News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

New Fast, Inexpensive, Mobile Device Accurately Identifies Healthcare-Acquired Infections and Communicates Findings to Doctors’ Smartphones and Portable Computers

Use of these new technologies creates opportunities for clinical laboratories and pathologists to add more value when collaborating with physicians to advance patient care

Ongoing improvements in point-of-care testing are encouraging one major academic medical center to apply this mode of testing to the diagnosis of hospital-acquired infections (HAIs). This development should be of interest to clinical laboratory professionals and pathologists, since it has the potential to create a different way to identify patients with HAIs than medical lab tests done in the central laboratory.

Massachusetts General Hospital (MGH), Harvard Medical School’s (HMS’) largest teaching hospital, has developed a prototype diagnostic system that works with doctors’ smartphones or mobile computers. The hand-held system can identify pathogens responsible for specific healthcare-acquired infections (HAIs) at the point of care within two hours, according to an MGH statement.

The researchers noted that 600,000 patients develop HAIs each year, 10% of which die, and that costs related to HAIs can reach $100 to $150 billion per year. However, as Dark Daily reported, the Centers for Medicare and Medicaid Services (CMS) does not reimburse hospitals for certain HAIs. (See Dark Daily, Consumer Reports Ranks Smaller and Non-Teaching Hospitals Highest in Infection Prevention,” October, 30, 2015.) Thus, the critical need to identify from where the infection originated, which generates a significant proportion of samples tested at the clinical laboratories of the nation’s hospitals and health systems.

Therefore, pathologists and medical laboratory scientists will understand that shifting some of that specimen volume to point-of-care testing will change the overall economics of hospital laboratories.

Smartphone-based Genetic Test for HIAs

The MGH research team created a way to do accurate genetic testing in a simple device powered by a system they call Polarization Anisotropy Diagnostics (PAD). The system measures changes in fluorescence anisotropy through a detection probe’s recognition of bacterial nucleic acid, reported Medscape Medical News. More than 35 probes for detecting bacterial species and virulence factors are available.

Optical test cubes are placed on an electronic base station that transmits data to a smartphone or computer, where results are displayed. “In a pilot clinical test, PAD accuracy was comparable to that of bacterial culture. In contrast to the culture, the PAD assay was fast (under two hours), multiplexed, and cost effective (under $2 per assay), wrote the MGH researchers in the journal Science Advances. (more…)

New Vaccine in Development at University of Buffalo Could Eradicate Pneumonia and Prevent the Deaths of Nearly One Million Children Under Five Worldwide Each Year

New vaccine has potential to reduce volume of clinical laboratory testing for bacterial and viral infections

By now, nearly all pathologists and clinical laboratory scientists acknowledge that advances in molecular diagnostics and genetic testing are contributing to significant improvements in patient care. Now comes news of a comparable breakthrough in another field of medicine with the potential to protect many individuals from pneumonia and similar infectious diseases.

A new way to develop vaccines made the news recently. Researchers at the University of Buffalo (UB) in New York have found a new way to reduce infections of specific and widespread Streptococcus pneumoniae (pneumococcus) diseases.

This cutting-edge pneumococcal vaccine allows Streptococcus pneumoniae to colonize and live inside the body as long as there is no risk to the host. When a threat is detected, the vaccine establishes an immune system response to annihilate the disease-causing bacteria. (more…)

New Biosensing Film Can Diagnose Both Viral and Bacterial Infections Cheaply and Without the Need for Traditional Clinical Pathology Laboratory Tests

Researchers at Florida Atlantic University believe this technology could also be used to detect bacteria in food and water and to follow patients’ progress after leaving acute or outpatient care

New technology could shift the paradigm in infectious disease testing by clinical laboratories, while also giving hospitals a faster way to identify hospital-acquired infections (HAIs) and monitor patients for infections post-discharge. The diagnostic technology is built into a special “biosensing film” made of cellulose paper and a flexible polymer.

Researchers at Florida Atlantic University (FAU) developed the biosensing film. They say it can detect and discern HIV, Staphylococcus aureus, E-coli and other bacteria in blood, plasma, and saliva. The test is inexpensive, disposable, and portable. Best of all (at least for developing countries, remote locations, and places that have few resources), it requires no expensive infrastructure or a clinical laboratory.

And yes, the biosensing film is designed to work in tandem with a smartphone app. But in this case, the mobile app is only part of the story. The real genius is the piece of lightweight, flexible, “electronic paper” or “biosensing film” used with the app. The film acts as a platform that detects infections, both viral and bacterial.

The story of this inventive biosensing film is detailed in a Scientific Reports article in the March 5, 2015, edition of Nature. (more…)

China’s Genome-Mapping Giant BGI Is Poised to Become an International Leader in Gene Sequencing and May Play Major Role in Interpretation of Genetic Test Results

However, China has a shortage of well-trained pathologists, which is why some American lab organizations are establishing medical lab testing ventures in China

If experts are right, a company in China is poised to become the world’s largest at gene sequencing. In addition, the huge volume of genetic data it generates is expected to give this company the world’s largest database of genetic information.

Such developments could mean that, in just a few years, many pathologists and molecular Ph.D.s in the United States will be accessing this trove of genetic data as they conduct research to identify new biomarkers or work with clinical specimens.

The company at the center of all this attention is genome-sequencing giant BGI, located in Shenzhen, China. It owns 230 of the largest, high-throughput gene-sequencing machines and wants to become the world’s largest genome-mapping company. (more…)

Researchers at Livermore National Laboratory Develop Microbial Detection Array Capable of Detecting Thousands of Known and Unknown Pathogens in a Single Rapid Test

Developed to detect pathogens missed in wounds of soldiers, this technology was licensed to a company for development into a test for use by clinical laboratories

Diagnostic technology developed for rapid detection of pathogens in the wounds of soldiers has been licensed to a private company that intends to use it to create new medical laboratory tests. This new technology is capable of identifying thousands of bacteria and viruses in a single test.

Scientists at the Lawrence Livermore National Laboratory developed what is called the Lawrence Livermore Microbial Detection Array (LLMDA). Within 24 hours, this single test can detect multiple viruses and bacteria. The LLMDA technology has been licensed to St. Louis, Missouri-based MOgene LC, a supplier of DNA microarrays, according to a report published by UC Health. (more…)

;