News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Rice University Researchers Develop ‘Molecular Jackhammer’ That Kills Cancer Cells

Research could lead to similar treatments for other diseases, as well as creating a demand for a new line of oncology tests for clinical labs and pathology groups

Cancer treatment has come a long way in the past decades, and it seems poised to take another leap forward thanks to research being conducted at Rice University in Houston. Molecular scientists there have developed what they call a “molecular jackhammer” that uses special molecules and near-infrared light to attack and kill cancer cells.

The technique has been effective in research settings. Should it be cleared for use in patient care, it could change the way doctors treat cancer patients while giving clinical laboratories a new diagnostic tool that could guide treatment decisions.      

The researchers “found that the atoms of a small dye molecule used for medical imaging can vibrate in unison—forming what is known as a plasmon [a quantum of plasma oscillation]—when stimulated by near-infrared light, causing the cell membrane of cancerous cells to rupture,” a Rice University news release noted.

The small dye molecule is called aminocyanine, a type of fluorescent synthetic dye that is already in use in medical imaging.

“These molecules are simple dyes that people have been using for a long time,” said physical chemistry scientist Ciceron Ayala-Orozco, PhD, the researcher who led the study, in the news release. “They’re biocompatible, stable in water, and very good at attaching themselves to the fatty outer lining of cells. But even though they were being used for imaging, people did not know how to activate these as plasmons.” 

The Rice University scientists published their findings in the journal Nature Chemistry titled, “Molecular Jackhammers Eradicate Cancer Cells by Vibronic-Driven Action.”

“The method had a 99% efficiency against lab cultures of human melanoma cells, and half of the mice with melanoma tumors became cancer-free after treatment,” according to the Rice University news release.

“I spent approximately four years working with these ideas on using molecular forces and what is called blue-light activated molecular motors,” Ciceron Ayala-Orozco, PhD (above), told Oncology Times. “At some point, I connected the dots that what I wanted to do is use a simple molecule, not necessarily a motor, that absorbs NIR light in similar ways as plasmonic nanoparticles do and go deeper into the tissue. When activated, we found that the molecules vibrate even faster than our minds can imagine and serve as a force to break the cancer cells apart.” Once approved for use treating cancer patients, clinical laboratories working with oncologists may play a key role in diagnosing candidates for the new treatment. (Photo copyright: Rice University.)

How the Technique Works

Nuclei of the aminocyanine molecules oscillate in sync when exposed to near-infrared radiation and pummel the surface of the cancer cell. These blows are so powerful they rupture the cell’s membrane sufficiently enough to destroy it. 

“The speed of this type of therapy can completely kill the cancer much faster than, say, photodynamic therapy,” Ayala-Orozco noted. “The mechanical action through the molecular jackhammer is immediate, within a few minutes.”

One advantage to near-infrared light is that it can infiltrate deeper into the body than visible light and access organs and bones without damaging tissue. 

“Near-infrared light can go as deep as 10 centimeters (four inches) into the human body as opposed to only half a centimeter (0.2 inches), the depth of penetration for visible light, which we used to activate the nanodrills,” said James Tour, PhD, T. T. and W. F. Chao Professor of Chemistry, Professor of Materials Science and NanoEngineering at Rice University, in the news release. “It is a huge advance.”

The molecular plasmons identified by the team had a near-symmetrical structure. The plasmons have an arm on one side that does not contribute to the motion, but rather anchors the molecule to the lipid bilayer of the cell membrane. The scientists had to prove that the motion could not be categorized as a form of either photodynamic or photothermal therapy

“What needs to be highlighted is that we’ve discovered another explanation for how these molecules can work,” Ayala-Orozco said in the Rice news release. “This is the first time a molecular plasmon is utilized in this way to excite the whole molecule and to actually produce mechanical action used to achieve a particular goal—in this case, tearing apart cancer cells’ membrane.

“This study is about a different way to treat cancer using mechanical forces at the molecular scale,” he added. 

New Ways to Treat Cancer

The likelihood of cancer cells developing a resistance to these molecular jackhammers is extremely low, which renders them a safer and more cost effective method for inducing cancer cell death. 

“The whole difference about this is because it’s a mechanical action, it’s not relying on some chemical effect,” Tour told KOMO News. “It’s highly unlikely that the cell will be able to battle against this. Once it’s cell-associated, the cell is toast once it gets hit by light. Only if a cell could prevent a scalpel from being able to cut it in half, could it prevent this.

“It will kill all sorts of cell types. With our other mechanical action molecules, we’ve demonstrated that they kill bacteria; we’ve demonstrated that they kill fungi. If a person has lost the ability to move a limb, if you can stimulate the muscle with light, that would be quite advantageous. Cancer is just the beginning,” he added.

“From the medical point of view, when this technique is available, it will be beneficial and less expensive than methods such as photothermal therapy, photodynamics, radio-radiation, and chemotherapy,” said Jorge Seminario, PhD, Professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University in a news release.

Researchers from Texas A&M University and the University of Texas-MD Anderson Cancer Center participated in the study. 

“This is one of the very few theoretical-experimental approaches of this nature. Usually, research in the fields related to medicine does not use first principles quantum-chemistry techniques like those used in the present work, despite the strong benefit of knowing what the electrons and nuclei of all atoms are doing in molecules or materials of interest,” Seminario noted.

“It’s really a tremendous advance. What this is going to do is open up a whole new mode of treatment for medicine,” Tour said. “It’s just like when radiation came in [and] when immunotherapy came in. This is a whole new modality. And when a new modality comes in, so much begins to open up.

“Hopefully, this is going to change medicine in a big way,” he added.

More research and clinical studies are needed before this new technology is ready for patient care. Clinical laboratories and anatomic pathology groups will likely be involved identifying patients who would be good candidates for the new treatment. These molecular jackhammers could be a useful tool in the future fight against cancer, which is ranked second (after heart disease) as the most common cause of death in the US.

—JP Schlingman

Related Information:

New Molecular Jackhammer Technique Achieves 99% Cancer Treatment Success in Labs

Scientists Destroy 99% of Cancer Cells in the Lab Using Vibrating Molecules

Molecular Jackhammers Drill Pathway to Killing Cancer Cells   

Molecular Jackhammers Eradicate Cancer Cells by Vibronic-driven Action

Molecular Jackhammers’ “Good Vibrations” Eradicate Cancer Cells

Molecular Jackhammers’ Non-Invasive Approach to Destroy Cancer Cells

February COVID-19 Superspreader Event in Boston Confirmed by Use of Genetic Sequencing as Next-Gen Sequencing Is Put to Novel Uses, including in Clinical Laboratories

Gene sequencing is enabling disease tracking in new ways that include retesting laboratory specimens from before the SARS-CoV-2 outbreak to determine when it arrived in the US

On February 26 of this year, nearly 200 executives and employees of neuroscience-biotechnology company Biogen gathered at the Boston Marriott Long Wharf hotel for their annual leadership conference. Unbeknownst to the attendees, by the end of the following day, dozens of them had been exposed to and become infected by SARS-CoV-2, the coronavirus that causes the COVID-19 illness.

Researchers now have hard evidence that attendees at this meeting returned to their communities and spread the infection. The findings of this study will be relevant to pathologists and clinical laboratory managers who are cooperating with health authorities in their communities to identify infected individuals and track the spread of the novel coronavirus.

This “superspreader” event has been closely investigated and has led to intriguing conclusions concerning the use of genetic sequencing to revealed vital information about the COVID-19 pandemic. Recent improvements in gene sequencing technology is giving scientists new ways to trace the spread of COVID-19 and other diseases, as well as a method for monitoring mutations and speeding research into various treatments and vaccines. 

Genetic Sequencing Traces an Outbreak

“With genetic data, a record of our poor decisions is being captured in a whole new way,” Bronwyn MacInnis, PhD, Director of Pathogen Genomic Surveillance at the Broad Institute of MIT and Harvard, told The Washington Post (WaPo) during its analysis of the COVID-19 superspreading event. MacInnis is one of many Broad Institute, Harvard, MIT, and state of Massachusetts scientists who co-authored a study that detailed the coronavirus’ spread across Boston, including from the Biogen conference.

Titled, “Phylogenetic Analysis of SARS-CoV-2 in the Boston Area Highlights the Role of Recurrent Importation and Superspreading Events,” the paper explains how the researchers “sequenced and analyzed 772 complete SARS-CoV-2 genomes from the region” in order to investigate how the virus was introduced and spread through the area. They traced a specific mutation in the virus—“a simple switch of two letters in the virus’ 30,000-character genetic code,” WaPo reported.

What they discovered is both surprising and enlightening. According to WaPo’s report, at least 35 new cases of the virus were linked directly to the Biogen conference, and the same strain was discovered in outbreaks in two homeless shelters in Boston, where 122 people were infected. The variant tracked by the Boston researchers was found in roughly 30% of the cases that have been sequenced in the state, as well as in Alaska, Senegal, and Luxembourg.

“The data reveal over 80 introductions into the Boston area, predominantly from elsewhere in the United States and Europe. We studied two superspreading events covered by the data, events that led to very different outcomes because of the timing and populations involved. One produced rapid spread in a vulnerable population but little onward transmission, while the other was a major contributor to sustained community transmission,” the researchers noted in their study abstract.

“The same two events differed significantly in the number of new mutations seen, raising the possibility that SARS-CoV-2 superspreading might encompass disparate transmission dynamics. Our results highlight the failure of measures to prevent importation into [Massachusetts] early in the outbreak, underscore the role of superspreading in amplifying an outbreak in a major urban area, and lay a foundation for contact tracing informed by genetic data,” they concluded.

Anthony Fauci, MD
Some experts think humankind may be entering a period of increased pandemics. In their report published in Cell, titled, “Emerging Pandemic Diseases: How We Got to COVID-19,” Anthony Fauci, MD (above) Director of the National Institute of Allergy and Infectious Diseases (NIAID), and David Morens, MD, a senior associate professor at Johns Hopkins School of Public Health and Senior Advisor to Fauci, wrote, “One can conclude from this recent experience that we have entered a pandemic era. The causes of this new and dangerous situation are multifaceted, complex, and deserving of serious examination.” (Photo copyright: NIAID.)

Genetic Sequencing and Mutation Tracking

The use of genetic sequencing to trace the virus could inform measures to control the spread in new ways, but currently, only about 0.33% of cases in the United States are being sequenced, MacInnis told WaPo, and that not sequencing samples is “throwing away the crown jewels of what you really want to know.”

Another role that genetic sequencing is playing in this pandemic is in tracking viral mutations. One of the ways that pandemics worsen is when viruses mutate to become deadlier or more easily spread. Scientists are using genetic sequencing to monitor SARS-CoV-2 for such mutations.

A group of scientists at Texas A&M University led by Yue Xing, PhD, published a paper titled, “MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences,” which explains that “Although most mutations are expected to be selectively neural, it is important to monitor if SARS-CoV-2 will eventually evolve to be a stronger or weaker infectious agent as time goes on. Therefore, it is vital to track mutations from newly sequenced SARS-CoV-2 genome.”

Another group of researchers have identified such a mutation. “A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional, and municipal,” Bette Korber, PhD and her colleagues wrote in “Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus,” published in Cell. Korber is a Laboratory Fellow at Los Alamos National Laboratory and visiting faculty at Santa Fe Institute.

Korber’s findings are important because the mutation the scientists identified appears to have a fitness advantage. “Our data show that, over the course of one month, the variant carrying the D614G Spike mutation became the globally dominant form of SARS-CoV-2,” they wrote. Additionally, the study noted, people infected with the mutated variant appear to have a higher viral load in their upper respiratory tracts.

Genetic Sequencing, the Race for Treatments, Vaccines, and Managing Future Pandemics

A vaccine is the best hope for stopping a pandemic, but short of a vaccine, an effective clinical laboratory treatment is the next best thing. And as Dark Daily reported in “Advances in Gene Sequencing Technology Enable Scientists to Respond to the Novel Coronavirus Outbreak in Record Time with Medical Lab Tests, Therapies,” genetic sequencing is quickly becoming a critical tool to develop both.

If, as Fauci and Morens predict, future pandemics are likely, improvements in gene sequencing and analysis will become even more important for tracing, monitoring, and suppressing outbreaks. Clinical laboratory managers will want to watch this closely, as medical labs that process genetic sequencing will, no doubt, be part of that operation.

—Dava Stewart

Related Information:

Genetic Data Show How a Single Superspreading Event Sent Coronavirus Across Massachusetts and the Nation

How the Biogen Leadership Conference in Boston Spread the Coronavirus

How a Premier U.S. Drug Company Became a Virus ‘Super Spreader’

This Cambridge Drug Company Inadvertently Spread the Coronavirus. Now, It’s Creating A ‘Biobank’ To Hopefully Treat the Disease

Phylogenetic Analysis of SARS-CoV-2 in the Boston Area Highlights the Role of Recurrent Importation and Superspreading Events

MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences

Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus

The D614G Mutation in the SARS-CoV-2 Spike Protein Reduces S1 Shedding and Increases Infectivity

Emerging Pandemic Diseases: How We Got to COVID-19 Advances in Gene Sequencing Technology Enable Scientists to Respond to the Novel Coronavirus Outbreak in Record Time with Medical Lab Tests, Therapies

AccuWeather Asks: ‘Will COVID-19 Subside as Temperatures Climb?’ Some Pathology Experts Say Yes, Others Are Skeptical

AccuWeather interviewed experts, including pathologists who have analyzed the virus, who say SARS-CoV-2 is susceptible to heat, light, and humidity, while others study weather patterns for their predictions

AccuWeather, as it watched the outbreak of SARS-CoV-2, the novel coronavirus that causes COVID-19, wanted to know what effect that warmer spring temperatures might have on curbing the spread of the virus. There is a good reason to ask this question. As microbiologists, infectious disease doctors, and primary care physicians know, the typical start and end to every flu season is well-documented and closely watched.

As SARS-CoV-2 ravages countries around the world, clinical pathologists and microbiologists debate whether it will subside as temperatures rise in Spring and Summer. Recent analyses suggest it may indeed be a seasonal phenomenon. However, some infectious disease specialists have expressed skepticism.

In a private conference call with investment analysts that was later leaked on social media, John Nicholls, MBBS, FRCPA, FHKCPath, FHKAM, Clinical Professor in the University of Hong Kong Department of Pathology, said there are “Three things the virus does not like: 1. sunlight 2. temperature and 3. humidity,” AccuWeather reported.

CNN reported that Nicholls was part of a research team which reproduced the virus in January to study its behavior and evaluate diagnostic tests. Nicholls was also involved in an early effort to analyze the coronavirus associated with the 2003 SARS outbreak involving SARS-CoV, another coronavirus that originated in Asia.

“Sunlight will cut the virus’ ability to grow in half, so the half-life will be 2.5 minutes and in the dark it’s about 13 to 20,” Nicholls told AccuWeather. “Sunlight is really good at killing viruses.” And that, “In cold environments, there is longer virus survival than warm ones.”  He added, “I think it will burn itself out in about six months.”

The graphic above, created by John Nicholls, MBBS Adel, FRCPA, FHKCPath, FHKAM (Pathology), Clinical Professor of Pathology at the University of Hong Kong, shows “the temperate zone where the major SARS-CoV-2 hotspots have appeared so far. The variation from year to year, in this case, is minimal; however, meteorologists would typically use the 30-year normal data for this type of analysis.” (Caption and graphic copyright: AccuWeather/John Nicholls.)

Can Weather Predict the Spread of COVID-19?

Other researchers have analyzed regional weather data to see if there’s a correlation with incidence of COVID-19. A team at the Massachusetts Institute of Technology (MIT) found that the number of cases has been relatively low in areas with warm, humid conditions and higher in more northerly regions. They published their findings in SSRN (formerly Social Science Research Network), an open-access journal and repository for early-stage research, titled “Will Coronavirus Pandemic Diminish by Summer?

FREE Webinar | What Hospital and Health System Labs Need to Know
About Operational Support and Logistics During the COVID-19 Outbreak

Wednesday, April 1, 2020 @ 1PM EDT — Register or Stream now

The MIT researchers found that as of March 22, 90% of the transmissions of SARS-CoV-2 occurred within a temperature range of three to 17 degrees Celsius (37.4 to 62.6 degrees Fahrenheit) and an absolute humidity range of four to nine grams per cubic meter. Fewer than 6% of the transmissions have been in warmer climates further south, they wrote.

“Based on the current data on the spread of [SARS-CoV-2], we hypothesize that the lower number of cases in tropical countries might be due to warm humid conditions, under which the spread of the virus might be slower as has been observed for other viruses,” they wrote.

In the US, “the outbreak also shows a north-south divide,” with higher incidence in northern states, they wrote. The outliers are Oregon, with fewer than 200 cases, and Louisiana, where, as of March 22, approximately 1,000 had been reported.

There’s been a recent spike in reported cases from warmer regions in Asia, South America, and Africa, but the MIT researchers attribute this largely to increased testing.

Still, “there may be several caveats to our work,” they wrote in their published study. For example, South Korea has been engaged in widespread testing that includes asymptomatic individuals, whereas other countries, including the US, have limited testing to a narrower range of people, which could mean that more cases are going undetected. “Further, the rate of outdoor transmission versus indoor and direct versus indirect transmission are also not well understood and environmental related impacts are mostly applicable to outdoor transmissions,” the MIT researchers wrote.

Even in warmer, more humid regions, they advocate “proper quarantine measures” to limit the spread of the virus.

The New York Times (NYT) reported that other recent studies have shown a correlation between weather conditions and the incidence of COVID-19 outbreaks as well, though none of this research has been peer reviewed.

Why the Correlation? It’s Unclear, MIT Says

Though the MIT researchers found a strong relation between the number of cases and weather conditions, “the underlying reasoning behind this relationship is still not clear,” they wrote. “Similarly, we do not know which environmental factor is more important. It could be that either temperature or absolute humidity is more important, or both may be equally or not important at all in the transmission of [SARS-CoV-2].”

Some experts have looked at older coronaviruses for clues. “The coronavirus is surrounded by a lipid layer, in other words, a layer of fat,” said molecular virologist Thomas Pietschmann, PhD, Director of the Department for Experimental Virology at the Helmholtz Center for Infection Research in Hanover, Germany, in a story from German news service Deutsche Welle. This makes it susceptible to temperature increases, he suggested.

However, Pietschmann cautioned that because it’s a new virus, scientists cannot say if it will behave like older viruses. “Honestly speaking, we do not know the virus yet,” he concluded.

Epidemiologist and virologist Joseph Fair, PhD, MPH (above), Special Advisor for Ebola, USAID, and Research Professor at Texas A&M University, said that sunlight might be a bigger factor than temperature or humidity. “It really doesn’t have anything to do with the warmth, but it has to do with the length of the day and the exposure to sunlight which inactivates the virus through UV light,” he told NBC News. “The science is still out,” he said. “We can assume this will follow typical other coronavirus cases,” but “everyone in the scientific and public health community expect it to be back in the fall and we expect to be in this for quite some time.” (Photo copyright: Texas A&M University.)

Marc Lipsitch, DPhil, Professor of Epidemiology and Director of the Center for Communicable Disease Dynamics at the Harvard T.H. Chan School of Public Health, is skeptical that warmer weather will put the brakes on COVID-19. “While we may expect modest declines in the contagiousness of SARS-CoV-2 in warmer, wetter weather, and perhaps with the closing of schools in temperate regions of the Northern Hemisphere, it is not reasonable to expect these declines alone to slow transmission enough to make a big dent,” he wrote in a commentary for the center.

How should pathologists and clinical laboratories in this country prepare for COVID-19? Lipsitch wrote that Influenza does tend to be seasonal, in part because cold, dry air is highly conducive to flu transmission. However, “for coronaviruses, the relevance of this factor is unknown.” And “new viruses have a temporary but important advantage—few or no individuals in the population are immune to them,” which means they are not as susceptible to the factors that constrain older viruses in warmer, more humid months.

So, we may not yet know enough to adequately prepare for what’s coming. Nevertheless, monitoring the rapidly changing data on COVID-19 should be part of every lab’s daily agenda.

—Stephen Beale

Related Information:

What Could Warming Mean for Pathogens like Coronavirus?

Seasonality of SARS-CoV-2: Will COVID-19 Go Away on Its Own in Warmer Weather?

Temperature, Humidity and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19

Warmer Weather May Slow, but Not Halt, Coronavirus

Higher Temperatures Affect Survival of New Coronavirus, Pathologist Says

AccuWeather: Coronavirus Expert Says He Knows When the Virus ‘Will Burn Itself Out,’ According to Leaked Analysis

Will Coronavirus Pandemic Diminish by Summer?

SCMP: Coronavirus ‘Highly Sensitive’ to High Temperatures, but Don’t Bank on Summer Killing It Off, Studies Say  

Will Warm Weather Really Kill Off Covid-19?

Will Warmer Weather Stop the Spread of the Coronavirus?

Why Do Dozens of Diseases Wax and Wane with the Seasons—and Will COVID-19? Seasonality Of SARS-Cov-2: Will COVID-19 Go Away on Its Own in Warmer Weather?

;