University of Illinois Study Concludes Regular Physical Exercise Improves Human Microbiome; Might Be Useful Component of New Treatment Regimens for Cancer and Other Chronic Diseases

Exercise contributes to improving the human microbiome in ways that fight disease and clinical labs might eventually provide tests that help track beneficial changes in a patient’s microbiome With growing regularity, new discoveries about the human Microbiome have been reported in scientific journals and the media. Some of these discoveries have led to innovations in clinical laboratory tests over the past few years. Dark Daily reported on these breakthroughs, which include: improved cancer...

In the Field of Nano-Scale Diagnostics, Many Researchers Are Developing ‘Lab-on-Skin’ Technologies That Can Monitor Many Clinical Laboratory Biomarkers

Lab-on-skin is the latest concept to join the lab-on-a-chip, lab-in-a-needle, and lab-on-paper field, as researchers continue to seek ways to miniaturize medical laboratory tests Move over, lab-on-a-chip and lab-on-paper. There’s a new diagnostic technology in research labs that is gaining credibility. It is called lab-on-skin technology and some scientists are quite excited about how it might be used for a variety of clinical purposes. A recent story published in ACS Nano titled,...

New Optomechanical Fluidic Sensor Analyzes Cell Mechanics in the Human Body and May Provide Clinical Laboratories with Useful New Diagnostic Tool

Researchers believe newly developed optomechanical technology might eventually be used by medical laboratories Pathologists and medical laboratory scientists have long been aware of the parallel between cancer and the mechanical properties located in cells. However, a diagnostic tool to assess these properties has until now been unavailable. This may soon change. A team at the University of Illinois at Urbana-Champaign (UIUC) recently created a technique involving “OptoMechanoFluidics” that...

New Approach to Detecting Circulating Tumor Cells in Blood Uses Acoustic Sound Waves and Researchers Are Hopeful that the Technology Can Lead to a Medical Laboratory Test

Innovative device uses acoustic sound waves to gently separate circulating cancer cells from white blood cells In many respects, the ability to separate and identify circulating tumor cells (CTCs) is one of the holy grails of cancer diagnostics. It is widely believed that a clinical laboratory test that can effectively identify CTCs would contribute to earlier detection of cancer and improved outcomes for caner patients. Pathologists will be interested to learn about a useful new tool that can...
;