News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Chicago Study Determines Certain Gut Bacteria Can Help Prevent Food Allergies and Other Gastrointestinal Illnesses

With further research, clinical laboratories may soon be performing macrobiotic testing to measure certain bacterial levels in patients’ gut bacteria

New insights from the University of Chicago (UChicago) into how human microbiota (aka, gut bacteria) play a role in food allergies has the potential to change the way a number of gastrointestinal health conditions are diagnosed and treated. This would give microbiologists and clinical laboratories a greater role in helping physicians diagnose, treat, and monitor patients with these health issues.

Past research has shown that certain gut bacteria can prevent antigens that trigger allergic reactions from entering the bloodstream. For example, Clostridium bacteria in the stomach produce a short-chain fatty acid known as butyrate, a metabolite that promotes the growth of healthy bacteria in the gut. This helps keep the microbiome in balance.

One way butyrate is created in the gut is through the fermentation of fiber. However, a lack of fiber in the diet can deplete the production of butyrate and cause the microbiome to be out of balance. When this happens, a state known as dysbiosis occurs that disrupts the microbiome and can lead to food allergies. 

Without butyrate, the gut lining can become permeable and allow food to leak out of the gastrointestinal tract and into the body’s circulatory system. This reaction can trigger a potentially fatal anaphylactic response in the form of a food allergy. Thus, eating enough fiber is critical to the production of butyrate and to maintaining a balanced microbiome.

But today’s western diet can be dangerously low in soluble fiber. Therefore, the scientists at the University of Chicago have developed “a special type of polymeric molecule to deliver a crucial metabolite produced by these bacteria directly to the gut, where it helps restore the intestinal lining and allows the beneficial bacteria to flourish. … these polymers, called micelles, can be designed to release a payload of butyrate, a molecule that is known to help prevent food allergies, directly in the small and large intestines,” according to a UChicago news release.

This will be of interest to microbiologists, in particular. It’s another example of researchers connecting a specific species of bacteria in the human microbiome to a specific benefit.

The University of Chicago scientists published their findings in the journal Nature Biomedical Engineering titled, “Treatment of Peanut Allergy and Colitis in Mice via the Intestinal Release of Butyrate from Polymeric Micelles.”

Cathryn Nagler, PhD

“It’s very unlikely that butyrate is the only relevant metabolite, but the beauty of this platform is that we can make polymers with other microbial metabolites that could be administered in conjunction with butyrate or other therapies,” said Cathryn Nagler, PhD (above), Bunning Family Professor in the Biological Sciences Division and Pritzker School of Molecular Engineering at UChicago and a senior author of the study. “So, the potential for the polymer platform is pretty much wide open.” As further research validates these findings, clinical labs are likely to be doing microbiomic testing to monitor these therapies. (Photo copyright: University of Chicago.)

Restoring Butyrate in the Gut

One way to treat this anomaly has been through a microbiota transplant—also called a fecal biota transplant—where the administration of a solution of fecal matter is transplanted from a donor into the intestinal tract of the recipient. This transplant alters the recipient’s gut microbial composition to a healthier state, but it has had mixed results. 

So, the UChicago researchers went in another direction (literally). They created an oral solution of butyrate and administered it to mice in the lab. The purpose of the solution was to thwart an allergic reaction when the mice were exposed to peanuts. 

But there was a problem with their oral solution. It was repulsive.

“Butyrate has a very bad smell, like dog poop and rancid butter, and it also tastes bad, so people wouldn’t want to swallow it,” Shijie Cao, PhD, Postdoctoral Scientist at the Pritzker School of Molecular Engineering at UChicago and one of the researchers who worked on the project, told Medical News Today.

The researchers developed a new configuration of polymers that masked the butyrate. They then delivered these polymer micelles directly into the digestive systems of mice that lacked healthy gut bacteria or a proper gut linings.

The treatment restored the microbiome by increasing the production of peptides that obliterate harmful bacteria. This allowed more of the beneficial butyrate-producing bacteria to emerge, which protected the mice from an anaphylactic reaction to peanuts and even reduced the symptom severity in an ulcerative colitis model. 

“We were delighted to see that our drug both replenished the levels of butyrate present in the gut and helped the population of butyrate-producing bacteria to expand,” said Cathryn Nagler, PhD, Bunning Family Professor in the Biological Sciences Division and Pritzker School of Molecular Engineering at the University of Chicago and a senior author of the study, in the press release. “That will likely have implications not only for food allergy and inflammatory bowel disease (IBD), but also for the whole set of non-communicable chronic diseases that have been rising over the last 30 years, in response to lifestyle changes and overuse of antibiotics in our society.”

Future Benefits of UChicago Treatment

According to data from the Asthma and Allergy Foundation of America, about 20 million Americans suffered from food allergies in 2021. This includes approximately 16 million (6.2%) of adults and four million (5.8%) of children. The most common allergens for adults are shellfish, peanuts, and tree nuts, while the most common allergens for children are milk, eggs, and peanuts. 

The best way to prevent an allergic reaction to a trigger food is strict avoidance. But this can be difficult to ensure outside of the home. Therefore, scientists are searching for ways to prevent food allergies from happening in the first place. The micelle technology could be adapted to deliver other metabolites and molecules which may make it a potential platform for treating allergies as well as other inflammatory gastrointestinal diseases

“It’s a very flexible chemistry that allows us to target different parts of the gut,” said Jeffrey Hubbell, PhD, Eugene Bell Professor in Tissue Engineering and Vice Dean and Executive Officer at UChicago’s Pritzker School of Molecular Engineering and one of the project’s principal investigators, in the UChicago news release. “And because we’re delivering a metabolite like butyrate, it’s antigen-agnostic. It’s one agent for many different allergic indications, such as peanut or milk allergies. Once we begin working on clinical trials, that will be a huge benefit.”

Nagler and Hubbell have co-founded a company called ClostraBio to further the development of butyrate micelles into a commercially available treatment for peanut and other food allergies. They hope to begin clinical trials within the next 18 months and expand the technology to other applications as well.  

Further research and clinical trials are needed to prove the validity of using polymer micelles in the treatment of diseases. But it is possible that clinical laboratories will be performing microbiomic testing in the future to help alleviate allergic reactions to food and other substances.

—JP Schlingman

Related Information:

Peanut and Food Allergies May Be Reversed with Compound Produced by Healthy Gut Bacteria

Time Release Polymers Deliver Metabolites to Treat Peanut Allergy and Colitis

Food Allergies: Reversing the Old, Preventing the New with Gut Bacteria

Scientists Reverse Food Allergies by Targeting the Microbiome

Polymers Help Protect Mice from Anaphylactic Reaction to Peanuts, UChicago Research Finds

Treatment of Peanut Allergy and Colitis in Mice via the Intestinal Release of Butyrate from Polymeric Micelles

­A Dark Daily Extra!

This is the first of a three-part series on revenue cycle management for molecular testing laboratories and pathology practices, produced in collaboration with XiFin, Inc.

Setting Your Organization Up for Success: Maximizing Revenue for Molecular Diagnostics and Pathology Testing Starts Well Before Billing

What progressive revenue cycle management technology reveals about revenue levers, test clearances, and strategic planning for molecular and pathology testing.

CFOs and other leaders of molecular testing laboratories and pathology groups need to raise their awareness of the most vulnerable aspects of revenue. To this end, this article outlines three specific areas of potential revenue cycle management (RCM) improvement so molecular diagnostic and pathology organizations can better identify and adapt to localized market dynamics and individual patient needs.

“Many people look at RCM as just billing or getting a clean billing process, but laboratory testing is getting more complex; consequently, reimbursement is getting more complicated, and continually changing payer policies are also making it more challenging for labs to keep up. It is important for business executives, revenue cycle leaders, and CFOs to look more broadly at the revenue cycle,” explained Clarisa Blattner, XiFin Senior Director of Revenue and Payor Optimization. XiFin recommends lab and pathology leaders consider revenue cycle within the broader context of the patient journey, which generally includes, among other things, three key revenue-impacting patient engagement stages.

The first of the three stages, patient access and financial clearance, begins when patient demographics and insurance information are captured. Following demographics and insurance details is a determination of benefits coverage and verification of eligibility. Financial information on any required copay and deductibles are determined, and pre-payment is collected. Finally, the patient receives a financial responsibility estimate for any out-of-pocket expenses.

In stage 2, clinical/medical clearance requires ordering physician engagement to address medical necessity questions and obtain supporting documentation. Clinical assessment and diagnostic testing are conducted. The encounter document is completed. Results are shared via secure, seamless, connected communication between the ordering physician’s office, the lab of the diagnostic provider, and the patient. Finally, the claim is submitted for reimbursement with all relevant supporting documentation.

The third stage is when payer management activities are essential to maximizing reimbursement by ensuring claim submissions include prior authorizations, clinical documentation, proprietary payer forms and comply with payer policies and requirements. Through this stage, patient engagement ensures all the correct data is in place, and insurance information or coverage hasn’t changed or is appropriately updated. Anticipating payer responses and subsequent actions is critical to collecting the full amount payers are responsible for to minimize patient financial impact. Once all payer activities are exhausted, the patient must be sent their statement for the remaining balance in their preferred communication method (paper, text, email, portal, etc.). Additionally, payment collection is accelerated when a diagnostic provider makes it easy and convenient to make payments, manage payment plans, and change payment methods.

These three stages in the patient journey encompass important revenue levers that cannot be overlooked. They are foundational to automating the financial performance engine needed for molecular diagnostics and pathology practices, Blattner continued. Whereas specialty diagnostics are rapidly coming to market and localized with varying reach, availability, and insurance coverage assurance, activating specific “clearance” functions or “engagement” opportunities within these levers will be key to smooth claims processing, timely filing, and optimizing all payment avenues.

Blattner stresses that when not built into automatic administrative functions, these three types of stages (i.e., patient access, physician engagement, and payer management) will slow or indefinitely stall payment for molecular diagnostics and pathology providers.

Market Expansion and Shift in at-Home Testing Stresses Traditional Administrative Approaches

Novel diagnostics are being introduced in record numbers as physicians and diagnostic business leaders seek to address and fulfill unmet diagnostic and medical needs to support better health outcomes. Along with these new medical breakthroughs comes the demand for traditional administrative approaches to reinvent themselves – including RCM. This major operational shift and frequent payer policy changes with advanced diagnostics have strained traditional administrative practices. According to Blattner, when executives realize that manual processes and inadequate electronic billing functions have reached a breaking point, specialized automation is the natural next step. The items corresponding to the highest value revenue cycle activities may sound surprising within the three revenue levers—patient access, medical clearance, and payer management.

Patient Access, Engagement, and Financial Clearance

“Making it easy for physicians to order molecular diagnostics and pathology tests is so important for success in today’s market,” Blattner continued. Ordering physicians and lab teams must have accurate and timely information regarding a patient’s ‘financial clearance’ (the likelihood a test will be covered, what the patient is likely to be charged out-of-pocket, and whether prior authorization is required). Patient portals and multi-channel communications are important parts of effective RCM functionality that facilitate patient access and financial clearance.

“It used to be that a patient went to the lab, and a phlebotomist saw the patient, but now more tests involve specimen collection at home. A kit is distributed at the physician’s office or ordered online and shipped to the patient,” Blattner said. “There is more follow-through needed to make sure not only did the test get done, but did it get returned, because while there are upfront costs to serve the patient, the lab doesn’t get paid until the test is completed, returned, processed and the diagnosis is determined for the claim to be processed. That is an evolution as these tests leave the laboratory or the business and enter the home environment.”

Patient access and engagement tools provide various benefits, including offering a cost-effective alternative to traditional customer service calls and supporting patients’ communication preferences. Effective physician access and engagement programs and technology help diagnostic providers offer self-service tools that enable patients to securely log in, anytime, to:

  • View statements
  • Make credit card payments
  • Set up payment plans (using lab-specified rules and parameters)
  • Establish paperless billing
  • View patient responsibility estimates
  • View test results

Another critical aspect of patient financial clearance for diagnostic testing is the ability to provide patients with an accurate estimation of their out-of-pocket costs associated with a test. Practical patient communication tools enable ordering physicians’ staff members to assist patients in preparing for out-of-pocket expenses, which increases test completion rates and has been proven to reduce write-offs.

To accurately assess a patient’s financial responsibility, the estimation tool must consider relevant provider and plan specific pricing and test or procedure information, as well as provide access to real-time eligibility data. A proper estimation of a patient’s out-of-pocket expenses is also predicated on receiving complete and accurate information from the payer. Examining payer behavior can uncover responses that create inaccurate patient responsibility estimates.

Price and Volume Modeling

Physician Engagement Programs Facilitate Clinical Clearance

Physician engagement programs help diagnostic providers integrate communication and data exchange more deeply with ordering physicians and complete clinical clearance. Clinical clearance involves things like medical necessity, familial history, and social determinants of health. Robust RCM also requires diagnostic providers, laboratories, and pathology practices to be able to seamlessly communicate with patients to ensure that samples, devices, or readings are collected and returned to the diagnostic provider so that services/tests can be completed.

Effective physician engagement and clinical clearance increase ordering volume, maximize clean claims and automate denials and appeals management. Physician engagement technology, including electronic communication tools such as portals, helps physicians and their teams streamline the online correction of missing information and errors. This improves satisfaction, expedites reimbursement, and provides cost savings. With effective physician engagement programs and technology tools, physicians and their staff can more effectively:

  • Perform order entry
  • Access clinical decision support
  • Examine statements at the line-item level
  • View test information and pricing
  • Correct billing errors upfront to expedite reimbursement
  • Provide patients with an estimate of their out-of-pocket cost

Payer Management

Molecular diagnostic and genetic tests are famously complex and present many unique operational and financial challenges for laboratories. Payer policies and behavior are constantly changing, and labs (and their billing partners) must stay abreast of changes to avoid lengthy delays that denials and subsequent appeals can cause. Intelligent automation of prior authorizations, insurance discovery, and benefits determination are especially important for these tests.

Unfortunately, it is common for diagnostic providers to only learn about a change in reimbursement after the month-end close. These changes manifest in billing as:

  • New denials
  • Changes in denial rate
  • Changes in reimbursement rate
  • Change in time to payment

Failure to quickly recognize and adapt workflows to payer reimbursement changes can result in costly appeals and write-offs. XiFin recommends that providers adopt a proactive strategy to identify changes in reimbursement earlier. It is essential to understand the impacts and risks of price discrepancies and changes in pricing to patients. Staying abreast of policy changes for Medicare and commercial payers enables molecular diagnostic laboratories and pathology groups to proactively employ front-end billing system edits to avoid denials.

Revenue Cycle Management Process

Keys to Success

For molecular diagnostic providers and pathology groups to maximize reimbursement, CFOs, and revenue cycle leaders must take a broader view of RCM. The RCM process starts well before billing and runs parallel to the patient journey in many respects. This means that effective RCM technology and tools also stretch beyond the billing system to incorporate seamless communication between systems and parties throughout the patient journey.

Adaptive RCM approaches require automation, intelligence, and real-time communication for the three key revenue-impacting stages discussed in this article: patient access, medical clearance, and payer management. This involves seamless integration with various tools that enable insurance discovery, patent demographic and eligibility verifications, patient financial responsibility estimation, and reporting and analytics that allow early identification of and response to changes in payer behavior.

Molecular diagnostic labs and pathology practices must have tools and technology to align with payers on evidence requirements, including clinical utility evidence, current billing policies, and preferred coding approaches. They must have seamless connectivity to ordering physicians to order tests and ensure the completeness of medical necessity and medical record documentation.

Finally, XiFin recommends that diagnostic organizations use analytics to enable early insight into changes in payer behavior, address root causes, and be able to adjust to changes in ordering patterns and client data quality. Be sure to consider an RCM platform that has embedded artificial intelligence (AI) to drive efficient automation of workflow adaptation to payer changes and future-proof your RCM investment.

Financial executives seeking to maximize market access and capitalize on growth opportunities in key markets will want to explore how successfully their administrative teams are navigating the unique revenue cycle landscape specific to molecular testing and pathology.

Part 2 of this three-part series is coming soon. Watch for updates here at DarkDaily.

— Leslie Williams

American Heart Association Announces CKM Syndrome to Describe ‘Strong Connection’ between Multiple Diseases

Newly-defined Cardiovascular-Kidney-Metabolic Syndrome (CKM) means physicians will be in close collaboration with clinical laboratories to make accurate diagnoses

Based on newly-identified “strong connections” between cardiovascular disease (CVD, or heart disease), kidney disease, Type 2 diabetes, and obesity, the American Heart Association (AHA) is calling for a “redefining” of the risk, prevention, and management of CVD, according to an AHA news release.

In a presidential advisory, the AHA defines a newly described systemic health disorder called Cardiovascular-Kidney-Metabolic Syndrome (CKM). The syndrome “is a systemic disorder characterized by pathophysiological interactions among metabolic risk factors, CKD (chronic kidney disease), and the cardiovascular system leading to multi-organ failure and a high rate of adverse cardiovascular outcomes.”

A CKM diagnosis, which is meant to identify patients who are at high risk of dying from heart disease, is based on a combination of risk factors, including:

  • weight problems,
  • issues with blood pressure, cholesterol, and/or blood sugar,
  • reduced kidney function. 

CKM is a new term and doctors will be ordering medical laboratory tests associated with diagnosing patients with multiple symptoms to see if they match this diagnosis. Thus, clinical laboratory managers and pathologists will want to follow the adoption/implementation of this new recommendation.

The AHA published its findings in its journal Circulation titled, “Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory from the American Heart Association.”

“The advisory addresses the connections among these conditions with a particular focus on identifying people at early stages of CKM syndrome,” said Chiadi Ndumele, MD, PhD (above), Associate Professor of Medicine at Johns Hopkins University and one of the authors of the AHA paper, in a news release. “Screening for kidney and metabolic disease will help us start protective therapies earlier to most effectively prevent heart disease and best manage existing heart disease.” Clinical laboratories will play a key role in those screenings and in diagnosis of the new syndrome. (Photo copyright: Johns Hopkins University.)

Stages of CKM Syndrome

In its presidential advisory, the AHA wrote, “Cardiovascular-Kidney-Metabolic (CKM) syndrome is defined as a health disorder attributable to connections among obesity, diabetes, chronic kidney disease (CKD), and cardiovascular disease (CVD), including heart failure, atrial fibrillation, coronary heart disease, stroke, and peripheral artery disease. CKM syndrome includes those at risk for CVD and those with existing CVD.”

The five stages of CKM syndrome, which the AHA provided to give a framework for patients to work towards regression of the syndrome, are:

  • Stage 0: No CKM risk factors. Individuals should be screened every three to five years for blood pressure, cholesterol, and blood sugar levels, and for maintaining a healthy body weight.
  • Stage 1: Excess body fat and/or an unhealthy distribution of body fat, such as abdominal obesity, and/or impaired glucose tolerance or prediabetes. Patients have risk factors such as weight problems or prediabetes and are encouraged to make healthy lifestyle changes and try to lose at least 5% of their body weight.
  • Stage 2: Metabolic risk factors and kidney disease. Includes people who already have Type 2 diabetes, high blood pressure, high triglyceride levels, and/or kidney disease. Medications that target kidney function, lower blood sugar, and which help with weight loss should be considered at this stage to prevent diseases of the heart and blood vessels or kidney failure.
  • Stage 3: Early cardiovascular disease without symptoms in people with metabolic risk factors or kidney disease or those at high predicted risk for cardiovascular disease. People show signs of disease in their arteries, or have heart function issues, or may have already had a stroke or heart attack or have kidney or heart failure. Medication may also be needed at this stage.
  • Stage 4: Symptomatic cardiovascular disease in people with excess body fat, metabolic risk factors or kidney disease. In this stage, people are categorized as with or without having kidney failure. May also have already had a heart attack, stroke or heart failure, or cardiovascular conditions such as peripheral artery disease or atrial fibrillation.  

“We now have several therapies that prevent both worsening kidney disease and heart disease,” said Chiadi Ndumele, MD, PhD, Associate Professor of Medicine at Johns Hopkins University and one of the authors of the Circulation paper, in a news release. “The advisory provides guidance for healthcare professionals about how and when to use those therapies, and for the medical community and general public about the best ways to prevent and manage CKM syndrome.”

According to an AHA 2023 Statistical Update, one in three adults in the US have three or more risk factors that contribute to cardiovascular disease, metabolic disorders, or kidney disease. While CKM affects nearly every major organ in the body, it has the biggest impact on the cardiovascular system where it can affect the blood vessels, heart muscle function, the rate of fatty buildup in the arteries, electrical impulses in the heart and more. 

“There is a need for fundamental changes in how we educate healthcare professionals and the public, how we organize care and how we reimburse care related to CKM syndrome,” Ndumele noted. “Key partnerships among stakeholders are needed to improve access to therapies, to support new care models, and to make it easier for people from diverse communities and circumstances to live healthier lifestyles and to achieve ideal cardiovascular health.”

New AHA Risk Calculator

In November, the AHA announced PREVENT (Predicting risk of cardiovascular disease EVENTs), a tool that doctors can use to assess a person’s risk for heart attack, stroke, and heart failure. The new risk calculator, which incorporates CKM, allows physicians to evaluate younger people as well, and examine their long-term risks for cardiovascular issues.

“A new cardiovascular disease risk calculator was needed, particularly one that includes measures of CKM syndrome,” said Sadiya Khan, MD, Professor of Cardiovascular Epidemiology at Northwestern University’s Feinberg School of Medicine, in an AHA news story.

Doctors can use PREVENT to assess people ages 30 to 79 and predict risk for heart attack, stroke, or heart failure over 10 to 30 years.

“Longer-term estimates are important because short-term or 10-year risk in most young adults is still going to be low. We wanted to think more broadly and apply a life-course perspective,” Khan said. “Providing information on 30-year risk may reveal earlier opportunities for intervention and prevention efforts in younger people.”

According to CDC data, about 695,000 people died of heart disease in the US in 2021. That equates to one in every five deaths. Clinical pathologists will need to understand the AHA recommendations and how doctors will be ordering clinical laboratory tests to determine if a patient has CKM. Then, labs will play a role in helping doctors monitor patients to optimize health and prevent acute episodes that put patients in the hospital.

—JP Schlingman

Related Information:

‘CKM Syndrome’ Gives New Name to Multi-system Heart Disease Risk

Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory from the American Heart Association

New Tool Brings Big Changes to Cardiovascular Disease Predictions

AHA Advisory Focuses on Cardiovascular-Kidney-Metabolic Syndrome

What You Need to Know about CKM Syndrome

Heart Disease Risk, Prevention and Management Redefined

AHA: Heart and Stroke Statistics

CDC: Heart Disease Facts

University of California San Francisco Study Finds Both High and Low Levels of High-Density Lipoprotein Cholesterol Associated with Increased Dementia Risk

If validated, study findings may result in new biomarkers for clinical laboratory cholesterol tests and for diagnosing dementia

Researchers continue to find new associations between biomarkers commonly tested by clinical laboratories and certain health conditions and diseases. One recent example comes from research conducted by the University of California San Francisco. The UCSF study connected cholesterol biomarkers generally used for managing cardiovascular disease with an increased risk for dementia as well.

The researchers found that both high and low levels of high-density lipoprotein (HDL)—often referred to as “good” cholesterol—was associated with dementia in older adults, according to a news release from the American Academy of Neurology (AAN).

UCSF’s large, longitudinal study incorporated data from 184,367 people in the Kaiser Permanente Northern California health plan. How the findings may alter cholesterol biomarker use in future diagnostics has not been determined.

The researchers published their findings in the journal Neurology titled, “Low- and High-Density Lipoprotein Cholesterol and Dementia Risk over 17 Years of Follow-up among Members of Large Health Care Plan.”

Maria Glymour, ScD

“The elevation in dementia risk with both high and low levels of HDL cholesterol was unexpected, but these increases are small, and their clinical significance is uncertain,” said epidemiologist Maria Glymour, ScD (above), study author and Professor of Epidemiology and Biostatistics at UCSF School of Medicine, in a news release. This is another example of how researchers are associating common biomarkers tested regularly by clinical laboratories with additional health conditions and disease states. (Photo copyright: University of California San Francisco.)

HDL Levels Link to Dementia Risk

The UCSF researchers used cholesterol measurements and health behavior questions as they tracked Kaiser Permanente Northern California health plan members who were at least 55 years old between 2002 and 2007, and who did not have dementia at the time of the study’s launch.

The researchers then followed up with the study participants through December 2020 to find out if they had developed dementia, Medical News Today reported.

“Previous studies on this topic have been inconclusive, and this study is especially informative because of the large number of participants and long follow-up,” said epidemiologist Maria Glymour, ScD, study author and Professor of Epidemiology and Biostatistics at UCSF School of Medicine, in the AAN news release. “This information allowed us to study the links with dementia across the range of cholesterol levels and achieve precise estimates even for people with cholesterol levels that are quite high or quite low.” 

According to HealthDay, UCSF’s study findings included the following:

  • More than 25,000 people developed dementia over about nine years. They were divided into five groups.
  • 53.7 milligrams per deciliter (mg/dL) was the average HDL cholesterol level, amid an optimal range of above 40 mg/dL for men and above 50 mg/dL for women.
  • A 15% rate of dementia was found in participants with HDL of 65 mg/dL or above.
  • A 7% rate of dementia was found in participants with HDL of 11 mg/dL to 41 mg/dL.

“We found a U-shaped relationship between HDL and dementia risk, such that people with either lower or higher HDL had a slightly elevated risk of dementia,” Erin Ferguson, PhD student of Epidemiology at UCSF, the study’s lead study author, told Medical News Today.

What about LDL?

The UCSF researchers found no correlation between low-density lipoprotein (LDL)—often referred to as “bad” cholesterol”—and increased risk for dementia. But the risk did increase slightly when use of statin lipid-lowering medications were included in the analysis.

“Higher LDL was not associated with dementia risk overall, but statin use qualitatively modified the association. Higher LDL was associated with a slightly greater risk of Alzheimer’s disease-related dementia for statin users,” the researchers wrote in Neurology.

“We found no association between LDL cholesterol and dementia risk in the overall study cohort. Our results add to evidence that HDL cholesterol has similarly complex associations with dementia as with heart disease and cancer,” Glymour noted in the AAN news release.

Australian Study also Links High HDL to Dementia

A separate study from Monash University in Melbourne, Victoria, Australia, found that “abnormally high levels” of HDL was also associated with increased risk for dementia, according to a Monash news release.

The Monash study—which was part of the ASPREE (ASPpirin in Reducing Events in the Elderly) trial of people taking daily aspirin—involved 16,703 Australians and 2,411 Americans during the years 2010 to 2014. The researchers found:

  • 850 participants had developed dementia over about six years.
  • A 27% increased risk of dementia among people with HDL above 80 mg/dL and a 42% higher dementia risk for people 75 years and older with high HDL levels.

These findings, Newsweek pointed out, do not necessarily mean that high levels of HDL cause dementia. 

“There might be additional factors that affect both these findings, such as a genetic link that we are currently unaware of,” Andrew Doig, PhD, Professor, Division of Neuroscience at University of Manchester, told Newsweek. Doig was not involved in the in the Monash University research.

Follow-up research could explore the possibility of diagnosing dementia earlier using blood tests and new biomarkers, Newsweek noted.

The Australian researchers published their findings in The Lancet Regional Health-Western Pacific titled, “Association of Plasma High-Density Lipoprotein Cholesterol Level with Risk of Incident Dementia: A Cohort Study of Healthy Older Adults.”

Cholesterol Lab Test Results of Value to Clinical Labs

If further studies validate new biomarkers for testing and diagnosis, a medical laboratory’s longitudinal record of cholesterol test results over many years may be useful in identifying people with an increased risk for dementia.

Clinical pathologists and laboratory managers will want to stay tuned as additional study insights and findings are validated and published. Existing laboratory testing reference ranges may need to be revised as well.

As well, the findings of this UCSF research demonstrate that, in this age of information, there will be plenty of opportunities for clinical lab scientists and pathologists to take their labs’ patient data and combine it with other sets of data. Digital tools like artificial intelligence (AI) and machine learning would then be used to assess that large pool of data and produce clinically actionable insights. In turn, that positions labs to add more value and be paid for that value.

—Donna Marie Pocius

Related Information:

Both High and Low HDL Cholesterol Tied to Increased Risk of Dementia

Low-and High-Density Lipoprotein Cholesterol and Dementia Risk over 17 Years of Follow-up among Members of a Large Health Care Plan

Both High and Low HDL Cholesterol Tied to Slight Increase in Risk of Dementia

How HDL “Good” Cholesterol Might Raise Dementia Risk

HDL vs. LDL Cholesterol

How Levels of “Good” Cholesterol May Increase Dementia Risk

High Levels of “Good Cholesterol” May Be Associated with Dementia Risk, Study Shows

Association of Plasma High-Density Lipoprotein Cholesterol Level with Incident Dementia: A Cohort Study of Healthy Older Adults

Study Claims High Good Cholesterol Levels Linked to Greater Dementia Risk

University of Oslo Research Study Suggests Most Cancer Screenings Do Not Prolong Lives

Norwegian researchers reviewed large clinical trials of six common cancer screenings, including clinical laboratory tests, but some experts question the findings

Cancer screenings are a critical tool for diagnosis and treatment. But how much do they actually extend the lives of patients? According to researchers at the University of Oslo in Norway, not by much. They recently conducted a review and meta-analysis of 18 long-term clinical trials, five of the six most commonly used types of cancer screening—including two clinical laboratory tests—and found that with few exceptions, the screenings did not significantly extend lifespans.

The 18 long-term clinical trials included in the study were randomized trials that collectively included a total of 2.1 million participants. Median follow-up periods of 10 to 15 years were used to gauge estimated lifetime gain and mortality.

The researchers published their findings in JAMA Internal Medicine titled, “Estimated Lifetime Gained with Cancer Screening Tests: A Meta-analysis of Randomized Clinical Trials.”

“The findings of this meta-analysis suggest that current evidence does not substantiate the claim that common cancer screening tests save lives by extending lifetime, except possibly for colorectal cancer screening with sigmoidoscopy,” the researchers wrote in their published paper.

The researchers noted, however, that their analysis does not suggest all screenings should be abandoned. They also acknowledged that some lives are saved by screenings.

“Without screening, these patients may have died of cancer because it would have been detected at a later, incurable stage,” the scientists wrote, MedPage Today reported. “Thus, these patients experience a gain in lifetime.”

Still, some independent experts questioned the validity of the findings.

Gastroenterologist Michael Bretthauer, MD, PhD (above), a professor at the University of Oslo in Norway led the research into cancer screenings. In their JAMA Internal Medicine paper, he and his team wrote, “The findings of this meta-analysis suggest that colorectal cancer screening with sigmoidoscopy may extend life by approximately three months; lifetime gain for other screening tests appears to be unlikely or uncertain.” How their findings might affect clinical laboratory and anatomic pathology screening for cancer remains to be seen. (Photo copyright: University of Oslo.)

Pros and Cons of Cancer Screening

The clinical trials, according to MedPage Today and Oncology Nursing News covered the following tests:

  • Mammography screening for breast cancer (two trials).
  • Prostate-specific antigen (PSA) testing for prostate cancer (four trials).
  • Computed tomography (CT) screening for lung cancer in smokers and former smokers (three trials).
  • Colonoscopy for colorectal cancer (one trial).
  • Sigmoidoscopy for colorectal cancer (four trials).
  • Fecal occult blood (FOB) testing for colorectal cancer (four trials).

As reported in these trials, “colorectal cancer screening with sigmoidoscopy prolonged lifetime by 110 days, while fecal testing and mammography screening did not prolong life,” the researchers wrote. “An extension of 37 days was noted for prostate cancer screening with prostate-specific antigen testing and 107 days with lung cancer screening using computed tomography, but estimates are uncertain.”

The American Cancer Society (ACS) recommends certain types of screening tests to detect cancers and pre-cancers before they can spread, thus improving the chances for survival.

The ACS advises screenings for breast cancer, colorectal cancer, and cervical cancer regardless of whether the individual is considered high risk. Lung cancer screenings are advised for people with a history of smoking. Men who are 45 to 50 or older should discuss the pros and cons of prostate cancer screening with their healthcare providers, the ACS states.

A CNN report about the University of Oslo study noted that the benefits and drawbacks of cancer screening have long been well known to doctors.

“Some positive screening results are false positives, which can lead to unnecessary anxiety as well as additional screening that can be expensive,” CNN reported. “Tests can also give a false negative and thus a false sense of security. Sometimes too, treatment can be unnecessary, resulting in a net harm rather than a net benefit, studies show.”

In their JAMA paper, the University of Oslo researchers wrote, “The critical question is whether the benefits for the few are sufficiently large to warrant the associated harms for many. It is entirely possible that multicancer detection blood tests do save lives and warrant the attendant costs and harms. But we will never know unless we ask,” CNN reported.

Hidden Impact on Cancer Mortality

ACS Chief Scientific Officer William Dahut, MD, told CNN that screenings may have an impact on cancer mortality in ways that might not be apparent from randomized trials. He noted that there’s been a decline in deaths from cervical cancer and prostate cancer since doctors began advising routine testing.

“Cancer screening was never really designed to increase longevity,” Dahut said. “Screenings are really designed to decrease premature deaths from cancer.” For example, “if a person’s life expectancy at birth was 80, a cancer screening may prevent their premature death at 65, but it wouldn’t necessarily mean they’d live to be 90 instead of the predicted 80,” CNN reported.

Dahut told CNN that fully assessing the impact of cancer screenings on life expectancy would require a clinical trial larger than those in the new study, and one that followed patients “for a very long time.”

Others Question the OSLO University Findings

Another expert who questioned the findings was Stephen W. Duffy, MSc, Professor of Cancer Screening at the Queen Mary University of London.

“From its title, one would have expected this paper to be based on analysis of individual lifetime data. However, it is not,” he wrote in a compilation of expert commentary from the UK’s Science Media Center. “The paper’s conclusions are based on arithmetic manipulation of relative rates of all-cause mortality in some of the screening trials. It is therefore difficult to give credence to the claim that screening largely does not extend expected lifetime.”

He also questioned the inclusion of one particular trial in the University of Oslo study—the Canadian National Breast Screening Study—“as there is now public domain evidence of subversion of the randomization in this trial,” he added.

Another expert, Leigh Jackson, PhD, of the University of Exeter in the UK, described the University of Oslo study as “methodologically sound with some limitations which the authors clearly state.”

But he observed that “the focus on 2.1 million individuals is slightly misleading. The study considered many different screening tests and 2.1 million was indeed the total number of included patients, however, no calculation included that many people.”

Jackson also characterized the length of follow-up as a limitation. “This may have limited the amount of data included and also not considering longer follow-up may tend to underestimate the effects of screening,” he said.

This published study—along with the range of credible criticisms offered by other scientists—demonstrates how analysis of huge volumes of data is making it possible to tease out useful new insights. Clinical laboratory managers and pathologists can expect to see other examples of researchers assembling large quantities of data across different areas of medicine. This huge pools of data will be analyzed to determine the effectiveness of many medical procedures that have been performed for years with a belief that they are helpful.

—Stephen Beale

Related Information:

Estimated Lifetime Gained with Cancer Screening Tests: A Meta-analysis of Randomized Clinical Trials

The Future of Cancer Screening—Guided without Conflicts of Interest

Most Cancer Screenings Don’t Extend Life, Study Finds, but Don’t Cancel That Appointment

Does Cancer Screening Actually Extend Lives?

Cancer Screening May Not Extend Patients’ Life Spans

Opinion: Cancer Screenings, Although Not Perfect, Remain Valuable Expert Reaction to Study Estimating Lifetime Gained with Cancer Screening Tests

University of Florida Study Determines That ChatGPT Made Errors in Advice about Urology Cases

Research results call into question the safety and dependability of using artificial intelligence in medical diagnosis, a development that should be watched by clinical laboratory scientists

ChatGPT, an artificial intelligence (AI) chatbot that returns answers to written prompts, has been tested and found wanting by researchers at the University of Florida College of Medicine (UF Health) who looked into how well it could answer typical patient questions on urology. Not good enough according to the researchers who conducted the study.

AI is quickly becoming a powerful new tool in diagnosis and medical research. Some digital pathologists and radiologists use it for data analysis and to speed up diagnostic modality readings. It’s even been said that AI will improve how physicians treat disease. But with all new discoveries there comes controversy, and that’s certainly the case with AI in healthcare.

Many voices in opposition to AI’s use in clinical medicine claim the technology is too new and cannot be trusted with patients’ health. Now, UF Health’s study seems to have confirmed that belief—at least with ChatGPT.

The study revealed that answers ChatGPT provided “fell short of the standard expected of physicians,” according to a UF Health new release, which called ChatGPT’s answers “flawed.”

The questions posed were considered to be common medical questions that patients would ask during a visit to a urologist.

The researchers believes their study is the first of its kind to focus on AI and the urology specialty and which “highlights the risk of asking AI engines for medical information even as they grow in accuracy and conversational ability,” UF Health noted in the news release.

The researchers published their findings in the journal Urology titled, “Caution! AI Bot Has Entered the Patient Chat: ChatGPT Has Limitations in Providing Accurate Urologic Healthcare Advice.”

Russell S. Terry, MD

“I am not discouraging people from using chatbots,” said Russell S. Terry, MD (above), an assistant professor in the UF College of Medicine’s department of urology and the study’s senior author, in a UF Health news release. “But don’t treat what you see as the final answer. Chatbots are not a substitute for a doctor.” Pathologists and clinical laboratory managers will want to monitor how developers improve the performance of chatbots and other applications using artificial intelligence. (Photo copyright: University of Florida.)

UF Health ChatGPT Study Details

UF Health’s study featured 13 of the most queried topics from patients to their urologists during office visits. The researchers asked ChatGPT each question three times “since ChatGPT can formulate different answers to identical queries,” they noted in the news release.

The urological conditions the questions covered included:

The researchers then “evaluated the answers based on guidelines produced by the three leading professional groups for urologists in the United States, Canada, and Europe, including the American Urological Association (URA). Five UF Health urologists independently assessed the appropriateness of the chatbot’s answers using standardized methods,” UF Health noted.

Notable was that many of the results were inaccurate. According to UF Health, only 60% of responses were deemed appropriate from the 39 evaluated responses. Outside of those results, the researchers noted in their Urology paper, “[ChatGPT] misinterprets clinical care guidelines, dismisses important contextual information, conceals its sources, and provides inappropriate references.”

When asked, for the most part ChatGPT was not able to accurately provide the sources it referenced for its answers. Apparently, the chatbot was not programmed to provide such sources, the UF Health news release stated.

“It provided sources that were either completely made up or completely irrelevant,” Terry noted in the new release. “Transparency is important so patients can assess what they’re being told.”

Further, “Only 7 (54%) of 13 topics and 21 (54%) of 39 responses met the BD [Brief DISCERN] cut-off score of ≥16 to denote good-quality content,” the researchers wrote in their paper. BD is a validated healthcare information assessment questionnaire that “provides users with a valid and reliable way of assessing the quality of written information on treatment choices for a health problem,” according to the DISCERN website.

ChatGPT often “omitted key details or incorrectly processed their meaning, as it did by not recognizing the importance of pain from scar tissue in Peyronie’s disease. As a result … the AI provided an improper treatment recommendation,” the UF Health study paper noted.

Is Using ChatGPT for Medical Advice Dangerous to Patients?

Terry noted that the chatbot performed better in some areas over others, such as infertility, overactive bladder, and hypogonadism. However, frequently recurring UTIs in women was one topic of questions for which ChatGPT consistently gave incorrect results.

“One of the more dangerous characteristics of chatbots is that they can answer a patient’s inquiry with all the confidence of a veteran physician, even when completely wrong,” UF Health reported.

“In only one of the evaluated responses did the AI note it ‘cannot give medical advice’ … The chatbot recommended consulting with a doctor or medical adviser in only 62% of its responses,” UF Health noted.

For their part, ChatGPT’s developers “tell users the chatbot can provide bad information and warn users after logging in that ChatGPT ‘is not intended to give advice,’” UF Health added.

Future of Chatbots in Healthcare

In UF Health’s Urology paper, the researchers state, “Chatbot models hold great promise, but users should be cautious when interpreting healthcare-related advice from existing AI models. Additional training and modifications are needed before these AI models will be ready for reliable use by patients and providers.”

UF Health conducted its study in February 2023. Thus, the news release points out, results could be different now due to ChatGPT updates. Nevertheless, Terry urges users to get second opinions from their doctors.

“It’s always a good thing when patients take ownership of their healthcare and do research to get information on their own,” he said in the news release. “But just as when you use Google, don’t accept anything at face value without checking with your healthcare provider.”

That’s always good advice. Still, UF Health notes that “While this and other chatbots warn users that the programs are a work in progress, physicians believe some people will undoubtedly still rely on them.” Time will tell whether trusting AI for medical advice turns out well for those patients.

The study reported above is a useful warning to clinical laboratory managers and pathologists that current technologies used in ChatGPT, and similar AI-powered solutions, have not yet achieved the accuracy and reliability of trained medical diagnosticians when answering common questions about different health conditions asked by patients.

—Kristin Althea O’Connor

Related Information:

UF College of Medicine Research Shows AI Chatbot Flawed when Giving Urology Advice

Caution! AI Bot Has Entered the Patient Chat: ChatGPT Has Limitations in Providing Accurate Urologic Healthcare Advice

;