Our agenda is filled with the topics that are critically important to senior managers when it comes to managing their labs and anatomic pathology practices,” Michel notes.

“Every laboratory in the United States should recognize these three powerful developments are all in play at the same time and each will have direct impact on the clinical and financial performance of our nation’s labs,” Michel says. “For that reason, every lab should have one or more of their leadership team present at this year’s Executive War College to understand the implications of these developments.”

Visit here to learn more about the 29th Executive War College conference taking place in New Orleans.

—Bob Croce

Related Information:

One Step Closer to Final: The LDT Rule Arrives at OMB, Making a Lawsuit More Likely

FDA: CDRH Announces Intent to Initiate the Reclassification Process for Most High Risk IVDs

FDA Proposes Down-Classifying Most High-Risk IVDs

Z-codes Requirements for Molecular Diagnostic Testing

2024 Executive War College Agenda

What Key Laboratory Leaders Will Learn at This Week’s 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management

Executives and pathologists from many of the nation’s most prominent clinical laboratories are on their way to the Crescent City today to share best practices, hear case studies from innovative labs, and network

NEW ORLEANS—This afternoon, more than 900 lab CEOs, administrators, and pathologists will convene for the 28th Annual Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management conference. Three topics of great interest will center around adequate lab staffing, effective cost management, and developing new sources of lab testing revenue.

Important sessions will also address the explosion in next-generation sequencing and genetic testing, proposed FDA regulation of laboratory-developed tests (LDTs), and innovative ways that clinical laboratories and pathology groups can add value and be paid for that additional value.

All this is happening amidst important changes to healthcare and medicine in the United States. “Today, the US healthcare system is transforming itself at a steady pace,” explained Robert L. Michel, Editor-in-Chief of The Dark Report and Founder of the Executive War College. “Big multi-hospital health systems are merging with each other, and payers are slashing reimbursement for many medical lab tests, even as healthcare consumers want direct access to clinical laboratory tests and the full record of their lab test history.

“Each of these developments has major implications in how clinical laboratories serve their parent organizations, offer services directly to consumers, and negotiate with payers for fair reimbursement as in-network providers,” Michel added. “Attending the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management equips lab leaders with the tools they’ll need to make smart decisions during these challenging times.”

Executive War College

Now in its 28th year, the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management convenes April 25-26 in New Orleans. Executive War College extends to a third day with three full-day workshops: LEAN fundamentals for lab leaders, a genetic testing program track, and a digital pathology track. Learn more at www.ExecutiveWarCollege.com. (Photo copyright: The Dark Intelligence Group.)

Challenges and Opportunities for Clinical Laboratories

With major changes unfolding in the delivery and reimbursement of clinical services, clinical laboratory and pathology practice leaders need effective ways to respond to the evolving needs of physicians, patients, and payers. As The Dark Report has often covered, three overlapping areas are a source of tension and financial pressure for labs:

  • Day-to-day pressures to manage costs in the clinical laboratory or pathology practice.
  • The growing demand for genetic testing, accompanied by reimbursement challenges.
  • Evolving consumer expectations in how they receive medical care and interact with providers.

Addressing all three issues and much more, the 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management features more than 80 sessions with up to 125 lab managers, consultants, vendors, and in vitro diagnostic (IVD) experts as speakers and panelists.

Old-School Lab Rules Have Evolved into New-School Lab Rules

Tuesday’s keynote general sessions (to be reported exclusively in Wednesday’s Dark Daily ebriefing) will include four points of interest for clinical laboratory and pathology leaders who are managing change and pursuing new opportunities:

  • Positioning the lab to prosper by serving healthcare’s new consumers, new care models, new payment models, and more, with Michel at the podium.
  • How old-school lab rules have evolved into new-school lab rules and ways to transition the lab through today’s disrupters in healthcare and the clinical laboratory marketplace, with Stan Schofield, Managing Principal of the Compass Group.
  • The growing trend of clinical laboratory-pharmacy relationships with David Pope, PharmD, CDE, Chief Pharmacy Officer at OmniSYS, XIFIN Pharmacy Solutions.
  • Generating value by identifying risk signals in longitudinal lab data and opportunities in big data from payers, physicians, pharma, and bioresearch, with Brad Bostic, Chairman and CEO of hc1.

Wednesday’s keynote sessions (see exclusive insights in Friday’s Dark Daily ebriefing) explore:

Wednesday’s keynotes conclude with a panel discussion on delivering value to physicians, patients, and payers with lab testing services.

Clinical Labs, Payers, and Health Plans Swamped by Genetic Test Claims

Attendees of the 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management may notice a greater emphasis on whole genome sequencing and genetic testing this year.

As regular coverage and analysis in The Dark Report has pointed out, clinical laboratories, payers, and health plans face challenges with the explosion of genetic testing. Several Executive War College Master Classes will explore critical management issues of genetic and genomic testing, including laboratory benefit management programs, coverage decisions, payer relations, and best coding practices, as well as genetic test stewardship.

This year’s Executive War College also devotes a one-day intensive session on how community hospitals and local labs can set up and offer genetic tests and next-generation sequencing services. This third-day track features more than a dozen experts including:

During these sessions, attendees will be introduced to “dry labs” and “virtual CLIA labs.” These new terms differentiate the two organizations that process genetic data generated by “wet labs,” annotate it, and provide analysis and interpretation for referring physicians.

State of the Industry: Clinical Lab, Private Practice Pathology, Genetic Testing, IVD, and More

For lab consultants, executives, and directors interested in state-of-the-industry Q/A and discussions concerning commercial laboratories, private-practice pathology, and in vitro diagnostics companies, a range of breakout sessions, panels, and roundtables will cover:

  • Action steps to protect pathologists’ income and boost practice revenue.
  • Important developments in laboratory legal, regulatory, and compliance requirements.
  • New developments in clinical laboratory certification and accreditation, including the most common deficiencies and how to reach “assessment ready” status.
  • An update on the IVD industry and what’s working in today’s post-pandemic market for lab vendors and their customers.
  • Federal government updates on issues of concern to clinical laboratories, including PAMA, the VALID Act, and more.

Long-time attendees will notice the inclusion of “Diagnostics” into the Executive War College moniker. It’s an important addition, Michel explained for Dark Daily.

“In the recent past, ‘clinical laboratory’ and ‘anatomic pathology’ were terms that sufficiently described the profession of laboratory medicine,” he noted. “However, a subtle but significant change has occurred in recent years. The term ‘diagnostics’ has become a common description for medical testing, along with other diagnostic areas such as radiology and imaging.”

Key managers of medical laboratories, pathology groups, and in vitro diagnostics have much to gain from attending the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, now in its 28th year. Look for continued coverage through social media channels, at Dark Daily, and in The Dark Report.

Clinical laboratories are invited to continue the conversations by joining the Executive War College Discussion Group and The Dark Report Discussion Group on LinkedIn.

Liz Carey

Related Information:

Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management Agenda

Six Important Themes to Help Labs Succeed

Executive War College Press

The Dark Report

Dark Daily eBriefings

The Dark Report Discussion Group

Executive War College Discussion Group

Clinical Laboratory and Pathology Leaders in Canada Gather to Assess New Diagnostic Technologies and Respond to the Acute Shortage of Medical Technologists

There was cautious optimism about the ability of Canada’s medical laboratories to innovate in ways that advance patient care, while recognizing the ongoing challenge of adequate lab staffing and budget constraints

TORONTO, ONTARIO, CANADA—This week, more than 150 leaders representing clinical laboratories, anatomic pathology labs, in vitro diagnostics (IVD) companies, and provincial health officials gathered for the first “Canadian Diagnostic Executive Forum” (CDEF) since 2019. It would be apt to say that the speakers objectively addressed all the good, the bad, and the ugly of Canada’s healthcare system and its utilization of medical laboratory testing services.

Over the two days of the conference, speakers and attendees alike concurred that the two biggest issues confronting clinical laboratories in Canada were inadequate staffing and an unpredictable supply chain. There also was agreement that the steady increase in prices, fueled by inflation, is exacerbating continuing cost increases in both lab salaries and lab supplies.

Canada’s Health System Has Several Unique Attributes

Canada’s healthcare system has two unique attributes that differentiate it from those of other nations. First, healthcare is mandated by a federal law, but generally each of Canada’s 13 provinces and territories operates its own health plan. Thus, the health system in each province and territory may cover a different mix of clinical services, therapeutic drugs, and medical procedures. The federal government typically pays 40% of a province’s health costs and the province funds the balance.

Second, it is a fact that 90% of the Canadian population lives within 150 miles of the United States border. Yet there are provinces with large populations that have geography that ranges from the US border to north of the Arctic Circle. These provinces have a major challenge to ensure equal access to healthcare regardless of where their citizens live.

During day one of the conference, several presentations addressed innovations that supported those labs’ efforts to deliver value and timely insights during the COVID-19 pandemic. For example, a lab team in Alberta launched a research study involving SARS-CoV-2 virus surveillance from the earliest days of the outbreak. This study was presented by Mathew Diggle, PhD, FRCPath, Associate Professor and Program Lead for the Public Health Laboratory (ProvLab) Medical-Scientific Staff at Alberta Precision Laboratories in Edmonton, Alberta. 

Study Designed to Identify Coinfections with COVID-19

While performing tens of thousands of COVID-19 tests from the onset of the pandemic, and identifying the emergence of variants, the ProvLab team also tracked co-infection involving other respiratory viruses.

“This is one of the largest eCoV [endemic coronavirus] studies performed during the COVID-19 pandemic,” Diggle said. “This broad testing approach helped to address a pivotal diagnostic gap amidst the emergence of a novel pathogen: cross-reactivity with other human coronaviruses that can cause similar clinical presentations. This broad surveillance enabled an investigation of cross-reactivity of a novel pathogen with other respiratory pathogens that can cause similar clinical presentations.

“Fewer than 0.01% of specimens tested positive for both SARS-CoV-2 and an eCoV,” he explained. “This suggested no significant cross-reactivity between SARS-CoV-2 and eCoVs on either test and provided a SARS-CoV-2 negative predictive value over 99% from an eCoV-positive specimen … The data we collected was highly compelling and the conclusion was that there was no coinfection.”

Kevin D. Orr

Chairing the two days of presentations at this weeks’ Canadian Diagnostic Executive Forum was Kevin D. Orr (above), Senior Director of Hospital Business at In-Common Laboratories. He also served on the program for this national conference serving clinical laboratories, anatomic pathology labs, and in vitro diagnostics (IVD) companies throughout Canada. This was the first gathering of this conference since 2019. Attendees were enthusiastic about the future of medical laboratory services in Canada, despite lab staffing shortages and rising costs due to inflation. (Photo copyright The Dark Report.)

Clinical Laboratory Regionalization in Quebec

One of Canada’s largest projects to regionalize and harmonize clinical laboratory services is proceeding in Quebec. Leading this effort is Ralph Dadoun, PhD, Project Director for OPTILAB Montreal, which is part of the Ministry of Health and Social Services in Quebec. The ambitious goal for this project is to move the 123 clinical laboratories within the province into 12 clusters. Initial planning was begun in 2013, so this project is in its ninth year of implementation.

During his presentation, Dadoun explained that the work underway in the 12 clusters involves creating common factors in these categories:

  • Uniform test names.
  • Common test codes, labels, test reporting format.
  • Common abbreviations.
  • Uniform quality indicators (e.g., nonconformities, specimen acceptability, etc.).
  • Implementation consistent with and respecting ISO-15189 criteria.

Another notable achievement in Quebec is the progress made to implement a common laboratory information system (LIS) within all 12 clusters. The first three laboratory clusters are undergoing their LIS conversions to the same platform during the next 180 days. The expectation is that use of a common LIS across all clinical laboratory sites in Quebec will unlock benefits in a wide spectrum of lab activities and work processes.

The 2022 CDEF featured speakers from most of the provinces. The common themes in these presentations were the shortage of lab personnel across all technical positions, disruptions in lab supplies, and the need to support the usual spectrum of lab testing services even as lab budgets are getting squeezed.

At the same time, there was plenty of optimism. Presentations involving adoption of digital pathology, advances in early disease detection made possible by new diagnostic technologies, and the expansion of precision medicine showed that clinical laboratories in Canada are gaining tools that will allow them to contribute to better patient care while helping reduce the downstream costs of care.

The Canadian Diagnostics Executive Forum is organized by a team from In-Common Laboratories in North York, Toronto, Ontario. Founded in 1967, it is a private, not-for-profit company that works with public hospitals and laboratory medicine providers. Information about CDEF can be found at its website, where several of this year’s presentations will be available for viewing.

Robert L. Michel 

Related Information:

Canadian Diagnostic Executive Forum 2022

Broad Respiratory Testing to Identify SARS-Cov-2 Viral Co-Circulation and Inform Diagnostic Stewardship in the COVID-19 Pandemic

Canadian Diagnostics Executive Forum Will Provide Firsthand Insights into How Clinical Laboratories Can Leverage Technology and Innovation to ‘Do More with Less’

Penn Medicine Researchers Develop Fast, Accurate, Inexpensive COVID-19 Diagnostic Test Based on Electrochemical Technology

The rapid diagnostic test costs less than $5 per unit and can be adapted for other diseases, the developers say, which opens a slew of possibilities for clinical laboratories

Just as the SARS-CoV-2 coronavirus spurred deployment of new vaccine technology based on messenger RNA (mRNA), the COVID-19 pandemic also could prove to be a watershed for in vitro diagnostics (IVD) innovation in ways that benefit clinical laboratories.

In one notable example, researchers at the Perelman School of Medicine University of Pennsylvania (Penn Medicine) in Philadelphia have developed a biosensor that uses electrochemical impedance spectroscopy (EIS) to detect the presence of the COVID-19 coronavirus in biological samples.

A Penn Medicine news release noted that “The RAPID technology … transforms the binding event between the SARS-CoV-2 viral spike protein and its receptor in the human body, the protein ACE2 (which provides the entry point for the coronavirus to hook into and infect human cells), into an electrical signal that clinicians and technicians can detect. That signal allows the test to discriminate between infected and healthy human samples. The signal can be read through a desktop instrument or a smartphone.”

Though still in its early stages, the technique potentially offers dramatically lower costs and faster results than traditional RT-PCR (reverse transcription polymerase chain reaction) molecular tests. Moreover, the RAPID technology might be useful for identifying other types of biomarkers and could be the basis for diagnostic tests that help reduce the cost-per-test in medical laboratory testing while providing comparable sensitivity and specificity to existing methodologies.

Clinical trials began on January 5, 2021, and the Penn Medicine researchers say the IVD test technology can be applied to other infectious diseases, which, if proven accurate, would be a boon to clinical laboratory testing.

The Penn Medicine researchers published their study on May 9 in the journal Matter, titled, “Low-Cost Biosensor for Rapid Detection of SARS-CoV-2 at the Point of Care.”

Diagnostic Test Results in Four Minutes for Less than $5/Test

According to the news release, the RAPID 1.0 (Real-time Accurate Portable Impedimetric Detection prototype 1.0) biosensor test costs less than $5 and can deliver results in four minutes. The researchers reported overall accuracy of 87.1% on (139) nasal swab samples and 90% on (50) saliva samples.

The technology uses electrodes that can be mass-produced at low cost on commercially-available screen printers, the researchers said. Results can be read on electronic devices connected to a PC or smartphone.

RAPID 1.0 COVID-19 diagnostic test

RAPID 1.0 (above) is a low-cost COVID-19 diagnostic test developed at the César de la Fuente clinical laboratory at the Perelman School of Medicine University of Pennsylvania in Philadelphia. At less than $5/test, plus the ability to be adapted to other diseases, clinical laboratories performing disease screenings in rural or remote locations may have a new tool in the fight against infections.  (Photo copyright: University of Pennsylvania.)

Does Penn Medicine’s RAPID 1.0 Test Replace Traditional RT-PCR Testing?

In their published study, the Penn Medicine researchers cited the need for “fast, reliable, inexpensive, and scalable point-of-care diagnostics.”

RT-PCR tests, they said, “are limited by their requirement of a large laboratory space, high reagent costs, multistep sample preparation, and the potential for cross-contamination. Moreover, results usually take hours to days to become available.”

Researchers who have studied the SARS-CoV-2 coronavirus know that it uses a spike-like protein to bind to angiotensin-converting enzyme 2 (ACE2) receptors on the surfaces of human cells.

As described in Penn Medicine’s published study, the biosensor contains ACE2 and other biochemical agents anchored to an electrode. When the SARS-CoV-2 coronavirus attaches to the ACE2, the biosensor transforms the chemical reaction into an electrical signal that can be measured on a device known as a potentiostat.

The researchers tested their RAPID 1.0 technology with two commercially available potentiostat models:

The researchers initially developed the electrode as a printed circuit board, which is relatively expensive. To reduce costs, they constructed a version that uses filter paper as the main component. The researchers noted that one screen printer in a lab can produce 35,000 electrodes per day, including time needed to incorporate the chemical elements. “However, it must be noted that these steps can be fully automated into a production line for industrial purposes, drastically reducing time requirements,” they wrote.

The test can be performed at room temperature, they added, and total cost per unit is $4.67. Much of that—$4.50—is for functionalizing the ACE2 recognition agent. The cost for the bare electrode is just seven cents.

“The overall cost of RAPID may be further reduced through recombinant production of ACE2 and ACE2 variants,” the researchers said, adding that the RAPID 1.0 test can detect the SARS-CoV-2 coronavirus at low concentrations correlating to the earliest stages of the COVID-19 disease.

Cesar de la Fuente, PhD

The Penn Medicine research team was led by César de la Fuente, PhD (above), an Assistant Professor in Psychiatry, Microbiology, Chemical and Biomolecular Engineering and Bioengineering at the Perelman School of Medicine. “Prior to the pandemic, our lab was working on diagnostics for bacterial infections,” he said in the Penn Medicine news release. “But then, COVID-19 hit. We felt a responsibility to use our expertise to help—and the diagnostic space was ripe for improvements.” (Photo copyright: University of Pennsylvania.)

Testing Penn Medicine’s RAPID 1.0 Test

The researchers evaluated the technology in blinded tests with clinical samples from the Hospital of the University of Pennsylvania. The evaluation included 139 nasal swab samples, of which 109 were determined to be COVID-19 positive by RT-PCR tests and clinical assessments. Among these, the RAPID test successfully detected the SARS-CoV-2 coronavirus in 91 samples, for a sensitivity rate of 83.5%. One sample was from a patient diagnosed with the highly contagious SARS-CoV-2 Alpha variant B.1.1.7, which the test correctly identified as positive.

Among the 30 samples determined to be COVID negative, the RAPID test scored a specificity rate of 100%, meaning no false positives. Overall accuracy, including sensitivity and specificity, was 87.1%.

The researchers also analyzed 50 saliva samples: 13 COVID-positive and 37 COVID-negative. The test correctly identified all 13 positive samples but produced five false-positives among the 37 negative samples, for a specificity rate of 86.5%. The researchers speculated that this could be due to interactions between ACE2 and other biomolecules in the saliva but suggested that performance “will improve when using fresh saliva samples at the point-of-care.”

Are There Other Applications for the RAPID Test?

The Penn Medicine news release said the RAPID technology can be adapted to detect other viruses, including those that cause Influenza and sexually-transmitted diseases.

Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report, said the test points to one silver lining in the COVID-19 pandemic. “Researchers around the world intensified their work to find ways to identify the SARS-CoV-2 virus that are faster, cheaper, and more accurate than the diagnostic technologies that existed at the time of the outbreak. In this regard, the COVID-19 pandemic may have accelerated the development and refinement of useful diagnostic technologies that will disrupt long-established methods of testing.”

Marcelo Der Torossian Torres, PhD, postdoctoral researcher at Penn Medicine and lead author of the study, said in the news release, “Quick and reliable tests like RAPID allow for high-frequency testing, which can help identify asymptomatic individuals who, once they learn they are infected, will stay home and decrease spread. 

“We envision this type of test being able to be used at high-populated locations such as schools, airports, stadiums, companies—or even in one’s own home,” he added.

Clinical laboratory managers may want to stay current on the development and possible commercialization of the RAPID 1.0 (Real-time Accurate Portable Impedimetric Detection prototype 1.0) biosensor test by the research team at Penn Medicine.

—Stephen Beale

Related Information

Low-Cost Biosensor for Rapid Detection of SARS-CoV-2 at the Point of Care

Rapid COVID-19 Diagnostic Test Delivers Results within Four Minutes with 90% Accuracy

UPenn Medical School Develops Low Cost COVID-19 Test Called RAPID

UPenn Working on Rapid COVID Test That Delivers Results Within Minutes

Rapid COVID-19 Test Developed at Penn Could Give On-the-Spot Results Quickly

One Step Closer to An At-Home, Rapid COVID-19 Test

Attention All Surgical Pathologists: Algorithms for Automated Primary Diagnosis of Digital Pathology Images Likely to Gain Regulatory Clearance in Near Future

Hello primary diagnosis of digital pathology images via artificial intelligence! Goodbye light microscopes!

Digital pathology is poised to take a great leap forward. Within as few as 12 months, image analysis algorithms may gain regulatory clearance in the United States for use in primary diagnosis of whole-slide images (WSIs) for certain types of cancer. Such a development will be a true revolution in surgical pathology and would signal the beginning of the end of the light microscope era.

A harbinger of this new age of digital pathology and automated image analysis is a press release issued last week by Ibex Medical Analytics of Tel Aviv, Israel. The company announced that its Galen artificial intelligence (AI)-powered platform for use in the primary diagnosis of specific cancers will undergo an accelerated review by the Food and Drug Administration (FDA).

FDA’s ‘Breakthrough Device Designation’ for Pathology AI Platform

Ibex stated that “The FDA’s Breakthrough Device Designation is granted to technologies that have the potential to provide more effective treatment or diagnosis of life-threatening diseases, such as cancer. The designation enables close collaboration with, and expedited review by, the FDA, and provides formal acknowledgement of the Galen platform’s utility and potential benefit as well as the robustness of Ibex’s clinical program.”

“All surgical pathologists should recognize that, once the FDA begins to review and clear algorithms capable of using digital pathology images to make an accurate primary diagnosis of cancer, their daily work routines will be forever changed,” stated Robert L. Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report. “Essentially, as FDA clearance is for use in clinical care, pathology image analysis algorithms powered by AI will put anatomic pathology on the road to total automation.

“Clinical laboratories have seen the same dynamic, with CBCs (complete blood counts) being a prime example. Through the 1970s, clinical laboratories employed substantial numbers of hematechnologists [hematechs],” he continued. “Hematechs used a light microscope to look at a smear of whole blood that was on a glass slide with a grid. The hematechs would manually count and record the number of red and white blood cells.

“That changed when in vitro diagnostics (IVD) manufacturers used the Coulter Principle and the Coulter Counter to automate counting the red and white blood cells in a sample, along with automatically calculating the differentials,” Michel explained. “Today, only clinical lab old-timers remember hematechs. Yet, the automation of CBCs eventually created more employment for medical technologists (MTs). That’s because the automated instruments needed to be operated by someone trained to understand the science and medicine involved in performing the assay.”

Primary Diagnosis of Cancer with an AI-Powered Algorithm

Surgical pathology is poised to go down a similar path. Use of a light microscope to conduct a manual review of glass slides will be supplanted by use of digital pathology images and the coming next generation of image analysis algorithms. Whether these algorithms are called machine learning, computational pathology, or artificial intelligence, the outcome is the same—eventually these algorithms will make an accurate primary diagnosis from a digital image, with comparable quality to a trained anatomic pathologist.

How much of a threat is automated analysis of digital pathology images? Computer scientist/engineer Ajit Singh, PhD, a partner at Artiman Ventures and an authority on digital pathology, believes that artificial intelligence is at the stage where it can be used for primary diagnosis for two types of common cancer: One is prostate cancer, and the other is dermatology.

Ajit Singh, PhD speaking at the Executive War College

On June 17, Ajit Singh, PhD (above), Partner at Artiman Ventures, will lead a special webinar and roundtable discussion for all surgical pathologists and their practice administrators on the coming arrival of artificial intelligence-powered algorithms to aid in the primary diagnosis of certain cancers. Regulatory approval for such solutions may happen by the end of this year. Such a development would accelerate the transition from light microscopes to a fully digital pathology workflow. Singh is shown above addressing the 2018 Executive War College. (Photo copyright: The Dark Report.)

“This is particularly true of prostate cancer, which has far fewer variables compared to breast cancer,” stated Singh in an interview published by The Dark Report in April. (See TDR, “Is Artificial Intelligence Ready for First Use in Anatomic Pathology?” April 12, 2021.)

“It is now possible to do a secondary read, and even a first read, in prostate cancer with an AI system alone. In cases where there may be uncertainty, a pathologist can review the images. Now, this is specifically for prostate cancer, and I think this is a tremendous positive development for diagnostic pathways,” he added.

Use of Digital Pathology with AI-Algorithms Changes Diagnostics

Pathologists who are wedded to their light microscopes will want to pay attention to the impending arrival of a fully digital pathology system, where glass slides are converted to whole-slide images and then digitized. From that point, the surgical pathologist becomes the coach and quarterback of an individual patient’s case. The pathologist guides the AI-powered image analysis algorithms. Based on the results, the pathologist then orders supplementary tests appropriate to developing a robust diagnosis and guiding therapeutic decisions for that patient’s cancer.

In his interview with The Dark Report, Singh explained that the first effective AI-powered algorithms in digital pathology will be developed for prostate cancer and skin cancer. Both types of cancer are much less complex than, say, breast cancer. Moreover, the AI developers have decades of prostate cancer and melanoma cases where the biopsies, diagnoses, and downstream patient outcomes create a rich data base from which the algorithms can be trained and tuned.

To help surgical pathologists, pathologist-business leaders, and pathology group practice administrators understand the rapid developments in AI-powered digital pathology analysis, Dark Daily is conducting “Clinical-Grade Artificial Intelligence (AI) for Your Pathology Lab: What’s Ready Now, What’s Coming Soon, and How Pathologists Can Profit from Its Use,” on Thursday, June 17, 2021, from 1:00 PM to 2:30 PM EDT.

This webinar is organized as a roundtable discussion so participants can interact with the expert panelists. The Chair and Moderator is Ajit Singh, PhD, Adjunct Professor at the Stanford School of Medicine and Partner at Artiman Ventures.

Panelists for June 17 webinar, Clinical-Grade Artificial Intelligence (AI) for Your Pathology Lab: What’s Ready Now, What’s Coming Soon, and How Pathologists Can Profit from Its Use

The panelists (above) represent academic pathology, community hospital pathology, and the commercial sector. They are:

Because the arrival of automated analysis of digital pathology images will transform the daily routine of every surgical pathologist, it would be beneficial for all pathology groups to have one or more of their pathologists register and participate in this critical webinar.

The roundtable discussion will help them understand how quickly AI-powered image analysis is expected be cleared for use by the FDA in such diseases as prostate cancer and melanomas. Both types of cancers generate high volumes of case referrals to the nation’s pathologists, so potential for disruption to long-standing client relationships, and the possible loss of revenue for pathology groups that delay their adoption of digital pathology, can be significant.

On the flip side, community pathology groups that jump on the digital pathology bandwagon early and with the right preparation will be positioned to build stronger client relationships, increase subspecialty case referrals, and generate additional streams of revenue that boost partner compensation within their group.

Act now to guarantee your place at this important webinar. Click HERE to register, or copy and paste the URL https://www.darkdaily.com/webinar/clinical-grade-artificial-intelligence-for-your-pathology-lab/ into your browser.

Also, because so many pathologists are working remotely, Dark Daily has arranged special group rates for pathology practices that would like their surgical pathologists to participate in this important webinar and roundtable discussion on AI-powered primary diagnosis of pathology images. Inquire at info@darkreport.com or call 512-264-7103.

—Michael McBride

Related Information:

Ibex Granted FDA Breakthrough Device Designation: Ibex’s Galen AI-powered platform is recognized by the FDA as breakthrough technology with the potential to more effectively diagnose cancer

Is Artificial Intelligence Ready for First Use in Anatomic Pathology?

;