News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Researchers Find That Antibiotic-Resistant Bacteria Can Persist in the Body for Years

Study results from Switzerland come as clinical laboratory scientists seek new ways to tackle the problem of antimicrobial resistance in hospitals

Microbiologists and clinical laboratory scientists engaged in the fight against antibiotic-resistant (aka, antimicrobial resistant) bacteria will be interested in a recent study conducted at the University of Basel and University Hospital Basel in Switzerland. The epidemiologists involved in the study discovered that some of these so-called “superbugs” can remain in the body for as long as nine years continuing to infect the host and others.

The researchers wanted to see how two species of drug-resistant bacteria—K. pneumoniae and E. coli—changed over time in the body, according to a press release from the university. They analyzed samples of the bacteria collected from patients who were admitted to the hospital over a 10-year period, focusing on older individuals with pre-existing conditions. They found that K. pneumoniae persisted for up to 4.5 years (1,704 days) and E. coli persisted for up to nine years (3,376 days).

“These patients not only repeatedly become ill themselves, but they also act as a source of infection for other people—a reservoir for these pathogens,” said Lisandra Aguilar-Bultet, PhD, the study’s lead author, in the press release.

“This is crucial information for choosing a treatment,” explained Sarah Tschudin Sutter, MD, Head of the Division of Infectious Diseases and Hospital Epidemiology, and of the Division of Hospital Epidemiology, who specializes in hospital-acquired infections and drug-resistant pathogens. Sutter led the Basel University study.

The researchers published their findings in the journal Nature Communications titled, “Within-Host Genetic Diversity of Extended-Spectrum Beta-Lactamase-Producing Enterobacterales in Long-Term Colonized Patients.”

“The issue is that when patients have infections with these drug-resistant bacteria, they can still carry that organism in or on their bodies even after treatment,” said epidemiologist Maroya Spalding Walters, MD (above), who leads the Antimicrobial Resistance Team in the Division of Healthcare Quality Promotion at the federal Centers for Disease Control and Prevention (CDC). “They don’t show any signs or symptoms of illness, but they can get infections again, and they can also transmit the bacteria to other people.” Clinical laboratories working with microbiologists on antibiotic resistance will want to follow the research conducted into these deadly pathogens. (Photo copyright: Centers for Disease Control and Prevention.)

COVID-19 Pandemic Increased Antibiotic Resistance

The Basel researchers looked at 76 K. pneumoniae isolates recovered from 19 patients and 284 E. coli isolates taken from 61 patients, all between 2008 and 2018. The study was limited to patients in which the bacterial strains were detected from at least two consecutive screenings on admission to the hospital.

“DNA analysis indicates that the bacteria initially adapt quite quickly to the conditions in the colonized parts of the body, but undergo few genetic changes thereafter,” the Basel University press release states.

The researchers also discovered that some of the samples, including those from different species, had identical mechanisms of drug resistance, suggesting that the bacteria transmitted mobile genetic elements such as plasmids to each other.

One limitation of the study, the authors acknowledged, was that they could not assess the patients’ exposure to antibiotics.

Meanwhile, recent data from the World Health Organization (WHO) suggests that the COVID-19 pandemic might have exacerbated the challenges of antibiotic resistance. Even though COVID-19 is a viral infection, WHO scientists found that high percentages of patients hospitalized with the disease between 2020 and 2023 received antibiotics.

“While only 8% of hospitalized patients with COVID-19 had bacterial co-infections requiring antibiotics, three out of four or some 75% of patients have been treated with antibiotics ‘just in case’ they help,” the WHO stated in a press release.

WHO uses an antibiotic categorization system known as AWaRe (Access, Watch, Reserve) to classify antibiotics based on risk of resistance. The most frequently prescribed antibiotics were in the “Watch” group, indicating that they are “more prone to be a target of antibiotic resistance and thus prioritized as targets of stewardship programs and monitoring.”

“When a patient requires antibiotics, the benefits often outweigh the risks associated with side effects or antibiotic resistance,” said Silvia Bertagnolio, MD, Unit Head in the Antimicrobial resistance (AMR) Division at the WHO in the press release. “However, when they are unnecessary, they offer no benefit while posing risks, and their use contributes to the emergence and spread of antimicrobial resistance.”

Citing research from the National Institutes of Health (NIH), NPR reported that in the US, hospital-acquired antibiotic-resistant infections increased 32% during the pandemic compared with data from just before the outbreak.

“While that number has dropped, it still hasn’t returned to pre-pandemic levels,” NPR noted.

Search for Better Antimicrobials

In “Drug-Resistant Bacteria Are Killing More and More Humans. We Need New Weapons,” Vox reported that scientists around the world are researching innovative ways to speed development of new antimicrobial treatments.

One such scientist is César de la Fuente, PhD, Presidential Assistant Professor at University of Pennsylvania, whose research team developed an artificial intelligence (AI) system that can look at molecules from the natural world and predict which ones have therapeutic potential.

The UPenn researchers have already developed an antimicrobial treatment derived from guava plants that has proved effective in mice, Vox reported. They’ve also trained an AI model to scan the proteomes of extinct organisms.

“The AI identified peptides from the woolly mammoth and the ancient sea cow, among other ancient animals, as promising candidates,” Vox noted. These, too, showed antimicrobial properties in tests on mice.

These findings can be used by clinical laboratories and microbiologists in their work with hospital infection control teams to better identify patients with antibiotic resistant strains of bacteria who, after discharge, may show up at the hospital months or years later.

—Stephen Beale

Related Information:

Resistant Bacteria Can Remain in The Body for Years

‘Superbugs’ Can Linger in the Body for Years, Potentially Spreading Antibiotic Resistance

Superbug Crisis Threatens to Kill 10 Million Per Year by 2050. Scientists May Have a Solution

Drug-Resistant Bacteria Are Killing More and More Humans. We Need New Weapons.

How the Pandemic Gave Power to Superbugs

WHO Reports Widespread Overuse of Antibiotics in Patients Hospitalized with COVID-19

Mount Sinai Researchers Create a “Smart Tweezer” That Can Isolate a Single Bacterium from a Microbiome Sample Prior to Genetic Sequencing

New technology could enable genetic scientists to identify antibiotic resistant genes and help physicians choose better treatments for genetic diseases

Genomic scientists at the Icahn School of Medicine at Mount Sinai Medical Center in New York City have developed what they call a “smart tweezer” that enables researchers to isolate a single bacterium from a patient’s microbiome in preparation for genetic sequencing. Though primarily intended for research purposes, the new technology could someday be used by clinical laboratories and microbiologists to help physicians diagnose chronic disease and choose appropriate genetic therapies.

The researchers designed their new technology—called mEnrich-seq—to improve the effectiveness of research into the complex communities of microorganisms that reside in the microbiomes within the human body. The discovery “ushers in a new era of precision in microbiome research,” according to a Mount Sinai Hospital press release.

Metagenomics has enabled the comprehensive study of microbiomes. However, many applications would benefit from a method that sequences specific bacterial taxa of interest, but not most background taxa. We developed mEnrich-seq (in which ‘m’ stands for methylation and seq for sequencing) for enriching taxa of interest from metagenomic DNA before sequencing,” the scientists wrote in a paper they published in Nature Methods titled, “mEnrich-seq: Methylation-Guided Enrichment Sequencing of Bacterial Taxa of Interest from Microbiome.”

“Imagine you’re a scientist who needs to study one particular type of bacteria in a complex environment. It’s like trying to find a needle in a large haystack,” said the study’s senior author Gang Fang, PhD (above), Professor of Genetics and Genomic Sciences at Icahn School of Medicine at Mount Sinai Medical Center, in a press release. “mEnrich-seq essentially gives researchers a ‘smart tweezer’ to pick up the needle they’re interested in,” he added. Might smart tweezers one day be used to help physicians and clinical laboratories diagnose and treat genetic diseases? (Photo copyright: Icahn School of Medicine.)

Addressing a Technology Gap in Genetic Research

Any imbalance or decrease in the variety of the body’s microorganisms can lead to an increased risk of illness and disease.

“Imbalance of the normal gut microbiota, for example, have been linked with conditions including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), obesity, type 2 diabetes, and allergies. Meanwhile, the vaginal microbiome seems to impact sexual and reproductive health,” Inside Precision Medicine noted.

In researching the microbiome, many scientists “focus on studying specific types of bacteria within a sample, rather than looking at each type of bacteria present,” the press release states. The limitation of this method is that a specific bacterium is just one part of a complicated environment that includes other bacteria, viruses, fungi and host cells, each with their own unique DNA.

“mEnrich-seq effectively distinguishes bacteria of interest from the vast background by exploiting the ‘secret codes’ written on bacterial DNA that bacteria use naturally to differentiate among each other as part of their native immune systems,” the press release notes. “This new strategy addresses a critical technology gap, as previously researchers would need to isolate specific bacterial strains from a given sample using culture media that selectively grow the specific bacterium—a time-consuming process that works for some bacteria, but not others. mEnrich-seq, in contrast, can directly recover the genome(s) of bacteria of interest from the microbiome sample without culturing.”

Isolating Hard to Culture Bacteria

To conduct their study, the Icahn researchers used mEnrich-seq to analyze urine samples taken from three patients with urinary tract infections (UTIs) to reconstruct Escherichia coli (E. Coli) genomes. They discovered their “smart tweezer” covered more than 99.97% of the genomes across all samples. This facilitated a comprehensive examination of antibiotic-resistant genes in each genome. They found mEnrich-seq had better sensitivity than standard study methods of the urine microbiome. 

They also used mEnrich-seq to selectively examine the genomes of Akkermansia muciniphila (A. muciniphila), a bacterium that colonizes the intestinal tract and has been shown to have benefits for obesity and Type 2 diabetes as well as a response to cancer immunotherapies.

Akkermansia is very hard to culture,” Fang told GenomeWeb. “It would take weeks for you to culture it, and you need special equipment, special expertise. It’s very tedious.”

mEnrich-seq was able to quickly segregate it from more than 99.7% of A. muciniphila genomes in the samples.

Combatting Antibiotic Resistance Worldwide

According to the press release, mEnrich-seq could potentially be beneficial to future microbiome research due to:

  • Cost-Effectiveness: It offers a more economical approach to microbiome research, particularly beneficial in large-scale studies where resources may be limited.
  • Broad Applicability: The method can focus on a wide range of bacteria, making it a versatile tool for both research and clinical applications.
  • Medical Breakthroughs: By enabling more targeted research, mEnrich-seq could accelerate the development of new diagnostic tools and treatments.

“One of the most exciting aspects of mEnrich-seq is its potential to uncover previously missed details, like antibiotic resistance genes that traditional sequencing methods couldn’t detect due to a lack of sensitivity,” Fang said in the news release. “This could be a significant step forward in combating the global issue of antibiotic resistance.”

More research and clinical trials are needed before mEnrich-seq can be used in the medical field. The Icahn researchers plan to refine their novel genetic tool to improve its efficiency and broaden its range of applications. They also intend to collaborate with physicians and other healthcare professionals to validate how it could be used in clinical environments.  

Should all this come to pass, hospital infection control teams, clinical laboratories, and microbiology labs would welcome a technology that would improve their ability to detect details—such as antibiotic resistant genes—that enable a faster and more accurate diagnosis of a patient’s infection. In turn, that could contribute to better patient outcomes.

—JP Schlingman

Related Information:

‘Smart Tweezer’ Can Pluck Out Single Bacterium Target from Microbiome

mEnrich-seq: Methylation-guided Enrichment Sequencing of Bacterial Taxa of Interest from Microbiome

Genomic ‘Tweezer’ Ushers in a New Era of Precision in Microbiome Research

Molecular Tweezers Can Precisely Select Microbiome Bacteria

Identification of DNA Motifs that Regulate DNA Methylation

New Bacterial Epigenetic Sequencing Method Could Be Boon for Complex Microbiome Analyses

Researchers Create Non-stick Coating That Repels External Molecules, Even Viruses and Bacteria; Clinical Laboratories May Soon Find It Easier to Keep Surfaces Free from Bacterial Contamination

Hospital-acquired infections could finally be prevented and no longer threaten the health of patients and hospital workers

In what may be the most significant development in healthcare’s fight against hospital-acquired infections (HAIs), researchers at McMaster University in Hamilton, Ontario, Canada, have developed an ultra-repellent coating that prevents anything—including viruses and bacteria—from adhering to surfaces covered in the material. This fascinating discovery may have great value for both microbiologists and hospital infection control teams, as well as the clinical laboratory and food service industries. 

The self-cleaning material has been proven to repel even the deadliest forms of antibiotic resistant (ABR) superbugs and viruses. This ultimate non-stick coating is a chemically treated form of transparent plastic wrap which can be adhered to surfaces prone to gathering germs, such as door handles, railings, and intravenous therapy (IV) stands.

“We developed the wrap to address the major threat that is posed by multi-drug resistant bacteria,” Leyla Soleymani, PhD, Associate Professor at McMaster University and one of the leaders of the study, told CNN. “Given the limited treatment options for these bugs, it is key to reduce their spread from one person to another.”

The researchers tested their revolutionary coating using two potentially deadly forms of antibiotic-resistant bacteria: Methicillin-resistant staphylococcus aureus (MRSA) and Pseudomonas.

In their study, published in ACS Nano, a journal of the American Chemical Society, titled, “Flexible Hierarchical Wraps Repel Drug-Resistant Gram-Negative and Positive Bacteria,” the researchers stated their material was effective at repelling MRSA 87% of the time and at repelling Pseudomonas 84% of the time. The wrapped surfaces also remained free of Escherichia coli (E. coli) after being exposed to the bacteria.

Bacteria-Resistant Wrap Could Greatly Diminish Threat of Hospital-Acquired Infections

This is a significant breakthrough. Dark Daily has covered the growing danger of hospital-acquired infections in numerous e-briefings, including “Could Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?” That report covered research by the Medical College of Wisconsin (MCW) which found that sinks located near toilets in patient rooms were four times more likely to have Klebsiella pneumoniae carbapenemase (KPC)-producing organisms in their drains than sinks that were located farther away from toilets.

According to research published in the peer-reviewed Southern Medical Journal, “KPC-producing bacteria are a group of emerging highly drug-resistant Gram-negative bacilli causing infections associated with significant morbidity and mortality.”

Were those surfaces covered in this new bacterial-resistant coating, life-threatening infections in hospital ICUs could be prevented.

Taking Inspiration from Nature

In designing their new anti-microbial wrap, McMaster researchers took their inspiration from natural lotus leaves, which are effectively water-resistant and self-cleaning thanks to microscopic wrinkles that repel external molecules. Substances that come in contact with surfaces covered in the new non-stick coating—such as a water, blood, or germs—simply bounce off. They do not adhere to the material.

The “shrink-wrap” is flexible, durable, and inexpensive to manufacture. And, the researchers hope to locate a commercial partner to develop useful applications for their discovery. 

“We’re structurally tuning that plastic,” Soleymani told SciTechDaily. “This material gives us something that can be applied to all kinds of things.”

In the video above, Leyla Soleymani, PhD, Associate Professor at McMaster University, explains how “The new plastic surface—a treated form of conventional transparent wrap—can be shrink-wrapped onto door handles, railings, IV stands, and other surfaces that can be magnets for bacteria such as MRSA and C. difficile. This may be technology that has great value to clinical laboratories and microbiology laboratories. Click here to watch the video. (Image and video copyright: McMaster University/YouTube.)

Industries Outside of Healthcare Also Would Benefit

According to the US Centers for Disease Control and Prevention (CDC), at least 2.8 million people get an antibiotic-resistant infection in the US each year. More than 35,000 people die from these infections, making it one of the biggest health challenges of our time and a threat that needs to be eradicated. This innovative plastic coating could help alleviate these types of infections.

And it’s not just for healthcare. The researchers said the coating could be beneficial to the food industry as well. The plastic surface could help curtail the accidental transfer of bacteria, such as E. coli, Salmonella, and Listeria in food preparation and packaging, according to the published study.

“We can see this technology being used in all kinds of institutional and domestic settings,” Tohid Didar, PhD, Assistant Professor at McMaster University and co-author of the study, told SciTechDaily. “As the world confronts the crisis of anti-microbial resistance, we hope it will become an important part of the anti-bacterial toolbox.”

The research was led by Didar and Soleymani in collaboration with scientists from McMaster’s Institute for Infectious Disease Research (IIDR) and the McMaster-based Canadian Center for Electron Microscopy.

Clinical laboratories also are tasked with preventing the transference of dangerous bacteria to patients and lab personnel. Constant diligence in application of cleaning protocols is key. If this new anti-bacterial shrink wrap becomes widely available, medical laboratory managers and microbiologists will have a new tool to fight bacterial contamination.

—JP Schlingman

Related Information:

Researchers Create Ultimate Non-Stick Coating That Repels Everything—Even Viruses and Bacteria

Flexible Hierarchical Wraps Repel Drug-Resistant Gram-Negative and Positive Bacteria

Scientists Develop Superbug-resistant, Self-cleaning Plastic Wrap

Antibiotic Resistance Threats in the United States

Surface Allows Self-Cleaning

Repel Wraps: Ultimate Non-Stick Coating Repels Everything – Even Viruses and Bacteria

Could Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?

Leapfrog Group Report Shows Hospitals Failing to Eliminate Hospital-Acquired Infections; Medical Laboratories Can Help Providers’ Antimicrobial Stewardship Programs

Collaboration between Pathologists, Medical Laboratories, and Hospital Staff Substantially Reduced Hospital-Acquired Infections, AHRQ Reports

Doctors in India Sound Alarm: CRE Infections are Becoming Common in India and Killing Two-Thirds of Patients Who Contract Them While Undergoing Cancer Treatment!

As infectious bacteria become even more resistant to antibiotics, chronic disease patients with weakened immune systems are in particular danger

Microbiologists and clinical laboratory managers in the United States may find it useful to learn that exceptionally virulent strains of bacteria are causing increasing numbers of cancer patient deaths in India. Given the speed with which infectious diseases spread throughout the world, it’s not surprising that deaths due to similar hospital-acquired infections (HAIs) are increasing in the US as well.

Recent news reporting indicates that an ever-growing number of cancer patients in the world’s second most populous nation are struggling to survive these infections while undergoing chemotherapy and other treatments for their cancers.

In some ways, this situation is the result of more powerful antibiotics. Today’s modern antibiotics help physicians, pathologists, and clinical laboratories protect patients from infectious disease. However, it’s a tragic fact that those same powerful drugs are making patients with chronic diseases, such as cancer, more susceptible to death from HAIs caused by bacteria that are becoming increasingly resistant to those same antibiotics.

India is a prime example of that devastating dichotomy. Bloomberg reported that a study conducted by Abdul Ghafur, MD, an infectious disease physician with Apollo Hospitals in Chennai, India, et al, concluded that “Almost two-thirds of cancer patients with a carbapenem-resistant infection are dead within four weeks, vs. a 28-day mortality rate of 38% in patients whose infections are curable.”

This news should serve as an alert to pathologists, microbiologists, and clinical laboratory leaders in the US as these same superbugs—which resist not only antibiotics but other drugs as well—may become more prevalent in this country.

 ‘We Don’t Know What to Do’

The dire challenge facing India’s cancer patients is due to escalating bloodstream infections associated with carbapenem-resistant enterobacteriaceae (CRE), a particularly deadly bacteria that has become resistant to even the most potent carbapenem antibiotics, generally considered drugs of last resort for dealing with life-threatening infections.

Lately, the problem has only escalated. “We are facing a difficult scenario—to give chemotherapy and cure the cancer and get a drug-resistant infection and the patient dying of infections.” Ghafur told Bloomberg. “We don’t know what to do. The world doesn’t know what to do in this scenario.”

Ghafur added, “However wonderful the developments in the field of oncology, they are not going to be useful, because we know cancer patients die of infections.”

Abdul Ghafur, MD (above), an infectious disease physician with Apollo Hospitals in Chennai, India, told The Better India that, “Indians, are obsessed with antibiotics and believe that they can cure almost all infections, including viral infections! Moreover, at least half of the prescriptions by Indian doctors include an antibiotic. Sadly, the public believes that whenever we get cold and cough, we need to swallow antibiotics for three days along with paracetamol [acetaminophen]! This is a myth that urgently needs to disappear!” (Photo copyright: Longitude Prize.)

The problem in India, Bloomberg reports, is exacerbated by contaminated food and water. “Germs acquired through ingesting contaminated food and water become part of the normal gut microbiome, but they can turn deadly if they escape the bowel and infect the urinary tract, blood, and other tissues.” And chemotherapy patients, who likely have weakened digestive tracts, suffer most when the deadly germs reach the urinary tract, blood, and surrounding tissues.

“Ten years ago, carbapenem-resistant superbug infections were rare. Now, infections such as carbapenem-resistant klebsiella bloodstream infection, urinary infection, pneumonia, and surgical site infections are a day-to-day problem in our (Indian) hospitals. Even healthy adults in the community may carry these bacteria in their gut in Indian metropolitan cities; up to 5% of people carry these superbugs in their intestines,” Ghafur told The Better India.

What are CRE and Why Are They So Deadly?

CRE are part of the enterobacteriaceae bacterial family, which also includes Escherichia coli (E. coli) and Klebsiella pneumoniae. CRE, according to the Centers for Disease Control and Prevention (CDC), are considered “antibiotic-resistant” because antibiotic agents known as carbapenems are becoming increasing less effective at treating enterobacteriaceae.

In fact, a 2018 study conducted by the All India Institute of Medical Sciences (AIIMS) in New Delhi, which was published in the Journal of Global Infectious Diseases (JGID), found that bloodstream infections due to CRE were the “leading cause” of illness and death in patients with hematological malignancies, such as leukemia.

“These patients receive chemotherapy during treatment, which lead to severe mucositis of gastrointestinal tract and myelosuppression. It was hypothesized that the gut colonizer translocate into blood circulation causing [bloodstream infection],” the AIIMS paper states.

US Cases of C. auris Also Linked to CRE

Deaths in the US involving the fungus Candida auris (C. auris) have been linked to CRE as well. And, people who were hospitalized outside the US may be at particular risk.

The CDC reported on a Maryland resident who was hospitalized in Kenya with a carbapenemase-producing infection, which was later diagnosed as C. auris. The CDC describes C. auris as “an emerging drug-resistant yeast of high public concern … C auris frequently co-occurs with carbapenemase-producing organisms like CRE.”

The graphic above, developed by the NYT from CDC data, shows that Candida auris is found globally and not restricted to poor or resource-strapped nations. “The fungus seems to have emerged in several locations at once, not from a single source,” the NYT reports. This means clinical laboratories can expect to be processing more tests to identify the deadly fungus. (Graphic copyright: New York Times/CDC.)

Drug-resistant germs are a public health threat that has grown beyond overuse of antibiotics to an “explosion of resistant fungi,” reported the New York Times (NYT).

“It’s an enormous problem. We depend on being able to treat those patients with antifungals,” Matthew Fisher, PhD, Professor of Fungal Disease Epidemiology at Imperial College London, told the NYT

The NYT article states that “Nearly half of patients who contract C. auris die within 90 days, according to the CDC. Yet the world’s experts have not nailed down where it came from in the first place.”

Cases of C. auris in the US are showing up in New York, New Jersey, and Illinois and is arriving on travelers from many countries, including India, Pakistan, South Africa, Spain, United Kingdom, and Venezuela.  

“It is a creature from the black lagoon,” Tom Chiller, MD, Chief of the Mycotic Diseases Branch at the CDC told the NYT. “It bubbled up and now it is everywhere.”

Since antibiotics are used heavily in agriculture and farming worldwide, the numbers of antibiotic-resistant infections will likely increase. Things may get worse, before they get better.

Pathologists, microbiologists, oncologists, and clinical laboratories involved in caring for patients with antibiotic-resistant infections will want to fully understand the dangers involved, not just to patients, but to healthcare workers as well.

—Donna Marie Pocius

Related Information:

Superbugs Deadlier than Cancer Put Chemotherapy into Question

Taking Antibiotics for a Viral Infection? A Doc Shares Why You Should Think Twice

Healthcare-Associated Infections: CRE

Rectal Carriage of Carbapenem-resistant enterobacteriaceae: A Menace to Highly Vulnerable Patients

Clinical Study of Carbapenem Sensitive and Resistant Gram-negative Bacteria in Neutropenic and Nonneutropenic Patients: The First Series from India

Candida Auris in a U.S. Patient with Carbapenemase-Producing Organisms and Recent Hospitalization in Kenya

Deadly Germs, Lost Cures: A Mysterious Infection, Spanning the Globe in a Climate of Secrecy

University of Edinburgh Study Finds Antimicrobial Bacteria in Hospital Wastewater in Research That Has Implications for Microbiologists

Pathologists and Clinical Laboratories to Play Critical Role in Developing New Tools to Fight Antibiotic Resistance

Lurking Below: NIH Study Reveals Surprising New Source of Antibiotic Resistance That Will Interest Microbiologists and Medical Laboratory Scientists

Scientists in United Kingdom Manipulate DNA to Create a Synthetic Bacteria That Could Be Immune to Infections

Use of synthetic genetics to replicate an infectious disease agent is a scientific accomplishment that many microbiologists and clinical laboratory managers expected would happen

Microbiologists and infectious disease doctors are quite familiar with Escherichia coli (E. coli). The bacterium has caused much human sickness and even death around the globe, and its antibiotic resistant strains are becoming increasingly difficult to eradicate.

Now, scientists in England have created a synthetic “recoded” version of E. coli bacteria that is being used in a positive way—to fight disease. Their discovery is being heralded as an important breakthrough in the quest to custom-alter DNA to create synthetic forms of life that one day could be designed to fight specific infections, create new drugs, or produce tools to diagnose or treat disease.

Scientists worldwide working in the field of synthetic genomics are looking for ways to modify genomes in order to produce new weapons against infection and disease. This research could eventually produce methods for doctors—after diagnosing a patient’s specific strain of bacteria—to then use custom-altered DNA as an effective weapon against that patient’s specific bacterial infection.

This latest milestone is the result of a five-year quest by researchers at the Medical Research Council Laboratory of Molecular Biology (MRC-LMB) in Cambridge, England, to create a man-made version of the intestinal bacteria by redesigning its four-million-base-pair genetic code.

The MRC-LMB lab’s success marks the first time a living organism has been created with a compressed genetic code.

The researchers published their findings in the journal Nature.

Synthetic Genomics and Clinical Laboratories

Benjamin A. Blount, PhD, a postdoctoral research associate at Imperial College London, and Tom Ellis, PhD, Professor in Synthetic Genome Engineering at Imperial College London, praised the MRC-LMB team’s accomplishment in a subsequent Nature article.

“This is a landmark in the emerging field of synthetic genomics and finally applies the technology to the laboratory’s workhorse bacterium,” they wrote. “Synthetic genomics offers a new way of life, while at the same time moving synthetic biology towards a future in which genomes can be written to design.”

All known forms of life on Earth contain 64 codons—a specific sequence of three consecutive nucleotides that corresponds with a specific amino acid or stop signal during protein synthesis. Jason Chin, PhD, Program Lead at MRC-LMB, said biologists long have questioned why there are 20 amino acids encoded by 64 codons.

“Is there any function to having more than one codon to encode each amino acid?” Chin asked during an interview with the Cambridge Independent. “What would happen if you made an organism that used a reduced set of codons?”

The MRC-LMB research team took an important step toward answering that question. Their synthetic E. coli strain, dubbed Syn61, was recoded through “genome-wide substitution of target codons by defined synonyms.” To do so, researchers mastered a new piece-by-piece technique that enabled them to recode 18,214 codons to create an organism with a 61-codon genome that functions without a previously essential transfer RNA.

“Our synthetic genome implements a defined recoding and refactoring scheme–with simple corrections at just seven positions–to replace every known occurrence of two sense codons and a stop codon in the genome,” lead author Julius Fredens, PhD, a post-doctoral research associate at MRC, and colleagues, wrote in their paper.

Science Alert reports that the laboratory-created version of E. coli (above) “isn’t quite a dead ringer for its ancestor. The cells are a touch longer, and they reproduce 1.6 times slower. But the edited E. coli seems healthy and produces the same range and quantity of proteins as the non-edited versions.” (Photo copyright: Jason Chin/STAT.)

Joshua Atkinson, PhD, a postdoctoral research associate at Rice University in Houston, labeled the breakthrough a “tour de force” in the field of synthetic genomics. “This achievement sets a new world record in synthetic genomics by yielding a genome that is four times larger than the pioneering synthesis of the one-million-base-pair Mycoplasma mycoides genome,” he stated in Synthetic Biology.

“Synthetic genomics is enabling the simplification of recoded organisms; the previous study minimized the total number of genes and this new study simplified the way those genes are encoded.”

Manmade Bacteria That are Immune to Infections

Researchers from the J. Craig Venter Institute in Rockville, Maryland, created the first synthetic genome in 2010. According to an article in Nature, the Venter Institute successfully synthesized the Mycoplasma mycoides genome and used it “reboot” a cell from a different species of bacterium.

The MRC-LMB team’s success may prove more significant.

“This new synthetic E. coli should not be able to decode DNA from any other organism and therefore it should not be possible to infect it with a virus,” the MRC-LMB stated in a news release heralding the lab’s breakthrough. “With E. coli already being an important workhorse of biotechnology and biological research, this study is the first time any commonly used model organism has had its genome designed and fully synthesized and this synthetic version could become an important resource for future development of new types of molecules.”

Because the MRC-LMB team was able to remove transfer RNA and release factors that decode three codons from the E. coli bacteria, their achievement may be the springboard to designing manmade bacteria that are immune to infections or could be turned into new drugs.

“This may enable these codons to be cleanly reassigned and facilitate the incorporation of multiple non-canonical amino acids. This greatly expands the scope of using non-canonical amino acids as unique tools for biological research,” the MRC-LMB news release added.

Though synthetic genomics impact on clinical laboratory diagnostics is yet to be known, medical laboratory leaders should be mindful of the potential for rapid innovation in this field as proof-of-concept laboratory innovations are translated into real-world applications.

—Andrea Downing Peck

Related Information:

Scientists Redesigned an Entire Genome to Create the Most Synthetic Life Form Yet

World’s First Synthetic Organism with Fully Recoded DNA Is Created at MRC LMB in Cambridge

Creating an Entire Bacterial Genome with a Compressed Genetic Code

Total Synthesis of Escherichia Coli with a Recoded Genome

Construction of an Escherichia Coli Genome with Fewer Codons Sets Records

Life Simplified: Recompiling a Bacterial Genome for Synonymous Codon Compression

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome

Cambridge University Researchers Recode E. Coli DNA to Create Living, Reproducing Bacteria with Entirely Synthetic DNA

;