Anatomic pathologists understand that, along with breast cancer, diagnostic testing for prostate cancer accounts for a high volume of clinical laboratory tests. Thus, a recent study indicating that a new artificial intelligence (AI)-based software tool can dramatically improve physicians’ ability to identify the extent of these cancers will be of interest.
“The study found that Unfold AI’s patient-specific encapsulation confidence score (ECS), which is generated based on multiple patient data points, including MRI scans, biopsy results, PSA [prostate-specific antigen] data, and Gleason scores, is critical for predicting treatment success,” an Avenda press release states. “These findings emphasize the importance of Unfold AI’s assessment of tumor margins in predicting treatment outcomes, surpassing the predictive capability of conventional parameters.”
“Unfold AI’s ability to identify tumor margins and provide the ECS will improve treatment recommendations and allow for less-invasive interventions,” said study co-author Wayne Brisbane, MD, a urologic oncologist and UCLA medical professor, in another press release. “This more comprehensive approach enhances our ability to predict treatment outcomes and tailor interventions effectively to individual patient needs.”
“This study is important because it shows the ability of AI to not only replicate expert physicians, but to go beyond human ability,” said study co-author Wayne Brisbane, MD (above), a urologic oncologist and UCLA medical professor, in a press release. “By increasing the accuracy of cancer identification in the prostate, more precise and effective treatment methods can be prescribed for patients.” Clinical laboratories that work with anatomic pathologists to diagnose prostate and other cancers may soon have a new AI testing tool. (Photo copyright: UCLA.)
How Unfold AI Works
To gauge the extent of prostate tumors, surgeons typically evaluate results from multiple diagnostic methods such as PSA tests and imaging scans such as MRIs, according to a UCLA press release. However some portions of a tumor may be invisible to an MRI, causing doctors to underestimate the size.
Unfold AI, originally known as iQuest, was designed to analyze data from PSA, MRI, fusion biopsy, and pathology testing, according to a company brochure. From there, it generates a 3D map of the cancer. Avenda’s website says the technology provides a more accurate representation of the tumor’s extent than conventional methods.
“Accurately determining the extent of prostate cancer is crucial for treatment planning, as different stages may require different approaches such as active surveillance, surgery, focal therapy, radiation therapy, hormone therapy, chemotherapy, or a combination of these treatments,” Brisbane said in the UCLA press release.
Putting AI to the Test
In the new study, the UCLA researchers enlisted seven urologists and three radiologists to review 50 prostate cancer cases. Each patient had undergone prostatectomy—surgical removal of all or part of the prostate—but might have been eligible for focal therapy, a less-aggressive approach that uses heat, cryotherapy, or electric shocks to attack cancer cells more selectively.
The physicians came from five hospitals and had a wide range of clinical experience from two to 23 years, the researchers noted in The Journal of Urology.
They reviewed clinical data and examined MRI scans of each patient, then “manually drew outlines around the suspected cancerous areas, aiming to encapsulate all significant disease,” the press release states. “Then, after waiting for at least four weeks, they reexamined the same cases, this time using AI software to assist them in identifying the cancerous areas.”
The researchers analyzed the physicians’ work, evaluating the accuracy of the cancer margins and the “negative margin rate,” indicating whether the clinicians had identified all of the cancerous tissue. Using conventional approaches, “doctors only achieved a negative margin 1.6% of the time,” the press release states. “When assisted by AI the number increased to 72.8%.”
The clinicians’ accuracy was 84.7% when assisted by AI versus 67.2% to 75.9% for conventional techniques.
They also found that clinicians who used the AI software were more likely to recommend focal therapy over more aggressive forms of treatment.
“We saw the use of AI assistance made doctors both more accurate and more consistent, meaning doctors tended to agree more when using AI assistance,” said Avenda Health co-founder and CEO Shyam Natarajan, PhD, who was senior author of the study.
“These results demonstrate a marked change in how physicians will be able to diagnose and recommend treatment for prostate cancer patients,” said Natarajan in a company press release. “By increasing the confidence in which we can predict a tumor’s margins, patients and their doctors will have increased certainty that their entire tumor is treated and with the appropriate intervention in correlation to the severity of their case.”
UCLA’s study found that AI can outperform doctors both in sensitivity (a higher detection rate of positive cancers) and specificity (correctly detecting the sample as negative). That’s relevant and worth watching for further developments.
Pathologists and clinical laboratory managers should consider this use of AI as one more example of how artificial intelligence can be incorporated into diagnostic tests in ways that allow medical laboratory professionals to diagnose disease earlier and more accurately. This will improve patient care because early intervention for most diseases leads to better outcomes.
Trend will likely lead to physicians ordering more clinical laboratory screening tests for cancer among all age groups, including young patients
Upticks in colorectal cancer cases among younger populations, as reported in recent news stores, is an issue that has implications for clinical laboratories. According to a study conducted at the University of Missouri-Kansas City (UMKC), the number of colorectal cancer cases in the US has increased greatly since 1999 with the “most dramatic jumps” seen in children, teens, and young adults, a Digestive Disease Week (DDW) news release reported.
“Colorectal cancer is no longer considered just a disease of the elderly population,” said lead researcher Islam Mohamed, MD, an internal medicine resident physician at UMKC. “It’s important that the public is aware of signs and symptoms of colorectal cancer.”
The researchers noted in the DDW news release that “colorectal cancer cases, over about two decades, increased by 500% among children, ages 10 to 14; 333% in teens, ages 15 to 19; and 185% among young adults, ages 20 to 24.”
“[The results of the UMKC study] means that there is a trend. We don’t know what to make of it yet. It could be lifestyle factors or genetics, but there is a trend,” lead researcher Islam Mohamed, MD (above), Internal Medicine Resident, University of Missouri-Kansas City, told NBC News. If proved, this trend could lead to increased demand for clinical laboratory screening tests for colorectal and other cancers among young people. (Photo copyright: Digestive Disease Week.)
0.6/100,000 children ages 10 to 14 (a 500% increase).
1.3/100,000 teens ages 15 to 19 (a 333% increase).
Two/100,000 young adults ages 20 to 24 (a 185% increase).
Albeit small numbers, the cases are growing at a rate that is troublesome, according to experts. As NBC put it, “any increase can take on a larger significance” when rates begin at low points.
The study also found incidence of colorectal cancer up in people in their 30s and 40s, reaching by 2020:
6.5/100,000 people ages 30 to 34 (a 71% increase).
11.7/100,000 people ages 35 to 39 (a 58% increase).
20/100,000 people ages 40 to 44 (a 37% increase).
Screening Guidelines May Need to Change
Further research based on UMKC’s study findings could lead to changes in cancer screening guidelines.
“We were screening people from the age of 60 for colon cancer. This has now been lowered to 55, and that is due to be lowered again to 50 over the next few months,” Jude Tidbury, RN, nurse endoscopist and clinical nurse specialist, gastroenterology and endoscopy, at the UK’s East Sussex Healthcare NHS Trust, told Healthline.
In the US, the American Cancer Society advises people of average risk for cancer to start screening for colorectal cancer at age 45. The test options ACS recommends annually include:
What is behind early-onset colorectal cancer among certain age groups? An international study led by Fred Hutchinson Cancer Center (Fred Hutch), Seattle, found “strong correlations” with consuming alcohol and being obese with early-onset colorectal cancer in adults under age 50, according to a news release.
The researchers set out to explore the common genetic variants and causal modifiable risk factors that are behind early-onset colorectal cancer, according to a paper they published in the journal Annals of Oncology.
To do so they used big databases, pulling out 6,176 early-onset colorectal cancer cases and 65,829 controls from sources including:
They focused on “lifestyle factors increasing risk” by comparing the genetic variations in those with colorectal cancer to healthy people, the Fred Hutch news release explained.
“It’s important to see that alcohol and obesity are linked to early-onset colorectal cancer. Also, insulin signaling and infection-related biological pathways. These are all really important to understand—it’s helping us to develop interventions,” said Ulrike Peters, PhD, Professor and Associate Director, Public Health Services Division, Fred Hutch, who co-led the research, in the news release.
Peters noted future research may aim to address data gaps relating to racial and ethnic groups.
More Colorectal Cancer Tests
As studies continue to explore the notion that cancer may not be a disease of aging,
clinical laboratories could see more primary care physicians and healthcare consumers using colorectal cancer screening tests, which require analysis and reporting by labs.
Medical laboratory leaders may want to proactively encourage lab sales and service representatives to educate physician office staff about using the lab’s available resources for screening young adults for colorectal cancer.
Study findings could lead to new clinical laboratory testing biomarkers designed to assess for male infertility
Clinical laboratories are increasingly performing tests that have as their biomarkers the DNA and enzymes found in human microbiota. And microbiologists and epidemiologists know that like other environments within the human body, semen has its own microbiome. Now, a study conducted at the University of California, Los Angeles (UCLA) has found that the health of semen microbiome may be linked to male infertility.
The UCLA researchers discovered a small group of microorganisms within semen that may impair the sperm’s motility (its ability to swim) and affect fertility.
A total of 73 individuals were included in the study. About half of the subjects were fertile and already had children, while the remaining men were under consultation for fertility issues.
“These are people who have been trying to get pregnant with their partner, and they’ve been unsuccessful,” Sriram Eleswarapu, MD, PhD, a urologist at UCLA and co-author of the study, told Scientific American. “This latter group’s semen samples had a lower sperm count or motility, both of which can contribute to infertility.”
“There is much more to explore regarding the microbiome and its connection to male infertility,” said Vadim Osadchiy, MD (above), a resident in the Department of Urology at UCLA and lead author of the study, in a UCLA news release. “However, these findings provide valuable insights that can lead us in the right direction for a deeper understanding of this correlation.” Might it also lead to new biomarkers for clinical laboratory testing for male infertility? (Photo copyright: UCLA.)
Genetic Sequencing Used to Identify Bacteria in Semen Microbiome
Most of the microbes present in the semen microbiome originate in the glands of the male upper reproductive tract, including the testes, seminal vesicles and prostate, and contribute various components to semen. “Drifter” bacteria that comes from urine and the urethra can also accumulate in the fluid during ejaculation. Microbes from an individual’s blood, or his partner’s, may also aggregate in semen. It is unknown how these bacteria might affect health.
“I would assume that there are bacteria that are net beneficial, that maybe secrete certain kinds of cytokines or chemicals that improve the fertility milieu for a person, and then there are likely many that have negative side effects,” Eleswarapu told Scientific American.
The scientists used genetic sequencing to identify different bacteria species present within the semen microbiome. They found five species that were common among all the study participants. But men with more of the microbe Lactobacillus iners (L. iners) were likelier to have impaired sperm motility and experience fertility issues.
This discovery was of special interest to the team because L. iners is commonly found in the vaginal microbiome. In females, high levels of L. iners are associated with bacterial vaginosis and have been linked to infertility in women. This is the first study that found a negative association between L. iners and male fertility.
The researchers plan to investigate specific molecules and proteins contained in the bacteria to find out whether they slow down sperm in a clinical laboratory situation.
“If we can identify how they exert that influence, then we have some drug targets,” Eleswarapu noted.
Targeting Bacteria That Cause Infertility
The team also discovered that three types of bacteria found in the Pseudomonas genus were present in patients who had both normal and abnormal sperm concentrations. Patients with abnormal sperm concentrations had more Pseudomonas fluorescens and Pseudomonas stutzeri and less Pseudomonas putida in their samples.
According to the federal National Institute of Child Health and Human Development (NICHD), “one-third of infertility cases are caused by male reproductive issues, one-third by female reproductive issues, and the remaining one-third by both male and female reproductive issues or unknown factors.” Thus, learning more about how the semen microbiome may be involved in infertility could aid in the development of drugs that target specific bacteria.
“Our research aligns with evidence from smaller studies and will pave the way for future, more comprehensive investigations to unravel the complex relationship between the semen microbiome and fertility,” said urologist Vadim Osadchiy, MD, a resident in the Department of Urology at UCLA and lead author of the study, in a UCLA news release.
More research is needed. For example, it’s unclear if there are any links between the health of semen microbiome and other microbiomes that exist in the body, such as the gut microbiome, that cause infertility. Nevertheless, this research could lead to new biomarkers for clinical laboratory testing to help couples who are experiencing fertility issues.
Though the new technology could speed diagnoses of cancers and other skin diseases, it would also greatly reduce dermatopathology biopsy referrals and revenue
What effect would elimination of tissue biopsies have on dermatopathology and clinical laboratory revenue? Quite a lot. Dermatologists alone account for a significant portion of skin biopsies sent to dermatopathologists. Thus, any new technology that can “eliminate the need for invasive skin biopsies” would greatly reduce the number of histopathological referrals and reduce revenue to those practices.
The UCLA researchers believe their innovative deep learning-enabled imaging framework could possibly circumvent the need for skin biopsies to diagnose skin conditions.
“Here, we present a deep learning-based framework that uses a convolutional neural network to rapidly transform in vivo RCM images of unstained skin into virtually-stained hematoxylin and eosin-like images with microscopic resolution, enabling visualization of the epidermis, dermal-epidermal junction, and superficial dermis layers.
“This application of deep learning-based virtual staining to noninvasive imaging technologies may permit more rapid diagnoses of malignant skin neoplasms and reduce invasive skin biopsies,” the researchers added in their published study.
According to the published study, the UCLA team trained their neural network under an adversarial machine learning scheme to transform grayscale RCM images into virtually stained 3D microscopic images of normal skin, basal cell carcinoma, and pigmented melanocytic nevi. The new images displayed similar morphological features to those shown with the widely used hematoxylin and eosin (H&E) staining method.
“In our studies, the virtually stained images showed similar color contrast and spatial features found in traditionally stained microscopic images of biopsied tissue,” Ozcan told Photonics Media. “This approach may allow diagnosticians to see the overall histological features of intact skin without invasive skin biopsies or the time-consuming work of chemical processing and labeling of tissue.”
The framework covers different skin layers, including the epidermis, dermal-epidermis, and superficial dermis layers. It images deeper into tissue without being invasive and can be quickly performed.
“The virtual stain technology can be streamlined to be almost semi real time,” Ozcan told Medical Device + Diagnostic Industry (MD+DI). “You can have the virtual staining ready when the patient is wrapping up. Basically, it can be within a couple of minutes after you’re done with the entire imaging.”
Currently, medical professionals rely on invasive skin biopsies and histopathological evaluations to diagnose skin diseases and cancers. These diagnostic techniques can result in unnecessary biopsies, scarring, multiple patient visits and increased medical costs for patients, insurers, and the healthcare system.
Improving Time to Diagnosis through Digital Pathology
Another advantage of this virtual technology, the UCLA researchers claim, is that it can provide better images than traditional staining methods, which could improve the ability to diagnose pathological skin conditions and help alleviate human error.
“The majority of the time, small laboratories have a lot of problems with consistency because they don’t use the best equipment to cut, process, and stain tissue,” dermatopathologist Philip Scumpia, MD, PhD, Assistant Professor of Dermatology and Dermatopathology at UCLA Health and one of the authors of the research paper, told MD+DI.
“What ends up happening is we get tissue on a histology slide that’s basically unevenly stained, unevenly put on the microscope, and it gets distorted,” he added, noting that this makes it very hard to make a diagnosis.
Scumpia also added that this new technology would allow digital images to be sent directly to the pathologist, which could reduce processing and laboratory times.
“With electronic medical records now and the ability to do digital photography and digital mole mapping, where you can obtain a whole-body imaging of patients, you could imagine you can also use one of these reflectance confocal devices. And you can take that image from there, add it to the EMR with the virtual histology stain, which will make the images more useful,” Scumpia said. “So now, you can track lesions as they develop.
“What’s really exciting too, is that there’s the potential to combine it with other artificial intelligence, other machine learning techniques that can give more information,” Scumpia added. “Using the reflectance confocal microscope, a clinician who might not be as familiar in dermatopathology could take images and send [them] to a practitioner who could give a more expert diagnosis.”
Faster Diagnoses but Reduced Revenue for Dermatopathologists, Clinical Labs
Ozcan noted that there’s still a lot of work to be done in the clinical assessment, validation, and blind testing of their AI-based staining method. But he hopes the technology can be propelled into a useful tool for clinicians.
“I think this is a proof-of-concept work, and we’re very excited to make it move forward with further advances in technology, in the ways that we acquire 3D information [and] train our neural networks for better and faster virtual staining output,” he told MD+DI.
Though this new technology may reduce the need for invasive biopsies and expedite the diagnosis of skin conditions and cancers—thus improving patient outcomes—what affect might it have on dermatopathology practices?
More research and clinical studies are needed before this new technology becomes part of the diagnosis and treatment processes for skin conditions. Nevertheless, should virtual histology become popular and viable, it could greatly impact the amount of skin biopsy referrals to pathologists, dermatopathologists, and clinical laboratories, thus diminishing a great portion of their revenue.
This research could lead to a useful liquid biopsy test that would be a powerful new tool for clinical laboratories and anatomic pathologists
Cancer researchers have long sought the Holy Grail of
diagnostics—a single biomarker that can quickly detect cancer from blood or
biopsied tissue. Now, researchers in Australia may have found that treasure. And
the preliminary diagnostic test they have developed reportedly can return
results in just 10 minutes with 90% accuracy.
In a news release, University of Queensland researchers discussed identifying a “simple signature” that was common to all forms of cancer, but which would stand out among healthy cells. This development will be of interest to both surgical pathologists and clinical laboratory managers. Many researchers looking for cancer markers in blood are using the term “liquid biopsies” to describe assays they hope to develop which would be less invasive than a tissue biopsy.
“This unique nano-scaled DNA signature appeared in every type of breast cancer we examined, and in other forms of cancer including prostate, colorectal, and lymphoma,” said Abu Sina, PhD, Postdoctoral Research Fellow at the Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), in the news release.
“We designed a simple test using gold nanoparticles that
instantly change color to determine if the three-dimensional nanostructures of cancer
DNA are present,’ said Matt
Trau, PhD, Professor of Chemistry at the University of Queensland, and
Deputy Director and Co-Founder of UQ’s AIBN, in the news release.
The team’s test is preliminary, and more research is needed before
it will be ready for Australia’s histopathology laboratories (anatomic
pathology labs in the US). Still, UQ’s research is the latest example of how
increased knowledge of DNA is making it possible for researchers to identify
new biomarkers for cancer and other diseases.
“We certainly don’t know yet whether it’s the holy grail for
all cancer diagnostics, but it looks really interesting as an incredibly simple
universal marker of cancer, and as an accessible and inexpensive technology
that doesn’t require complicated lab-based equipment like DNA sequencing,” Trau
added.
The UQ researchers published their study in the journal Nature Communications. In it, they noted that “Epigenetic reprogramming in cancer genomes creates a distinct methylation landscape encompassing clustered methylation at regulatory regions separated by large intergenic tracks of hypomethylated regions. This methylation landscape that we referred to as ‘Methylscape’ is displayed by most cancer types, thus may serve as a universal cancer biomarker.”
While methyl patterning is not new, the UQ researchers say they were the first to note the effects of methyl pattern in a particular solution—water. With the aid of transmission electron microscopy, the scientists saw DNA fragments in three-dimensional structures in the water. But they did not observe the signature in normal tissues in water.
Their test averaged 90% accuracy during the testing of 200
human cancer samples. Furthermore, the researchers found the DNA structure to
be the same in breast, prostate, and bowel cancers, as well as lymphomas, noted
The Conversation.
“We find that DNA polymeric
behavior is strongly affected by differential patterning of methylcytosine
leading to fundamental differences in DNA solvation and DNA-gold affinity
between cancerous and normal genomes,” the researchers wrote in NatureCommunications.“We exploit
these methylscape differences to develop simple, highly sensitive, and
selective electrochemical or one-step assays for detection of cancer.”
Next Steps for the
“Gold Test”
“This approach represents an exciting step forward in
detecting tumor DNA in blood samples and opens up the possibility of a generalized
blood-based test to detect cancer, Ged Brady, PhD, Cancer Research UK
Manchester Institute, told The
Oxford Scientist. “Further clinical studies are required to evaluate
the full clinic potential of the method.”
Researchers said the next step is a larger clinical study to
explore just how fast cancer can be detected. They expressed interest in
finding different cancers in body fluids and at various stages. Another opportunity
they envision is to use the cancer assay with a mobile device.
DiCarlo told USA Today
that such a mobile test could be helpful to clinicians needing fast answers for
people in rural areas. However, he’s also concerned about false positives. “You
don’t expect all tumors to have the same methylation pattern because there’s so
many different ways that cancer can develop,” he told USA Today. “There
are some pieces that don’t exactly align logically.”
The UQ researchers have produced an intriguing study that differs
from other liquid biopsy papers covered by Dark Daily. While their test may need to be used in combination with other
diagnostic tests—MRI, mammography, etc.—it has the potential to one day be used
by clinical laboratories to quickly reveal diverse types of cancers.