News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Orlando Health’s New Hospital-in-the-Home Program Brings Quality Healthcare to Patients in the Comfort of their Homes

New federal funds likely to spark additional growth in hospital-at-home programs across the US while creating need for clinical laboratories to serve these homebound patients

In one of the latest examples of health systems’ providing acute care to patients outside of traditional hospital settings, Orlando Health announced its launch of the Orlando Health Hospital Care at Home program serving central Florida.

Clinical laboratory testing is included in the program, which is currently being offered to Medicare and Medicaid patients of Orlando Regional Medical Center and Orlando Health South Seminole Hospital.

According to an Orlando Health press release, “The Orlando Health program is the first in Central Florida to be approved for Medicare and Medicaid patients, with future plans to expand the service for patients with private insurance and at other Orlando Health locations. It is an extension of a federal initiative created during the height of the COVID-19 pandemic to increase hospital capacity and maximize resources.”

Orlando Health is a not-for-profit healthcare system with 3,200 beds at 23 hospitals and emergency departments. It is the fourth largest employer in Central Florida with 4,500 physicians and 23,000 employees. Its Hospital Care at Home program serves patients who meet clinical criteria with 24/7 telehealth remote monitoring and virtual care from the Orlando Health Patient Care Hub. In-person nursing visits are also offered daily, according to Orlando Health.

Linda Fitzpatrick

“Orlando Health wanted to be able to provide a different level of care for its patients and give them a different opportunity to be cared for other than the brick-and-mortar of the hospital,” Linda Fitzpatrick (above), Assistant Vice President for Advanced Care at Orlando Health told Health News Florida. “We’ll have decreased infectious rates in their homes, decreased exposures. It is a healthier and happier place to be in order to heal.” Clinical laboratories in the Orlando area will have the opportunity to serve healthcare providers diagnosing patients in non-traditional healthcare settings. (Photo copyright: Orlando Sentinel.)

Lowering Costs and Avoiding In-hospital Infections, Medical Errors

Treating patients at home, even after inpatient visits, can save them money. At the same time, patients are more comfortable in their own homes and that contributes to faster recoveries.

“[We’ll be able to measure] heart rate, respiration, temperature, and blood pressure. We’ll also do video conferencing from that location with the patient. We’ll have nurses going to the patient’s home at least twice a day,” interventional cardiologist Rajesh Arvind Shah, MD, Senior Medical Director of Hospital Care at Home, Orlando Health, told Health News Florida.

Orlando Health patients can be safely treated in their homes for many conditions including:

According to the American Hospital Association (AHA), “many are seeing the hospital-at-home model as a promising approach to improve value. … This care delivery model has been shown to reduce costs, improve outcomes, and enhance the patient experience. In November 2020, the Centers for Medicare and Medicaid Services launched the Acute Hospital Care at Home program to provide hospitals expanded flexibility to care for patients in their homes.”

Hospital-in-the-Home (HITH) is considered by many experts to be safer for patients, as they are not exposed to nosocomial (hospital-acquired) infections, falls, and medical errors. In its landmark “To Err is Human” report of 1999, the Institute of Medicine (IOM) estimated that medical errors killed as many as 98,000 patients in hospitals annually.

Dark Daily has often reported on HITH programs.

In “Hospital-in-the-Home Shows Promise for Reducing Acute Care Costs; Medical Laboratories Face Uncertainties Concerning Expanding Services to In-Home Environments in Support of Care Providers,” we reported how doctors at Brigham and Women’s Faulkner Hospital in Boston had chosen to treat a 71-year-old pneumonia patient with a weakened immune system in her home rather than admitting her into the hospital and risking exposing her to germs and infection vectors. The patient recovered fully within days.

In “Two US Studies Show Home-based Hospital Care Lowers Costs while Improving Outcomes and Patient Satisfaction,” Dark Daily reported on a year-long proof-of-concept trial involving 323 patients at Presbyterian Healthcare Services in Albuquerque, New Mexico. The study found patients of their hospital-based home care program achieved savings of 19% when compared to costs of similar hospital acute care patients.

And in “Australia’s Hospital-in-the-Home Care Model Demonstrates Major Cost Savings and Comparable Patient Outcomes,” we predicted that wider adoption of that country’s HITH model of patient care would directly affect pathologists and clinical laboratory managers who worked in Australia’s hospital laboratories. Having more HITH patients would increase the need to collect specimens in patient’s homes and transport them to a local clinical laboratory for testing, and, because they are central to the communities they serve, hospital-based medical laboratories would be well-positioned to provide this diagnostic testing.

New Federal Funds for HITH Programs

One recent impetus to create new HITH programs was the passing of the Consolidated Appropriations Act, 2023 (HR 2617). The federal bill includes two-year extensions of the telehealth waivers and Acute Hospital Care at Home (AHCaH) individual waiver that got started during the COVID-19 pandemic.

As of March 20, the federal Centers for Medicare and Medicaid Services (CMS) listed 123 healthcare systems and 277 hospitals in 37 states that had been approved to use the AHCaH wavier.

Now that federal funding for AHCaH waivers has been extended, more healthcare providers will likely start or expand existing HITH programs.

“I think [the renewed funding] is going to allow for additional programs to come online,” Stephen Parodi, MD, Executive Vice President External Affairs, Communications, and Brand, Permanente Federation; and Associate Executive Director, Permanente Medical Group, told Home Health Care News.

“For the next two years, there’s going to be a regulatory framework and approval for being able to move forward. It allows for the collection of more data, more information on quality, safety, and efficiency of these existing programs,” he added. Parodi also oversees Kaiser Permanente’s Care at Home program.

Labs without Walls

Clinical laboratories can play a major role in supporting HITH patients who require timely medical test results to manage health conditions and hospital recovery. Lab leaders may want to reach out to colleagues who are planning or expanding HITH programs now that federal funding has been renewed. 

—Donna Marie Pocius

Related Information:

Where Hospital-at-Home Programs Go Next

Orlando Health Launches Hospital Care at Home Program

Some of Orlando Health’s Patients Can Now Receive Hospital Care at Home

How AI, Digital Health, and Home-Based Services Can Help Prevent Hospital Readmission

CMS: Acute Hospital Care at Home Individual Waiver Only (not a blanket waiver)

CMS: Approved Facilities/Systems for Acute Hospital Care at Home

To Err is Human: Building a Safer Health System

Hospital-in-the-Home Shows Promise for Reducing Acute Care Costs; Medical Laboratories Face Uncertainties Concerning Expanding Services to In-Home Environments in Support of Care Providers

Two US Studies Show Home-based Hospital Care Lowers Costs while Improving Outcomes and Patient Satisfaction

Australia’s ‘Hospital in the Home’ Care Model Demonstrates Major Cost Savings and Comparable Patient Outcomes

FDA Expands Approval of Gastric Emptying Breath Test for Gastroparesis to Include At-home Administration Under Virtual Supervision

It may not be a boom trend, but more non-invasive diagnostic tests are coming to market as clinical laboratory tests that use breath as the specimen

Here’s a development that reinforces two important trends in diagnostics: non-invasive clinical laboratory assays and patient-self testing. Recently, the FDA expanded the clearance of one diagnostic test to allow patients to collect their own breath specimen at home under the supervision of the test manufacturer’s telehealth team.

The C-Spirulina Gastric Emptying Breath Test (GEBT) breath test from Cairn Diagnostics initially received federal Food and Drug Administration (FDA) approval in 2015. At that time, the test was required to be administered “at a physician’s office, a laboratory collection center, or in a tertiary care setting,” according to a 2016 news release.

Recently, however, the FDA announced it has “expanded the approval of the company’s 13C-Spirulina Gastric Emptying Breath Test (GEBT) to now include ‘at home’ administration under virtual supervision of Cairn Diagnostics.”

Self-administration of at-home tests by patients guided virtually by healthcare professionals is a major advancement in telehealth. But will this virtual-healthcare method be popular with both patients and their physicians?

Clinical Laboratory Diagnostics and Telehealth

Spurring a far greater acceptance of telehealth among patients and healthcare providers is one of the many ways the COVID-19 pandemic has impacted healthcare.

“Telehealth, particularly during the COVID-19 pandemic, has emerged as a preferred option for healthcare providers,” noted Kerry Bush, President and COO of Cairn Diagnostics, in a 2021 news release

Cairn’s GEBT detects gastroparesis, a disease which, according to the NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), affects 50 people in every 100,000. According to the CDC, it is also sometimes a complication of diabetes. Symptoms include nausea, heartburn, bloating, a feeling of fullness long after eating a meal, vomiting, belching, and pain in the upper abdomen, the NIDDK notes.

In people with gastroparesis—sometimes called “delayed gastric emptying”—muscles that normally move food from the stomach to the small intestine do not work as they should, and the food remains in the stomach for too long. The traditional diagnostic tool used to diagnose gastroparesis is scintigraphy. The patient consumes a meal that has radioactive material mixed in and the digestion process is observed using a nuclear medicine camera as the material is eliminated through the bowels.

Cairn Diagnostics’ C-Spirulina Gastric Emptying Breath Test

Cairn Diagnostics’ C-Spirulina Gastric Emptying Breath Test (above) recently received an expansion to its initial 2015 FDA approval that enables patients to self-administer the test at-home while being virtually guided by the company’s telehealth team. GEBTs are interpreted by CLIA-certified clinical laboratories and the results sent to patients’ doctors within 24-48 hours after testing. (Photo copyright: Cairn Diagnostics.)

Virtual Telehealth GEBT versus Scintigraphy

The telehealth process for Cairn Diagnostic’s Gastric Emptying Breath Test (GEBT) differs significantly from traditional scintigraphy testing. Once a physician prescribes the test, Cairn’s telehealth team contacts the patient to describe the virtual process. The team then ships the at-home test kit to the patient. To complete the testing, Cairn provides the patient with a web-based link to a secure audio/video platform.

During administration of the GEBT, a Cairn technician coaches the patient and supervises via video. Once the test is complete, the patient returns the breath samples to the CLIA-certified clinical laboratory by overnight courier. The test results are sent to the prescribing physician within 24-48 hours after the lab receives the samples.

Discovering New Uses for Breath as a Specimen for Clinical Laboratory Testing

For obvious reasons, patients prefer diagnostics that use specimens obtained noninvasively. GEBT is the latest in a growing list of diagnostic tests that use breath as a specimen.

For example, at Johns Hopkins clinicians employ breath testing to diagnose several conditions, including:

Each of these tests involves the patient consuming a particular substance, technicians capturing breath samples at certain intervals, and clinical laboratory personnel analyzing the samples to look for indicators of disease or intolerance.

New Types of Breath Tests

Breath samples are commonly used to diagnose gastrointestinal issues, but researchers also are seeking methods of using them to diagnose and monitor respiratory conditions as well.

In a recent study published in Nature Nanotechnology, scientists explored how breath can be used to monitor respiratory disease, noting that although breath contains numerous volatile metabolites, it is rarely used clinically because biomarkers have not been identified.

“Here we engineered breath biomarkers for respiratory disease by local delivery of protease-sensing nanoparticles to the lungs. The nanosensors shed volatile reporters upon cleavage by neutrophil elastase, an inflammation-associated protease with elevated activity in lung diseases such as bacterial infection and alpha-1 antitrypsin deficiency,” the researchers wrote.

Indeed, the search for new ways to use breath as a biological sample is being pursued by numerous groups and organizations. Owlstone Medical in the UK, for example, is developing breathalyzer tests for the detection of cancer as well as inflammatory and infectious disease.

“Exhaled breath is more than just air,” notes the company’s website. “It contains over 1,000 volatile organic compounds (VOCs) as well as microscopic aerosol particles, also known as respiratory droplets, originating from the lungs and airways.”

Analyzing breath allows for the:

  • investigation of biomarkers of disease,
  • patient stratification by phenotype,
  • detection and monitoring treatment response, and
  • measurement of exposure to harmful substances.

In fact, so many studies on using breath as a specimen have been conducted that in “Breath Biomarkers in Asthma: We’re Getting Answers, But What Are the Important Questions?” researchers Peter J. Sterk, PhD, Professor of Pulmonology at Amsterdam University Medical Centers, and immunity and respiratory medicine specialist Stephen J. Fowler, MD, FRCP, Professor of Respiratory Medicine at the University of Manchester in the UK suggested that systematic reviews are now feasible. They published their article in the European Respiratory Journal.

“Whilst we are still in this discovery stage it is time to refine our study designs so that we can make progress towards tailored clinical application,” they wrote. “Breathomics is perhaps at the ‘end of the beginning’ for asthma at least; it has a ‘sexy’ name, some promising and consistent findings, and the key questions are at least being recognized.”

Better for Patients, Clinicians, and Clinical Laboratories

Virtual telehealth tests, ordered by physicians, administered at home, and interpreted in CLIA-certified clinical laboratories, is a trend pathologists may want to watch carefully, along with the development of other tests that use human breath as the specimen. 

Less invasive, more personalized diagnostic tools that can be administered at home are better for patients. When those tools also provide detailed information, clinicians can make better decisions regarding care. Clinical laboratories that approach the use of at-home tests creatively, and which can accurately and quickly process these new types of tests, may have a market advantage and an opportunity to expand and grow.

Dava Stewart

Related Information:

Cairn Diagnostics Approved for At-Home Admin of Breath Test

Cairn Diagnostics Delivers Virtual Administration of Its Novel 13C-Spirulina Gastric Emptying Breath Test

Cairn Diagnostics Launches FDA-Approved Spirulina Gastric Emptying Breath Test for Gastroparesis

NIDDK: Definition and Facts for Gastroparesis

CDC: Diabetes and Digestion

Nuclear Medicine Gastric Emptying

Johns Hopkins: Gastroenterology and Hepatology

Nature: Engineering Synthetic Breath Biomarkers for Respiratory Disease

A Breathalyzer for Disease

Breath Biopsy—Biomarkers on Exhaled Breath

Breath Biomarkers in Asthma: We’re Getting Answers, But What Are the Important Questions?

Swedish Researchers Develop Urine Test That Can Identify Asthma Types and Their Severity, Potentially Leading to Improved Precision Medicine Diagnostics

The study ‘shows that measurement using a urine test provides improved accuracy relative to other measurement methods, for example certain kinds of blood tests,’ a KI news release states

Researchers at the Karolinska Institute (KI) in Sweden have developed a non-invasive urine-based test that can identify what type of asthma a patient has and its severity. If developed into a clinical laboratory diagnostic, such a test also could give clinicians a better idea of what treatment is more likely to be effective—a core goal of precision medicine.

Another benefit of this methodology is that it is a non-invasive test. Should further studies conclude that this urine-based test produces accurate results acceptable for clinical settings, medical laboratories would certainly be interested in offering this assay, particularly for use in pediatric patients who are uncomfortable with the venipunctures needed to collect blood specimens. Also, given the incidence of asthma in the United States, there is the potential for a urine-based asthma test to generate a substantial number of test requests.

The objective of the study, according to the Karolinska Institute researchers, was “To test if urinary eicosanoid metabolites can direct asthma phenotyping.” The team used mass spectrometry to measured certain lipid biomarkers (prostaglandins and leukotrienes), which are known to play a key role in the inflammation that occurs during asthma attacks.

According to a KI news release, “The study is based on data from the U-BIOPRED study (Unbiased BIOmarkers in PREDiction of respiratory disease outcomes), which was designed to investigate severe asthma. The study included 400 participants with severe asthma, which often requires treatment with corticosteroid tablets, nearly 100 individuals with milder forms of asthma, and 100 healthy control participants.”

The Karolinska Institute researchers published their study in the American Journal of Respiratory and Critical Care Medicine.

Johan Kolmert, PhD

“We discovered particularly high levels of the metabolites of the mast cell mediator prostaglandin D2 and the eosinophil product leukotriene C4 in asthma patients with what is referred to as Type 2 inflammation. Using our methodology, we were able to measure these metabolites with high accuracy and link their levels to the severity and type of asthma,” said Johan Kolmert, PhD (above), a post-doctoral researcher at the Institute of Environmental Medicine, Karolina Institute, and first author of the study, in the KI news release. If perfected, such accuracy could lead to effective precision medicine clinical laboratory tests. (Photo copyright: Karolinska Institute.)

More Accurate Testing Could Lead to Biomarker-guided Precision Medicine

In the US alone, 25,131,132 people currently suffer from asthma, about five million of which are children under the age of 18, according to 2019 CDC statistics. The World Health Organization (WHO) reports that worldwide, “Asthma affected an estimated 262 million people in 2019 and caused 461,000 deaths.”

People with mild asthma may have good success using steroid inhalers. However, for those with moderate to severe asthma where inhalers are not effective, oral corticosteroids may also be necessary. But corticosteroids have been associated with high blood pressure and diabetes, among other negative side effects.

“To replace corticosteroid tablets, in recent times several biological medicines have been introduced to treat patients with Type 2 inflammation characterized by increased activation of mast cells and eosinophils,” said Sven-Erik Dahlén, Professor at the Institute of Environmental Medicine, Karolinska Institute, in the news release.

Currently, there are no simple tests that show what type of asthma a patient has. Instead, clinicians rely on lung function tests, patient interviews, allergy tests, and blood tests.

Other Non-invasive Urine-based Diagnostic Tests

In “University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test,” Dark Daily recently reported on a different urine-based prostate cancer test developed in the UK that University of East Anglia (UEA) Norwich Medical School researchers say can “determine the aggressiveness of the disease” and potentially “reduce the number of unnecessary prostate cancer biopsies by 32%.”

Earlier this year, researchers at Brigham and Women’s Hospital and Exosome Diagnostics in Massachusetts investigated a non-invasive, urine-based test for transplant rejection. According to a news release, “Patients can spend up to six years waiting for a kidney transplant. Even when they do receive a transplant, up to 20% of patients will experience rejection.”

“If rejection is not treated, it can lead to scarring and complete kidney failure. Because of these problems, recipients can face life-long challenges,” said Jamil Azzi, MD, Director of the Kidney Transplantation Fellowship Program at Brigham and Women’s Hospital, and Associate Professor of Medicine at Harvard School of Medicine. “Our goal is to develop better tools to monitor patients without performing unnecessary biopsies. We try to detect rejection early, so we can treat it before scarring develops,” he said.

Detecting Bladder Cancer with Urine Testing

Another condition where urine tests are being investigated is bladder cancer. An article in Trends in Urology and Men’s Health states, “Several point-of-care urine tests have been developed to help identify patients who may be at higher risk of bladder cancer.” Those tests could have the potential for use in primary care, which could mean fewer people would need invasive, painful, and risk-carrying cystoscopies.

“New tests to help identify hematuria patients who are at a higher risk of cancer would help to improve the diagnostic pathway, reduce the number diagnosed by emergency presentation, lessen the burden on urology services, and spare those who do not have cancer an invasive and costly examination, such as cystoscopy,” the article’s authors wrote.

These urine-based tests are still under investigation by various research teams and more research is needed before clinical trials can be conducted and the tests can be submitted for regulatory approval. Though still in the early stages of development, urine-based diagnostic testing represents far less invasive, and therefore safer, ways to identify and treat various diseases.

Studies into how the elements in urine might be used as biomarkers for clinical laboratory tests may lead to improved non-invasive precision medicine diagnostics that could save many lives.

—Dava Stewart

Related Information

Urinary Leukotriene E4 and Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study

Lipid Biomarkers in Urine Can Determine the Type of Asthma:

The U-BIOPRED Severe Asthma Study: Immunopathological Characterization

Novel Urine Test Developed to Diagnose Human Kidney Transplant Rejection

A Urine Test for Bladder Cancer: Available Soon in Primary Care?

University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test

Independent Clinical Laboratories in Maryland May Need to Step-up Outreach with Hospitals as New CMS Program Launches Jan. 1

Clinical laboratory leaders will want to pay close attention to a significant development in Maryland. The state’s All-Payer Medicare program—the nation’s only all-payer hospital rate regulation system—is broadening in scope to include outpatient services starting Jan. 1. The expanded program could impact independent medical laboratories, according to the Maryland Hospital Association (MHA), which told Dark Daily that those labs may see hospitals reaching out to them.

The Centers for Medicare and Medicaid Services (CMS) and the state of Maryland expect to save $1 billion by 2023 in expanding Maryland’s existing All-Payer Model—which focused only on inpatient services since 2014—to also include primary care physicians, skilled nursing facilities, independent clinical laboratories, and more non-hospital settings, according to a CMS statement.

Healthcare Finance notes that it represents “the first time, CMS is holding a state fully at risk for the total cost of care for Medicare beneficiaries.”

Value of Precision Medicine and Coordination of Care to Clinical Labs

“If a patient receives care at a [medical] laboratory outside of a hospital, Maryland hospitals would be looking at ways to coordinate the sharing of that freestanding laboratory information, so that the hospital can coordinate the care of that patient both within and outside the hospital setting,” Erin Cunningham, Communications Manager at MHA, told Dark Daily. Such a coordinating of efforts and sharing of clinical laboratory patient data should help promote precision medicine goals for patients engaged with physicians throughout Maryland’s healthcare networks.

The test of the new program—called the Total Cost of Care (TCOC) Model—also could be an indication that Medicare officials are intent on moving both inpatient and outpatient healthcare providers away from reimbursements based on fees-for-services.

CMS and the state of Maryland said TCOC gives diverse providers incentives to coordinate, center on patients, and save Medicare per capita costs of care each year.

“What they are really doing is tracking how effective we are at managing the quality and the costs of those particular patients that are managed by the physicians and the hospitals together,” Kevin Kelbly, VP and Chief Financial Officer at Carroll Hospital in Westminster, told the Carroll County Times. “They will have set up certain parameters. If we hit those parameters, there could be a shared savings opportunity between the hospitals and the providers,” he added. (Photo copyright: LifeBridge Health.)

The TCOC runs from 2019 through 2023, when it may be extended by officials for an additional five years.

How Does it Work?

The TCOC Model, like the earlier All-Payer Model, will limit Medicare’s costs in Maryland through a per capita, population-based payment, Healthcare Finance explained.

It includes three programs, including the:

  • Maryland Primary Care Program (MDPCP), designed to incentivize physician practices by giving additional per beneficiary, per month CMS payments, and incentives for physicians to reduce the number of patients hospitalize;
  • Care Redesign Program (CRP), which is a way for hospitals to make incentive payments to their partners in care. In essence, rewards may be given to providers that work efficiently with the hospital to improve quality of services; and,
  • Hospital Payment Program, a population-based payment model that reimburses Maryland hospitals annually for hospital services. CMS provides financial incentives to hospitals that succeed in value-based care and reducing unnecessary hospitalizations and readmissions.

CMS and Maryland officials also identified these six high-priority areas for population health improvement:

  • Substance-use disorder;
  • Diabetes;
  • Hypertension;
  • Obesity;
  • Smoking; and
  • Asthma.

“We are going to save about a billion dollars over the next five years, but we are also providing better quality healthcare. So it’s going to affect real people in Maryland, and it helps us keep the whole healthcare system from collapsing, quite frankly,” Maryland Gov. Larry Hogan, told the Carroll County Times.

OneCare in Vermont, Different Approach to One Payer

Maryland is not the only state to try an all-payer model. Vermont’s OneCare is a statewide accountable care organization (ACO) model involving the state’s largest payers: Medicare, Medicaid, and Blue Cross and Blue Shield of Vermont, Healthcare Dive pointed out. The program aims to increase the number of patients under risk-based contracting and, simultaneously, encourage providers to meet population health goals, a Commonwealth Fund report noted.

Both Maryland’s and Vermont’s efforts indicate that payment plans which include value-based incentives are no longer just theory. In some markets, fees-for-service payment models may be gone for good.

Clinical laboratory leaders may want to touch base with their colleagues in Maryland and Vermont to learn how labs in those states are engaging providers and performing under payment programs that, if successful, could replace existing Medicare payment models in other states.

—Donna Marie Pocius

 

Related Information:

Maryland’s Total Cost of Care Model

Maryland All-Payer Model Expands to Include Outpatient Services

Gov. Hogan Sees Maryland Model as Example for U.S. Healthcare

The Maryland Model

Gov. Larry Hogan, Federal Government Sign Maryland Model All-Payer Contract

CMS Expands Maryland’s All-Payer Program to Outpatient Services

Vermont’s Bold Experiment in Community Driven Healthcare Reform

Hospital-in-the-Home Shows Promise for Reducing Acute Care Costs; Medical Laboratories Face Uncertainties Concerning Expanding Services to In-Home Environments in Support of Care Providers

Despite logistics and test volume concerns for laboratories, hospital-in-the-home services promise to reduce cost and improve quality of care for patients who might be negatively impacted by the noise, stress, and germs of busy hospitals

In April, The Washington Post highlighted the plight of 71-year-old Phyllis Petruzzelli—a patient with a weakened immune system suffering from pneumonia. Instead of admitting her into a noisy ward and exposing her to other germs and infection vectors, doctors at Brigham and Women’s Faulkner Hospital in Boston chose a different approach. They treated her in her home with a remote monitoring patch and in-home visits. Three days later, she was well and referred to her primary care provider for follow-up.

This is an example of the hospital-in-the-home model of clinical care. It is not a new concept and is being developed in a number of countries. In the United States, managers at medical laboratories, hospitals, and integrated health systems will want to stay informed about the ongoing efforts to use the hospital-in-the-home method as a way to improve patient care while lowering the overall cost of a healthcare encounter. One reason is that patients receiving care in their homes will need to be serviced by clinical laboratories.

David Levine, MD, Clinician-Investigator at Brigham and Women’s Hospital, told The Washington Post that despite initial reservations from staff, their testing of hospital-at-home care has been positive. “[Staff] very quickly realize that this is really what patients want and it’s really good care,” he stated.

Hospital-in-the-Home Costs Less, Better Care

Levine is lead author of a study published in the Journal of General Internal Medicine that compared the costs, quality, safety, and patient experience of 20 adult individuals admitted to emergency departments for an infection, exacerbation of heart failure, chronic obstructive pulmonary disease (COPD), or asthma.

“Median direct cost for the acute care plus 30-day post-discharge period for home patients was 67% (IQR, 77%; p < 0.01) lower,” the study authors note, “with trends toward less use of home-care services (22% vs. 55%; p = 0.08) and fewer readmissions (11% vs. 36%; p = 0.32). Patient experience was similar in both groups.”

Though authors acknowledged the need for a larger trial to create definitive results, they concluded that home-hospitalization resulted in reduced cost while allowing improved physical activity.

David M. Levine, MD (above right), Division of General Internal Medicine and Primary Care at Brigham and Women’s Hospital, describes the home hospital, a novel care model that brings hospital services to patients at home. Click on the image above to view the video. (Photo and caption copyright: Brigham and Woman’s Hospital.)

Hospitals caring for patients in their homes is not a new concept. In 2012, Dark Daily reported on a similar trial involving 323 patients across a year at Presbyterian Healthcare Services in Albuquerque, New Mexico. The study found patients of their hospital-based home care (HBHC) program achieved savings of 19% when compared to costs of similar hospital acute care patients.

And a 2011 study conducted by Deloitte Access Economics found that hospital-in-the-home (HITH) care costs an average of 22% less than hospital care for a range of common conditions and uncomplicated diagnosis. (See Dark Daily, Australia’s ‘Hospital in the Home’ Care Model Demonstrates Major Cost Savings and Comparable Patient Outcomes,” December 5, 2011.)

Hospital-in-the-Home Care Impacts Pathology Groups and Medical Laboratories

One reason for the reduced costs should concern medical laboratories and other service providers—less diagnostic tests ordered. “During the care episode, home patients had fewer laboratory orders (median per admission: six vs. 19; p < 0.01) and less often received consultations (0% vs. 27%; p = 0.04),” noted the authors of the Brigham and Women’s Hospital study.

Another complication of HITH for clinical laboratories is the patient’s location. When tests are required, clinical laboratory personnel must collect samples in patients’ homes. This could prove a logistical challenge for both independent laboratories and hospital-based labs. Adding overhead for transportation and collection to an already shrinking volume of tests could negatively impact laboratory workflow and revenues alike.

Nevertheless, though HITH is still in its early stages, studies continue to show positive results. The biggest hurdle to adoption of HITH is convincing payers to cover it. Should providers find a way to convince payers to support the new approach, rapid growth of HITH programs is likely.

As more lab-on-a-chip, lab-on-a-fiber, and similar point-of-care diagnostic testing technologies mature and integrate with telehealth solutions and electronic health record (EHR) systems, they also could combine with HITH trends to further impact volumes and margins for clinical laboratories of all sizes.

Healthcare delivery is evolving, and clinical laboratories and pathology groups must remain flexible and support these advances. In adapting to changes and providing flexible services—such as remote collection in HITH care episodes—laboratories can reinforce their value in today’s modern healthcare market and work to compensate for changes in how diagnostic tests and lab results are both utilized and delivered.

—Jon Stone

Related Information:

Hospitals Are Germy, Noisy Places. Some Acutely Ill Patients Are Getting Treated at Home Instead

Hospital-Level Care at Home for Acutely Ill Adults: A Pilot Randomized Controlled Trial

Wagga Base Hospital Program Gives Patients the Option for Treatment at Home

Admission Rates in a General Practitioner-Based versus a Hospital Specialist Based, Hospital-at-Home Model: ACCESS, an Open-Labelled Randomized Clinical Trial of Effectiveness

Impact of Home Health Care on Health Care Resource Utilization Following Hospital Discharge: A Cohort Study

HAI Data and Statistics

From Micro-Hospitals to Mobile ERs: New Models of Healthcare Create Challenges and Opportunities for Pathologists and Medical Laboratories

Australia’s ‘Hospital in the Home’ Care Model Demonstrates Major Cost Savings and Comparable Patient Outcomes

Two US Studies Show Home-Based Hospital Care Lowers Costs While Improving Outcomes and Patient Satisfaction

;