News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Northwestern University Study Shares News Insights into Aging Guided by Transcriptome, Gene Length Imbalance

Findings could lead to deeper understanding of why we age, and to medical laboratory tests and treatments to slow or even reverse aging

Can humans control aging by keeping their genes long and balanced? Researchers at Northwestern University in Evanston, Illinois, believe it may be possible. They have unveiled a “previously unknown mechanism” behind aging that could lead to medical interventions to slow or even reverse aging, according to a Northwestern news release.

Should additional studies validate these early findings, this line of testing may become a new service clinical laboratories could offer to referring physicians and patients. It would expand the test menu with assays that deliver value in diagnosing the aging state of a patient, and which identify the parts of the transcriptome that are undergoing the most alterations that reduce lifespan.

It may also provide insights into how treatments and therapies could be implemented by physicians to address aging.

The Northwestern University scientists published their findings in the journal Nature Aging title, “Aging Is Associated with a Systemic Length-Associated Transcriptome Imbalance.”

“I find it very elegant that a single, relatively concise principle seems to account for nearly all of the changes in activity of genes that happen in animals as they change,” Thomas Stoeger, PhD, postdoctoral scholar in the Amaral Lab who led the study, told GEN. Clinical laboratories involved in omics research may soon have new anti-aging diagnostic tests to perform. (Photo copyright: Amaral Lab.)

Possible ‘New Instrument’ for Biological Testing

Researchers found clues to aging in the length of genes. A gene transcript length reveals “molecular-level changes” during aging: longer genes relate to longer lifespans and shorter genes suggest shorter lives, GEN summarized.

The phenomenon the researchers uncovered—which they dubbed transcriptome imbalance—was “near universal” in the tissues they analyzed (blood, muscle, bone, and organs) from both humans and animals, Northwestern said. 

According to the National Human Genome Research Institute fact sheet, a transcriptome is “a collection of all the gene readouts (aka, transcript) present in a cell” shedding light on gene activity or expression.

The Northwestern study suggests “systems-level” changes are responsible for aging—a different view than traditional biology’s approach to analyzing the effects of single genes.

“We have been primarily focusing on a small number of genes, thinking that a few genes would explain disease,” said Luis Amaral, PhD, Senior Author of the Study and Professor of Chemical and Biological Engineering at Northwestern, in the news release.

“So, maybe we were not focused on the right thing before. Now that we have this new understanding, it’s like having a new instrument. It’s like Galileo with a telescope, looking at space. Looking at gene activity through this new lens will enable us to see biological phenomena differently,” Amaral added.

In their Nature Aging paper, Amaral and his colleagues wrote, “We hypothesize that aging is associated with a phenomenon that affects the transcriptome in a subtle but global manner that goes unnoticed when focusing on the changes in expression of individual genes.

“We show that transcript length alone explains most transcriptional changes observed with aging in mice and humans,” they continued.

Researchers Turn to AI, RNA Sequencing

According to their published study, the Northwestern University scientists used large datasets, artificial intelligence (AI), and RNA (ribonucleic acid) sequencing in their analysis of tissue derived from:

  • Humans (men and women), age 30 to 49, 50 to 69, and 70 years and older. 
  • Mice, age four months to 24 months.
  • Rats, age six to 24 months.
  • Killifish, age five weeks to 39 weeks.

Scientific American reported the following study findings:

  • In tissues studied, older animals’ long transcripts were not as “abundant” as short transcripts, creating “imbalance.”
  • “Imbalance” likely prohibited the researchers’ discovery of a “specific set of genes” changing.
  • As animals aged, shorter genes “appeared to become more active” than longer genes.
  • In humans, the top 5% of genes with the shortest transcripts “included many linked to shorter life spans such as those involved in maintaining the length of telomeres.”
  • Conversely, the researchers’ review of the leading 5% of genes in humans with the longest transcripts found an association with long lives.
  • Antiaging drugs—rapamycin (aka, sirolimus) and resveratrol—were linked to an increase in long-gene transcripts.

“The changes in the activity of genes are very, very small, and these small changes involve thousands of genes. We found this change was consistent across different tissues and in different animals. We found it almost everywhere,” Thomas Stoeger, PhD, postdoctoral scholar in the Amaral Lab who led the study, told GEN.

In their paper, the Northwestern scientists noted implications for creation of healthcare interventions.

“We believe that understanding the direction of causality between other age-dependent cellular and transcriptomic changes and length-associated transcriptome imbalance could open novel research directions for antiaging interventions,” they wrote.

Other ‘Omics’ Studies

Dark Daily has previously reported on transcriptomics studies, along with research into the other “omics,” including metabolomics, proteomics, and genomics.

In “Spatial Transcriptomics Provide a New and Innovative Way to Analyze Tissue Biology, May Have Value in Surgical Pathology,” we explored how newly combined digital pathology, artificial intelligence (AI), and omics technologies are providing anatomic pathologists and medical laboratory scientists with powerful diagnostic tools.

In “Swiss Researchers Develop a Multi-omic Tumor Profiler to Inform Clinical Decision Support and Guide Precision Medicine Therapy for Cancer Patients,” we looked at how new biomarkers for cancer therapies derived from the research could usher in superior clinical laboratory diagnostics that identify a patient’s suitability for personalized drug therapies and treatments.

And in “Human Salivary Proteome Wiki Developed at University of Buffalo May Provide Biomarkers for New Diagnostic Tools and Medical Laboratory Tests,” we covered how proteins in human saliva make up its proteome and may be the key to new, precision medicine diagnostics that would give clinical pathologists new capabilities to identify disease.

Fountain of Youth

While more research is needed to validate its findings, the Northwestern study is compelling as it addresses a new area of transcriptome knowledge. This is another example of researchers cracking open human and animal genomes and gaining new insights into the processes supporting life.

For clinical laboratories and pathologists, diagnostic testing to reverse aging and guide the effectiveness of therapies may one day be possible—kind of like science’s take on the mythical Fountain of Youth.  

—Donna Marie Pocius

Related Information:

Aging Is Driven by Unbalanced Genes

Aging Linked to Gene Length Imbalance and Shift Towards Shorter Genes

NIH: Transcriptome Fact Sheet

Aging Is Associated with a Systemic Length-Associated Transcriptome Imbalance

Aging Is Linked to More Activity in Short Genes than in Long Genes

Spatial Transcriptomics Provide a New and Innovative Way to Analyze Tissue Biology, May Have Value in Surgical Pathology

Swiss Researchers Develop a Multi-omic Tumor Profiler to Inform Clinical Decision Support and Guide Precision Medicine Therapy for Cancer Patients

Human Salivary Proteome Wiki Developed at University of Buffalo May Provide Biomarkers for New Diagnostic Tools and Medical Laboratory Tests

Mayo Clinic Researchers Investigate Ways Telomeres Could be Useful in Clinical Laboratory Diagnoses of Diseases Associated with Short Telomere Syndrome

Using precision genomics, Mayo researchers hope to develop improved medical laboratory tools for screening, diagnosing, and treating patients with inherited genetic disorders such as accelerated aging

Telomeres increasingly are on the radars of physicians and healthcare consumers alike, as researchers gain more knowledge about these critical nucleotides, and doctors continue to indicate their belief that telomeres could make useful diagnostic tools. If so, that would open up a new channel of precision medicine testing for clinical laboratories and anatomic pathology groups.

Telomeres are DNA strands that protect chromosome end points from degrading as people age. Their job is similar to the way plastic tips keep shoelaces from fraying, researchers at the Mayo Clinic explained in a news release. They have been using precision genomics in their assessment of 17 patients with short telomere syndrome (STS) to uncover the genetic causes of the condition.

They published their findings in the July issue of Mayo Clinic Proceedings.

Using Genetic Sequencing to Find Causes of Short Telomeres

People with STS could develop conditions including bone marrow failure, liver disease, and lung disease earlier in life than others, the news release pointed out.

However, according to the researchers’ paper, “Management of STSs is fraught with significant challenges such as delayed diagnoses, lack of routinely available diagnostics modalities, and standardized treatment guidelines.”

Nevertheless, some physicians are already leveraging information about telomeres in patient treatment. And many consumers have been turning to telomere diagnostic testing companies to learn the lengths of their own telomeres. They’ve learned that the longer the telomeres the better, as shorter telomeres are associated with accelerated aging.

“The length of certain telomeres gives a history of all the assaults a person has been subject to over the course of her lifetime,” a Wired article noted, quoting Joseph Raffaele, MD, co-founder of PhysioAge Medical Group, a clinical practice in New York City that specializes in “proactive” medicines. He goes on to call telomeres “the new cholesterol.” (Photo copyright: drraffaele.com.)

More Study into STS is Needed

GenomeWeb summarized the Mayo study’s methodology as follows:

  • “An analysis of data from 17 patients with STS confirmed by flow-FISH (fluorescence in situ hybridization) occurred;
  • Next-generation sequencing (NGS) was used on eight STS-related genes; and,
  • Exome sequencing was deployed to find suspicious germline alterations in participants who had short telomeres without STS variants.”

Researchers reported these findings in Mayo Clinic Proceedings:

Study authors concluded that while some genetic mutations are common to short telomeres, they were found in only about 40% of the people in their study. So, more research is needed to discover other causes of short telomeres.

Telomeres and Lung Disease

Other research into telomeres was conducted by St. Paul’s Hospital and the University of British Columbia Department of Medicine, which focused on telomeres and lung disease.

In this study, researchers used polymerase chain reaction (PCR) to measure absolute telomere length from blood samples provided by 576 people with chronic obstructive pulmonary disease (COPD), according to a paper in the journal CHEST, published by the American College of Chest Physicians.

The study found that when compared to people with normal blood telomeres, people with shorter telomere lengths and more rapidly aging blood cells:

  • Were 50% more likely to develop new or increasing respiratory symptoms;
  • Were nine times more likely to die; and,
  • Had worse health status and quality of life.

“It is known that short telomeres are associated with common morbidities of COPD, but it was not known if there is a relationship between blood telomeres and patient-related outcomes in COPD,” Don Sin, MD, a chest physician who led the research at the Centre for Heart Lung Innovation at St. Paul’s Hospital, stated in a news release.

Other Takes on Telomeres

A Harvard Medical blog noted, however, that short telomeres do not necessarily mean disease is imminent, nor that long ones guarantee optimal health.

“There is mounting evidence that a healthy lifestyle buffers your telomeres,” stated Immaculata De Vivo, PhD, a Harvard Medical School Professor and Genetics Researcher at the Dana-Farber/Harvard Cancer Center, in the blog post.

However, another expert questions the value of measuring telomeres for disease risk.

“In short, telomere lengths are too variable within a population, too variable within an individual, and too sensitive to environmental factors to offer any reliable information for common disease risk,” wrote Ricki Lewis, PhD, in PLOS.

Although there are many pitfalls to overcome, some doctors are pushing to use telomere information in patient treatment, and these studies from the Mayo Clinic and other researchers have contributed important data for diagnostic test developers.

In the end, vast and varied content about telomeres exists and clinical laboratory professionals may be called on to help clarify and assess the information. And that’s the long and the short of it.

—Donna Marie Pocius

Related Information:

Precision Genomics Point the Way to Mutations Associated with Accelerated Aging

Telomeres Are the New Cholesterol. Now What?

Clinical Correlates and Treatment Outcomes for Patients with Short Telomeres Syndrome

Mayo Clinic Researchers Use Targeted Sequencing to Diagnose Short Telomere Syndrome

Relationship of Absolute Telomere Length with Quality of Life, Exacerbations, and Mortality in COPD

Blood Telomeres Can Help Predict Risk of Disease Worsening or Death in COPD Patients

Can DNA Markers Called Telomeres Predict Aging?

Telomere Testing: Science or Snake Oil?

White Paper Download | How Next-Generation Sequencing Helps Molecular Laboratories Deliver Personalized Medicine Services to their Client Physicians

Summit: Breakthroughs with Genetic and Precision Medicine: What All Health Network CEOs Need to Know

;