News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Researchers Create Artificial Intelligence Tool That Accurately Predicts Outcomes for 14 Types of Cancer

Proof-of-concept study ‘highlights that using AI to integrate different types of clinically informed data to predict disease outcomes is feasible’ researchers say

Artificial intelligence (AI) and machine learning are—in stepwise fashion—making progress in demonstrating value in the world of pathology diagnostics. But human anatomic pathologists are generally required for a prognosis. Now, in a proof-of-concept study, researchers at Brigham and Women’s Hospital in Boston have developed a method that uses AI models to integrate multiple types of data from disparate sources to accurately predict patient outcomes for 14 different types of cancer.

The process also uncovered “the predictive bases of features used to predict patient risk—a property that could be used to uncover new biomarkers,” according to Genetic Engineering and Biotechnology News (GEN).

Should these research findings become clinically viable, anatomic pathologists may gain powerful new AI tools specifically designed to help them predict what type of outcome a cancer patient can expect.

The Brigham scientists published their findings in the journal Cancer Cell, titled, “Pan-cancer Integrative Histology-genomic Analysis via Multimodal Deep Learning.”

Faisal Mahmood, PhD

“Experts analyze many pieces of evidence to predict how well a patient may do. These early examinations become the basis of making decisions about enrolling in a clinical trial or specific treatment regimens,” said Faisal Mahmood, PhD (above) in a Brigham press release. “But that means that this multimodal prediction happens at the level of the expert. We’re trying to address the problem computationally,” he added. Should they be proven clinically-viable through additional studies, these findings could lead to useful tools that help anatomic pathologists and clinical laboratory scientists more accurately predict what type of outcomes cancer patient may experience. (Photo copyright: Harvard.)

AI-based Prognostics in Pathology and Clinical Laboratory Medicine

The team at Brigham constructed their AI model using The Cancer Genome Atlas (TCGA), a publicly available resource which contains data on many types of cancer. They then created a deep learning-based algorithm that examines information from different data sources.

Pathologists traditionally depend on several distinct sources of data, such as pathology images, genomic sequencing, and patient history to diagnose various cancers and help develop prognoses.

For their research, Mahmood and his colleagues trained and validated their AI algorithm on 6,592 H/E (hematoxylin and eosin) whole slide images (WSIs) from 5,720 cancer patients. Molecular profile features, which included mutation status, copy-number variation, and RNA sequencing expression, were also inputted into the model to measure and explain relative risk of cancer death. 

The scientists “evaluated the model’s efficacy by feeding it data sets from 14 cancer types as well as patient histology and genomic data. Results demonstrated that the models yielded more accurate patient outcome predictions than those incorporating only single sources of information,” states a Brigham press release.

“This work sets the stage for larger healthcare AI studies that combine data from multiple sources,” said Faisal Mahmood, PhD, Associate Professor, Division of Computational Pathology, Brigham and Women’s Hospital; and Associate Member, Cancer Program, Broad Institute of MIT and Harvard, in the press release. “In a broader sense, our findings emphasize a need for building computational pathology prognostic models with much larger datasets and downstream clinical trials to establish utility.”

Future Prognostics Based on Multiple Data Sources

The Brigham researchers also generated a research tool they dubbed the Pathology-omics Research Platform for Integrative Survival Estimation (PORPOISE). This tool serves as an interactive platform that can yield prognostic markers detected by the algorithm for thousands of patients across various cancer types.  

The researchers believe their algorithm reveals another role for AI technology in medical care, but that more research is needed before their model can be implemented clinically. Larger data sets will have to be examined and the researchers plan to use more types of patient information, such as radiology scans, family histories, and electronic medical records in future tests of their AI technology.

“Future work will focus on developing more focused prognostic models by curating larger multimodal datasets for individual disease models, adapting models to large independent multimodal test cohorts, and using multimodal deep learning for predicting response and resistance to treatment,” the Cancer Cell paper states.

“As research advances in sequencing technologies, such as single-cell RNA-seq, mass cytometry, and spatial transcriptomics, these technologies continue to mature and gain clinical penetrance, in combination with whole-slide imaging, and our approach to understanding molecular biology will become increasingly spatially resolved and multimodal,” the researchers concluded.  

Anatomic pathologists may find the Brigham and Women’s Hospital research team’s findings intriguing. An AI tool that integrates data from disparate sources, analyzes that information, and provides useful insights, could one day help them provide more accurate cancer prognoses and improve the care of their patients.   

JP Schlingman

Related Information:

AI Integrates Multiple Data Types to Predict Cancer Outcomes

Pan-cancer Integrative Histology-genomic Analysis via Multimodal Deep Learning

New AI Technology Integrates Multiple Data Types to Predict Cancer Outcomes

Artificial Intelligence in Digital Pathology Developments Lean Toward Practical Tools

Florida Hospital Utilizes Machine Learning Artificial Intelligence Platform to Reduce Clinical Variation in Its Healthcare, with Implications for Medical Laboratories

Artificial Intelligence and Computational Pathology

New Tool to Identify Tumor Heterogeneity Could Help Pave Way for Personalized Cancer Therapies and Help Pathologists Add Value for Oncologists

Ohio State University study shows correlation between genetic variability among cancer cells within tumors and the survival of patients with head-and-neck cancers

Anatomic pathologists and clinical laboratories  may gain a tool to identify tumor heterogeneity. This would enable them to ultimately guide personalized cancer therapies if a new method for measuring genetic variability within a tumor and predicting outcomes is confirmed in future studies.

Scientists Seek Cause of Resistance to Cancer Treatment

The new tool was dubbed “MATH” by researchers at The Ohio State University Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute  (OSUCCC–James). MATH is the scoring method they developed and stands for  mutant-allele tumor heterogeneity. MATH was used to measure the genetic variability among cancer cells within tumors from 305 patients with head and neck squamous cell carcinoma  (HNSCC), treated at multiple institutions, from The Cancer Genome Atlas.

In announcing the study results, OSUCCC-James stated  that cancers that showed high genetic variability— called “intra-tumor heterogeneity”—correlated with lower patient survival.

James Rocco, MD, PhD, Professor in the Department of Otolaryngology-Head and Neck Surgery at The Ohio State University Wexner Medical Center, and his colleagues, used MATH values “to document a relation between intra-tumor heterogeneity and overall survival in any type of cancer.” (more…)

Researchers Say It’s Time to Reclassify Cancerous Tumors Based on Their Molecular Makeup; New System Suggested Would Affect Pathologists’

More than 12 cancer types were studied in this project, which is a part of The Cancer Genome Atlas

New molecular and genetic knowledge is making it possible for researchers to propose a new system for classifying tumors. Upon implementation, such a system will give oncologists and pathologists, and clinical laboratory professionals a new tool to improve how they diagnose and treat cancer patients.

Tumor categories—defined by cell types instead of where they are found in the body—may lead to more accurate diagnoses and more effective treatments for one in 10 patients, according to the recent study. It was summarized in a Medline Plus Health News By Date story posted on the National Institutes of Health (NIH) website. (more…)

;