News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Mount Sinai Researchers Create a “Smart Tweezer” That Can Isolate a Single Bacterium from a Microbiome Sample Prior to Genetic Sequencing

New technology could enable genetic scientists to identify antibiotic resistant genes and help physicians choose better treatments for genetic diseases

Genomic scientists at the Icahn School of Medicine at Mount Sinai Medical Center in New York City have developed what they call a “smart tweezer” that enables researchers to isolate a single bacterium from a patient’s microbiome in preparation for genetic sequencing. Though primarily intended for research purposes, the new technology could someday be used by clinical laboratories and microbiologists to help physicians diagnose chronic disease and choose appropriate genetic therapies.

The researchers designed their new technology—called mEnrich-seq—to improve the effectiveness of research into the complex communities of microorganisms that reside in the microbiomes within the human body. The discovery “ushers in a new era of precision in microbiome research,” according to a Mount Sinai Hospital press release.

Metagenomics has enabled the comprehensive study of microbiomes. However, many applications would benefit from a method that sequences specific bacterial taxa of interest, but not most background taxa. We developed mEnrich-seq (in which ‘m’ stands for methylation and seq for sequencing) for enriching taxa of interest from metagenomic DNA before sequencing,” the scientists wrote in a paper they published in Nature Methods titled, “mEnrich-seq: Methylation-Guided Enrichment Sequencing of Bacterial Taxa of Interest from Microbiome.”

“Imagine you’re a scientist who needs to study one particular type of bacteria in a complex environment. It’s like trying to find a needle in a large haystack,” said the study’s senior author Gang Fang, PhD (above), Professor of Genetics and Genomic Sciences at Icahn School of Medicine at Mount Sinai Medical Center, in a press release. “mEnrich-seq essentially gives researchers a ‘smart tweezer’ to pick up the needle they’re interested in,” he added. Might smart tweezers one day be used to help physicians and clinical laboratories diagnose and treat genetic diseases? (Photo copyright: Icahn School of Medicine.)

Addressing a Technology Gap in Genetic Research

Any imbalance or decrease in the variety of the body’s microorganisms can lead to an increased risk of illness and disease.

“Imbalance of the normal gut microbiota, for example, have been linked with conditions including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), obesity, type 2 diabetes, and allergies. Meanwhile, the vaginal microbiome seems to impact sexual and reproductive health,” Inside Precision Medicine noted.

In researching the microbiome, many scientists “focus on studying specific types of bacteria within a sample, rather than looking at each type of bacteria present,” the press release states. The limitation of this method is that a specific bacterium is just one part of a complicated environment that includes other bacteria, viruses, fungi and host cells, each with their own unique DNA.

“mEnrich-seq effectively distinguishes bacteria of interest from the vast background by exploiting the ‘secret codes’ written on bacterial DNA that bacteria use naturally to differentiate among each other as part of their native immune systems,” the press release notes. “This new strategy addresses a critical technology gap, as previously researchers would need to isolate specific bacterial strains from a given sample using culture media that selectively grow the specific bacterium—a time-consuming process that works for some bacteria, but not others. mEnrich-seq, in contrast, can directly recover the genome(s) of bacteria of interest from the microbiome sample without culturing.”

Isolating Hard to Culture Bacteria

To conduct their study, the Icahn researchers used mEnrich-seq to analyze urine samples taken from three patients with urinary tract infections (UTIs) to reconstruct Escherichia coli (E. Coli) genomes. They discovered their “smart tweezer” covered more than 99.97% of the genomes across all samples. This facilitated a comprehensive examination of antibiotic-resistant genes in each genome. They found mEnrich-seq had better sensitivity than standard study methods of the urine microbiome. 

They also used mEnrich-seq to selectively examine the genomes of Akkermansia muciniphila (A. muciniphila), a bacterium that colonizes the intestinal tract and has been shown to have benefits for obesity and Type 2 diabetes as well as a response to cancer immunotherapies.

Akkermansia is very hard to culture,” Fang told GenomeWeb. “It would take weeks for you to culture it, and you need special equipment, special expertise. It’s very tedious.”

mEnrich-seq was able to quickly segregate it from more than 99.7% of A. muciniphila genomes in the samples.

Combatting Antibiotic Resistance Worldwide

According to the press release, mEnrich-seq could potentially be beneficial to future microbiome research due to:

  • Cost-Effectiveness: It offers a more economical approach to microbiome research, particularly beneficial in large-scale studies where resources may be limited.
  • Broad Applicability: The method can focus on a wide range of bacteria, making it a versatile tool for both research and clinical applications.
  • Medical Breakthroughs: By enabling more targeted research, mEnrich-seq could accelerate the development of new diagnostic tools and treatments.

“One of the most exciting aspects of mEnrich-seq is its potential to uncover previously missed details, like antibiotic resistance genes that traditional sequencing methods couldn’t detect due to a lack of sensitivity,” Fang said in the news release. “This could be a significant step forward in combating the global issue of antibiotic resistance.”

More research and clinical trials are needed before mEnrich-seq can be used in the medical field. The Icahn researchers plan to refine their novel genetic tool to improve its efficiency and broaden its range of applications. They also intend to collaborate with physicians and other healthcare professionals to validate how it could be used in clinical environments.  

Should all this come to pass, hospital infection control teams, clinical laboratories, and microbiology labs would welcome a technology that would improve their ability to detect details—such as antibiotic resistant genes—that enable a faster and more accurate diagnosis of a patient’s infection. In turn, that could contribute to better patient outcomes.

—JP Schlingman

Related Information:

‘Smart Tweezer’ Can Pluck Out Single Bacterium Target from Microbiome

mEnrich-seq: Methylation-guided Enrichment Sequencing of Bacterial Taxa of Interest from Microbiome

Genomic ‘Tweezer’ Ushers in a New Era of Precision in Microbiome Research

Molecular Tweezers Can Precisely Select Microbiome Bacteria

Identification of DNA Motifs that Regulate DNA Methylation

New Bacterial Epigenetic Sequencing Method Could Be Boon for Complex Microbiome Analyses

Data Theft at 23andMe Leaks Genetic and Personal Information for Thousands, Targets Ashkenazi Jews and Chinese

Federal class action lawsuit looms as genetics company searches for what went wrong; a reminder to clinical laboratories of the importance of protecting patient information

Several years ago, security experts warned that biotechnology and genomics company 23andMe, along with other similar genetics companies, would be attacked by hackers. Now those predictions appear to have come true, and it should be a cautionary tale for clinical laboratories. In an October 6 blog post, the genetic testing company confirmed that private information from thousands of its customers was exposed and may be being sold on the dark web.

According to Wired, “At least a million data points from 23andMe accounts appear to have been exposed on BreachForums.” BreachForums is an online forum where users can discuss internet hacking, cyberattacks, and database leaks, among other topics.

“Hackers posted an initial data sample on the platform BreachForums earlier this week, claiming that it contained one million data points exclusively about Ashkenazi Jews,” Wired reported, adding that “hundreds of thousands of users of Chinese descent” also appear to be impacted.

The leaked information included full names, dates of birth, sex, locations, photos, and both genetic and ancestry results, Bleeping Computer reported.

For its part, 23andMe acknowledges the data theft but claims “it does not see evidence that its systems have been breached,” according to Wired.

Anne Wojcicki

Anne Wojcicki (above) is the co-founder and CEO of genetics company 23andMe, which on October 24 told its customers in an email, “There was unauthorized access to one or more 23andMe accounts that were connected to you through DNA Relatives. As a result, the DNA Relatives profile information you provided in this feature was exposed to the threat actor.” Clinical laboratories must work to ensure their patient data is fully secured from similar cyber theft. (Photo copyright: TechCrunch.)

23andMe Claims Data Leak Not a Security Incident

The data leaked has been confirmed by 23andMe to be legitimate. “Threat actors used exposed credentials from other breaches [of other company’s security] to access 23andMe accounts and steal the sensitive data. Certain 23andMe customer profile information was compiled through access to individual 23andMe.com accounts,” a 23andMe spokesperson told Bleeping Computer.

However, according to the company, the leak does not appear to be a data security incident within the 23andMe systems. “The preliminary results of this investigation suggest that the login credentials used in these access attempts may have been gathered by a threat actor from data leaked during incidents involving other online platforms where users have recycled login credentials,” the spokesperson added.

What the genetics company has determined is that compromised accounts were from users choosing the DNA Relative feature on their website as a means to find and connect to individuals related to them. Additionally, “the number of accounts sold by the cybercriminal does not reflect the number of 23andMe accounts breached using exposed credentials,” Bleeping Computer noted.

Price of Private Information

Following the 23andMe data leak, the private genetic information was quickly available online … for a price.

“On October 4, the threat actor offered to sell data profiles in bulk for $1-$10 per 23andMe account, depending on how many were purchased,” Bleeping Computer reported.

Stolen medical records are becoming hotter than credit card information, the experts say. “Stolen records sell for as much as $1,000 each,” according to credit rating agency Experian, Bleeping Computer noted.

In its 2018 Global Security Report, “cybersecurity firm Trustwave pegged the black-market value of medical records at $250 each. Credit card numbers, on the other hand, sell for around $5 each on the dark web … while Social Security numbers can be purchased for as little as $1 each,” Fierce Healthcare reported.

Clinical laboratory managers and pathologists should take note of the value that the dark web places on the medical records of a patient, compared to the credit card numbers of the same individual. From this perspective, hacking a medical laboratory to steal patient health data can be much more lucrative than hacking the credit card data from a retailer.

Inevitable Federal Lawsuit

Regardless of what security measures the 23andMe site boasts, the breach quickly brought a proposed federal class action suit filed on October 9 in the US District Court for the Northern District of California. The suit, “filed by plaintiffs repressing all persons who had personal data exposed,” claims that information from Mark Zuckerberg, Elon Musk, and Sergey Brin were among the leak, Bloomberg Law reported.

“Victims of the breach are now at increased risk of fraud and identity theft, and have suffered damages in the form of invasion of privacy, lost time and out-of-pocket expenses incurred responding to the breach, diminished value of their personal information, and lost benefit of the bargain with 23andMe,” according to court documents.

“The lawsuit brings claims of negligence, breach of implied contract, invasion of privacy/intrusion upon seclusion, unjust enrichment, and declaratory judgment,” Bloomberg Law noted. Additionally, the claim states that 23andMe “failed to provide prompt and adequate notice of the incident.”

Plaintiffs are “seeking actual damages, compensatory damages, statutory damages, punitive damages, lifetime credit-monitoring services, restitution, disgorgement, injunctive relief, attorneys’ fees and costs, and pre-and post-judgment interest,” Bloomberg Law reported.

Preventing Future Data Leaks

Years of experts warning genetics companies like 23andMe that they need more strict data security have proven to be true. “This incident really highlights the risks associated with DNA databases,” Brett Callow, a threat analyst at data security firm Emsisoft, told Wired. “The fact that accounts had reportedly opted into the ‘DNA Relatives’ feature is particularly concerning as it could potentially result in extremely sensitive information becoming public.”

“Callow notes that the situation raises broader questions about keeping sensitive genetic information safe and the risks of making it available in services that are designed like social networks to facilitate sharing. With such platforms come all of the data privacy and security issues that have plagued traditional social networks, including issues related to data centralization and scraping,” Wired noted.

Clinical laboratory databases are full of protected health information (PHI). Wise lab managers will work to ensure that their medical lab’s patient data is secure from today’s cyberthreats.

—Kristin Althea O’Connor

Related Information:

23andMe Blog Post: Addressing Data Security Concerns

23andMe Sued Over Hack of Genetic Data Affecting Thousands

23andMe Notifies Customers of Data Breach into Its ‘DNA Relatives’ Feature

Genetics Firm 23andMe Says User Data Stolen in Credential Stuffing Attack

23andMe User Data Stolen in Targeted Attack on Ashkenazi Jews

Industry Voices—Forget Credit Card Numbers. Medical Records Are the Hottest Items on the Dark Web

Hacker Claims to Have Stolen Genetic Data from Millions Of 23andMe Users and Is Trying to Sell the Information Online

US District Court California Northern District (San Francisco) Civil Docket for Case #: 3:23-Cv-05147-EMC

2018 Trustwave Global Security Report

Ransomware Activity Targeting the Healthcare and Public Health Sector

23andMe Sued After Hacker Claims Massive Data Breach Impacting Ashkenazi Jews

Five Biggest Risks of Sharing Your DNA with Consumer Genetic-Testing Companies

The FTC Is Investigating DNA Firms Like 23andme and Ancestry over Privacy

Survey Indicates Zoomers and Millennials Are Ready for Pharmacies to Play a Bigger Role in Their Primary Care

Demand for low cost, convenient access to doctors and drugs is driving transformation to decentralized medical care, and retail pharmacy chains see opportunity in offering primary care services

Retail pharmacies and pharmacists continue to play a growing role in healthcare as consumer demand for lower cost and convenience pushes the nation’s medical landscape away from centralized healthcare systems. Clinical laboratories have seen this in the increasing trend of consumers seeking vaccinations and home-health tests at their local drug stores.

Results of a pair of surveys dubbed “Pharmacy Next” conducted by Wolters Kluwer Health revealed that 58% of people are now willing to be treated for non-emergency healthcare conditions in non-traditional medical environments, such as retail pharmacies and clinics.

This is a finding that clinical laboratory managers and pathologists should incorporate into their labs’ strategic planning. It portends a shift in care away from the traditional primary care clinic—typically located in the campus around the community hospital—and toward retail pharmacies. Labs will want to capture the test referrals originating from the primary care clinics located in retail pharmacies.

This willingness to access medical care in non-traditional environments is especially true among people in Generation Y (Millennials) and Generation Z (Zoomers)—people born between 1981-1996 (Gen Y) and 1997-2012 (Gen Z), according to Journey Matters.

“As we saw in last year’s survey, primary care decentralization is continuing—the traditional one doctor-one patient, single point of coordination is vanishing, and this is especially evident in younger generations,” said Peter Bonis, MD, Wolters Kluwer’s Chief Medical Officer, in a press release

The online surveys of more than 2,000 US adults was weighted by age, gender, household income, and education to be representative of the entire population of the United States. 

“By preparing for this shift today, providers can work in concert across care sites to deliver the best care to patients,” said Peter Bonis, MD, Wolters Kluwer Health Chief Medical Officer, in a press release. “Likewise, newer care delivery models, like retail pharmacies and clinics, can ensure they’re ready to meet the expectations of healthcare consumers, who will increasingly be turning to them for a growing range of care needs.” Clinical laboratories may find new revenue opportunities working with the primary care clinics operating within local retail pharmacists and clinicians. (Photo copyright: Wolters Kluwer.)

Key Findings of the Wolters Kluwer Pharmacy Next Studies

Some key insights of the surveys include:

  • Care is rapidly decentralizing with 58% stating they are likely to visit a local pharmacy for non-emergency medical care.
  • Younger generations are signaling lasting change within the industry as they are more open to non-traditional styles of care.
  • 61% of respondents envision most primary care services being provided at pharmacies, retail clinics, or pharmacy clinics within the next five years. Of the respondents, 70% of Millennials, 66% of Gen Z, 65% of Gen X, and 43% of Baby Boomers believe this transition will occur.
  • Consumers are worried about prescription costs and availability.
  • 92% of respondents said physicians and pharmacists should inform patients of generic options.
  • 59% of surveyed consumers have concerns about drug tampering and theft when it involves mail order or subscription prescription services.
  • One in three respondents believe convenience is more important than credentials in non-emergency situations.

The survey indicates that healthcare consumers across multiple generations are open to a shift in some medical services from doctors to pharmacists. However, there were some notable differences between generations.

Respondents of the Baby Boomer (55%) and Gen X (57%) generations stated they would trust a physician assistant with medication prescriptions, while only 42% of Gen Z and 47% of Millennial respondents felt the same way. 

Additionally, Boomers (57%) and Gen X (67%) said they would feel comfortable with a nurse practitioner issuing their prescriptions, while only 44% of Gen Z and 53% of Millennials said they would. 

Increased Comfort with Genetic Testing at Pharmacies

The surveys also showed that younger generations are more open to the field of pharmacogenomics, which combines pharmacology and genomics to analyze how an individual’s genetic makeup (aka, heredity) affects the efficacy and reactions to certain drugs. This is a key component of precision medicine.

Overall, 68% of individuals polled believe their individual genomic data could guide prescription decisions, with Millennials (77%) and Gen Z (74%) being the primary believers. Additionally, 88% of respondents stated they see an incentive for health insurers to cover genomic testing, and 72% said they would be open to genetic testing for personalized medical care

But pharmacists and clinicians should be aware that advancing pharmacogenomics will require addressing privacy concerns. According to the Wolters Kluwer study, 57% of Gen Z and 53% of Millennials have apprehension surrounding genetic testing due to privacy risks, with 35% of Gen X and Boomers holding that same opinion.

Healthcare Staff Shortages, Drug Cost a Concern

Survey respondents are also concerned about pharmacy staff shortages and expenditures when seeking care at a pharmacy. Half of the participants are worried they will receive the wrong medication, half worry about getting the incorrect dosage, and almost half (47%) fear receiving the wrong directions due to overburdened pharmacy employees.

More people in Gen Z (59%) and Millennials (60%) had these concerns compared to Gen X (44%) and Boomers (38%).

Sadly, a distressing 44% of those surveyed admitted to not filling a prescription due to the costs. That number jumps to a staggering 56% among individuals with no health insurance, compared to 42% for insured patients.

“From hospitals to doctors’ offices, from pharmacies to pharma and beyond, healthcare must move to more affordable and accessible primary care models, adopt innovations that help deliver more personalized care, and address persistent safety and cost concerns that consumers have about their medications,” said Bonis in the press release.

Can Pharmacies Deliver Primary Care as Well as Doctor’s Offices?

Pharmacies may be logical setting for at least some non-emergency health services. According to the Centers for Disease Control and Prevention (CDC), approximately 90% of the US population live within five miles of a pharmacy and about 72% of visits to physician’s offices involve the prescribing and monitoring of medication therapies.

“Pharmacies did step up during the COVID-19 pandemic. The proof is there that pharmacies can do it,” noted Kevin Nicholson, JD, Vice President of Policy, Regulatory, and Legal Affairs for the National Association of Chain Drug Stores (NACDS), during this year’s Healthcare Information and Management Systems Society (HIMSS) in April,  HealthLeaders reported.

“We’re not talking about complicated services. We’re talking low-acuity, very basic care,” said Anita Patel, PharmD, Vice President of Pharmacy Services Development for Walgreens, at the HIMSS conference.

Pharmacies across the country continue to add more healthcare services to their available public offerings. This trend will likely persist into the future as healthcare becomes more expensive, wait times for physician appointments increases, and medical staff shortages rise. Thus, there may be opportunities for clinical laboratories to support pharmacists and doctors working in retail settings.

—JP Schlingman

Related Information:

What the Next Generation’s Expectations for Primary Care Mean for Pharmacists

US Survey Signals Big Shifts in Primary Care to Pharmacy and Clinic Settings as Consumers Seek Lower Medication and Healthcare Costs

Pharmacy Next: Safer, Affordable and Personalized

Pharmacy Next: Health Consumer Medication Trends

Pharmacy Next: Safety, Service, and Spending

Pharmacy Next: Consumer Trends and Industry Transformation

Wolters Kluwer’s Pharmacy Next Survey Shows 58% of Americans Likely to First Seek Non-emergency Healthcare at Pharmacies

The 7 Generations: What do we know about them?

Should a Pharmacist Be Allowed to Deliver Primary Care Services?

Community Pharmacists’ Contributions to Disease Management during the COVID-19 Pandemic

Northwestern University Study Shares News Insights into Aging Guided by Transcriptome, Gene Length Imbalance

Findings could lead to deeper understanding of why we age, and to medical laboratory tests and treatments to slow or even reverse aging

Can humans control aging by keeping their genes long and balanced? Researchers at Northwestern University in Evanston, Illinois, believe it may be possible. They have unveiled a “previously unknown mechanism” behind aging that could lead to medical interventions to slow or even reverse aging, according to a Northwestern news release.

Should additional studies validate these early findings, this line of testing may become a new service clinical laboratories could offer to referring physicians and patients. It would expand the test menu with assays that deliver value in diagnosing the aging state of a patient, and which identify the parts of the transcriptome that are undergoing the most alterations that reduce lifespan.

It may also provide insights into how treatments and therapies could be implemented by physicians to address aging.

The Northwestern University scientists published their findings in the journal Nature Aging title, “Aging Is Associated with a Systemic Length-Associated Transcriptome Imbalance.”

“I find it very elegant that a single, relatively concise principle seems to account for nearly all of the changes in activity of genes that happen in animals as they change,” Thomas Stoeger, PhD, postdoctoral scholar in the Amaral Lab who led the study, told GEN. Clinical laboratories involved in omics research may soon have new anti-aging diagnostic tests to perform. (Photo copyright: Amaral Lab.)

Possible ‘New Instrument’ for Biological Testing

Researchers found clues to aging in the length of genes. A gene transcript length reveals “molecular-level changes” during aging: longer genes relate to longer lifespans and shorter genes suggest shorter lives, GEN summarized.

The phenomenon the researchers uncovered—which they dubbed transcriptome imbalance—was “near universal” in the tissues they analyzed (blood, muscle, bone, and organs) from both humans and animals, Northwestern said. 

According to the National Human Genome Research Institute fact sheet, a transcriptome is “a collection of all the gene readouts (aka, transcript) present in a cell” shedding light on gene activity or expression.

The Northwestern study suggests “systems-level” changes are responsible for aging—a different view than traditional biology’s approach to analyzing the effects of single genes.

“We have been primarily focusing on a small number of genes, thinking that a few genes would explain disease,” said Luis Amaral, PhD, Senior Author of the Study and Professor of Chemical and Biological Engineering at Northwestern, in the news release.

“So, maybe we were not focused on the right thing before. Now that we have this new understanding, it’s like having a new instrument. It’s like Galileo with a telescope, looking at space. Looking at gene activity through this new lens will enable us to see biological phenomena differently,” Amaral added.

In their Nature Aging paper, Amaral and his colleagues wrote, “We hypothesize that aging is associated with a phenomenon that affects the transcriptome in a subtle but global manner that goes unnoticed when focusing on the changes in expression of individual genes.

“We show that transcript length alone explains most transcriptional changes observed with aging in mice and humans,” they continued.

Researchers Turn to AI, RNA Sequencing

According to their published study, the Northwestern University scientists used large datasets, artificial intelligence (AI), and RNA (ribonucleic acid) sequencing in their analysis of tissue derived from:

  • Humans (men and women), age 30 to 49, 50 to 69, and 70 years and older. 
  • Mice, age four months to 24 months.
  • Rats, age six to 24 months.
  • Killifish, age five weeks to 39 weeks.

Scientific American reported the following study findings:

  • In tissues studied, older animals’ long transcripts were not as “abundant” as short transcripts, creating “imbalance.”
  • “Imbalance” likely prohibited the researchers’ discovery of a “specific set of genes” changing.
  • As animals aged, shorter genes “appeared to become more active” than longer genes.
  • In humans, the top 5% of genes with the shortest transcripts “included many linked to shorter life spans such as those involved in maintaining the length of telomeres.”
  • Conversely, the researchers’ review of the leading 5% of genes in humans with the longest transcripts found an association with long lives.
  • Antiaging drugs—rapamycin (aka, sirolimus) and resveratrol—were linked to an increase in long-gene transcripts.

“The changes in the activity of genes are very, very small, and these small changes involve thousands of genes. We found this change was consistent across different tissues and in different animals. We found it almost everywhere,” Thomas Stoeger, PhD, postdoctoral scholar in the Amaral Lab who led the study, told GEN.

In their paper, the Northwestern scientists noted implications for creation of healthcare interventions.

“We believe that understanding the direction of causality between other age-dependent cellular and transcriptomic changes and length-associated transcriptome imbalance could open novel research directions for antiaging interventions,” they wrote.

Other ‘Omics’ Studies

Dark Daily has previously reported on transcriptomics studies, along with research into the other “omics,” including metabolomics, proteomics, and genomics.

In “Spatial Transcriptomics Provide a New and Innovative Way to Analyze Tissue Biology, May Have Value in Surgical Pathology,” we explored how newly combined digital pathology, artificial intelligence (AI), and omics technologies are providing anatomic pathologists and medical laboratory scientists with powerful diagnostic tools.

In “Swiss Researchers Develop a Multi-omic Tumor Profiler to Inform Clinical Decision Support and Guide Precision Medicine Therapy for Cancer Patients,” we looked at how new biomarkers for cancer therapies derived from the research could usher in superior clinical laboratory diagnostics that identify a patient’s suitability for personalized drug therapies and treatments.

And in “Human Salivary Proteome Wiki Developed at University of Buffalo May Provide Biomarkers for New Diagnostic Tools and Medical Laboratory Tests,” we covered how proteins in human saliva make up its proteome and may be the key to new, precision medicine diagnostics that would give clinical pathologists new capabilities to identify disease.

Fountain of Youth

While more research is needed to validate its findings, the Northwestern study is compelling as it addresses a new area of transcriptome knowledge. This is another example of researchers cracking open human and animal genomes and gaining new insights into the processes supporting life.

For clinical laboratories and pathologists, diagnostic testing to reverse aging and guide the effectiveness of therapies may one day be possible—kind of like science’s take on the mythical Fountain of Youth.  

—Donna Marie Pocius

Related Information:

Aging Is Driven by Unbalanced Genes

Aging Linked to Gene Length Imbalance and Shift Towards Shorter Genes

NIH: Transcriptome Fact Sheet

Aging Is Associated with a Systemic Length-Associated Transcriptome Imbalance

Aging Is Linked to More Activity in Short Genes than in Long Genes

Spatial Transcriptomics Provide a New and Innovative Way to Analyze Tissue Biology, May Have Value in Surgical Pathology

Swiss Researchers Develop a Multi-omic Tumor Profiler to Inform Clinical Decision Support and Guide Precision Medicine Therapy for Cancer Patients

Human Salivary Proteome Wiki Developed at University of Buffalo May Provide Biomarkers for New Diagnostic Tools and Medical Laboratory Tests

What Key Laboratory Leaders Will Learn at This Week’s 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management

Executives and pathologists from many of the nation’s most prominent clinical laboratories are on their way to the Crescent City today to share best practices, hear case studies from innovative labs, and network

NEW ORLEANS—This afternoon, more than 900 lab CEOs, administrators, and pathologists will convene for the 28th Annual Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management conference. Three topics of great interest will center around adequate lab staffing, effective cost management, and developing new sources of lab testing revenue.

Important sessions will also address the explosion in next-generation sequencing and genetic testing, proposed FDA regulation of laboratory-developed tests (LDTs), and innovative ways that clinical laboratories and pathology groups can add value and be paid for that additional value.

All this is happening amidst important changes to healthcare and medicine in the United States. “Today, the US healthcare system is transforming itself at a steady pace,” explained Robert L. Michel, Editor-in-Chief of The Dark Report and Founder of the Executive War College. “Big multi-hospital health systems are merging with each other, and payers are slashing reimbursement for many medical lab tests, even as healthcare consumers want direct access to clinical laboratory tests and the full record of their lab test history.

“Each of these developments has major implications in how clinical laboratories serve their parent organizations, offer services directly to consumers, and negotiate with payers for fair reimbursement as in-network providers,” Michel added. “Attending the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management equips lab leaders with the tools they’ll need to make smart decisions during these challenging times.”

Executive War College

Now in its 28th year, the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management convenes April 25-26 in New Orleans. Executive War College extends to a third day with three full-day workshops: LEAN fundamentals for lab leaders, a genetic testing program track, and a digital pathology track. Learn more at www.ExecutiveWarCollege.com. (Photo copyright: The Dark Intelligence Group.)

Challenges and Opportunities for Clinical Laboratories

With major changes unfolding in the delivery and reimbursement of clinical services, clinical laboratory and pathology practice leaders need effective ways to respond to the evolving needs of physicians, patients, and payers. As The Dark Report has often covered, three overlapping areas are a source of tension and financial pressure for labs:

  • Day-to-day pressures to manage costs in the clinical laboratory or pathology practice.
  • The growing demand for genetic testing, accompanied by reimbursement challenges.
  • Evolving consumer expectations in how they receive medical care and interact with providers.

Addressing all three issues and much more, the 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management features more than 80 sessions with up to 125 lab managers, consultants, vendors, and in vitro diagnostic (IVD) experts as speakers and panelists.

Old-School Lab Rules Have Evolved into New-School Lab Rules

Tuesday’s keynote general sessions (to be reported exclusively in Wednesday’s Dark Daily ebriefing) will include four points of interest for clinical laboratory and pathology leaders who are managing change and pursuing new opportunities:

  • Positioning the lab to prosper by serving healthcare’s new consumers, new care models, new payment models, and more, with Michel at the podium.
  • How old-school lab rules have evolved into new-school lab rules and ways to transition the lab through today’s disrupters in healthcare and the clinical laboratory marketplace, with Stan Schofield, Managing Principal of the Compass Group.
  • The growing trend of clinical laboratory-pharmacy relationships with David Pope, PharmD, CDE, Chief Pharmacy Officer at OmniSYS, XIFIN Pharmacy Solutions.
  • Generating value by identifying risk signals in longitudinal lab data and opportunities in big data from payers, physicians, pharma, and bioresearch, with Brad Bostic, Chairman and CEO of hc1.

Wednesday’s keynote sessions (see exclusive insights in Friday’s Dark Daily ebriefing) explore:

Wednesday’s keynotes conclude with a panel discussion on delivering value to physicians, patients, and payers with lab testing services.

Clinical Labs, Payers, and Health Plans Swamped by Genetic Test Claims

Attendees of the 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management may notice a greater emphasis on whole genome sequencing and genetic testing this year.

As regular coverage and analysis in The Dark Report has pointed out, clinical laboratories, payers, and health plans face challenges with the explosion of genetic testing. Several Executive War College Master Classes will explore critical management issues of genetic and genomic testing, including laboratory benefit management programs, coverage decisions, payer relations, and best coding practices, as well as genetic test stewardship.

This year’s Executive War College also devotes a one-day intensive session on how community hospitals and local labs can set up and offer genetic tests and next-generation sequencing services. This third-day track features more than a dozen experts including:

During these sessions, attendees will be introduced to “dry labs” and “virtual CLIA labs.” These new terms differentiate the two organizations that process genetic data generated by “wet labs,” annotate it, and provide analysis and interpretation for referring physicians.

State of the Industry: Clinical Lab, Private Practice Pathology, Genetic Testing, IVD, and More

For lab consultants, executives, and directors interested in state-of-the-industry Q/A and discussions concerning commercial laboratories, private-practice pathology, and in vitro diagnostics companies, a range of breakout sessions, panels, and roundtables will cover:

  • Action steps to protect pathologists’ income and boost practice revenue.
  • Important developments in laboratory legal, regulatory, and compliance requirements.
  • New developments in clinical laboratory certification and accreditation, including the most common deficiencies and how to reach “assessment ready” status.
  • An update on the IVD industry and what’s working in today’s post-pandemic market for lab vendors and their customers.
  • Federal government updates on issues of concern to clinical laboratories, including PAMA, the VALID Act, and more.

Long-time attendees will notice the inclusion of “Diagnostics” into the Executive War College moniker. It’s an important addition, Michel explained for Dark Daily.

“In the recent past, ‘clinical laboratory’ and ‘anatomic pathology’ were terms that sufficiently described the profession of laboratory medicine,” he noted. “However, a subtle but significant change has occurred in recent years. The term ‘diagnostics’ has become a common description for medical testing, along with other diagnostic areas such as radiology and imaging.”

Key managers of medical laboratories, pathology groups, and in vitro diagnostics have much to gain from attending the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, now in its 28th year. Look for continued coverage through social media channels, at Dark Daily, and in The Dark Report.

Clinical laboratories are invited to continue the conversations by joining the Executive War College Discussion Group and The Dark Report Discussion Group on LinkedIn.

Liz Carey

Related Information:

Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management Agenda

Six Important Themes to Help Labs Succeed

Executive War College Press

The Dark Report

Dark Daily eBriefings

The Dark Report Discussion Group

Executive War College Discussion Group

;