US and UK Researchers Simultaneously Develop New Tests to Detect Prostate Cancer

Though still in trials, early results show tests may be more accurate than traditional clinical laboratory tests for detecting prostate cancer

Within weeks of each other, different research teams in the US and UK published findings of their respective efforts to develop a better, more accurate clinical laboratory prostate cancer test. With cancer being a leading cause of death among men—second only to heart disease according to the Centers for Disease Control and Prevention (CDC)—new diagnostics to identify prostate cancer would be a boon to precision medicine treatments for the deadly disease and could save many lives.

Researchers at the University of East Anglia (UEA) in Norwich, England, were working to improve the accuracy of the widely-used and accepted prostate-specific antigen (PSA) test. By contrast, researchers at Cedars-Sinai Cancer in Los Angeles, pursued a new liquid biopsy approach to identifying prostate cancer that uses nanotechnology.

Thus, these are two different pathways toward the goal of achieving earlier, more accurate diagnosis of prostate cancer, the holy grail of prostate cancer diagnosis.

Dmitry Pshezhetskiy, PhD

“There is currently no single test for prostate cancer, but PSA blood tests are among the most used, alongside physical examinations, MRI scans, and biopsies,” said Dmitry Pshezhetskiy, PhD (above), Professorial Research Fellow at University of East Anglia and one of the authors of the UEA study. “However, PSA blood tests are not routinely used to screen for prostate cancer, as results can be unreliable. Only about a quarter of people who have a prostate biopsy due to an elevated PSA level are found to have prostate cancer. There has therefore been a drive to create a new blood test with greater accuracy.” With the completion of the US and UK studies, clinical laboratories may soon have a new diagnostic test for prostate cancer. (Photo copyright: University of East Anglia.)

East Anglia’s Research into a More Accurate Blood Test

Scientists at the University of East Anglia (UEA) worked with researchers from Imperial College in London, Imperial College NHS Trust, and Oxford BioDynamics to develop a new precision medicine blood test that can detect prostate cancer with greater accuracy than current methods.

The epigenetic blood test they developed, called Prostate Screening EpiSwitch (PSE), can identify cancer-specific chromosome conformations in blood samples. The test works in tandem with the standard prostate-specific antigen (PSA) blood test to diagnose prostate cancer, according to an Oxford BioDynamics press release.

The researchers evaluated their test in a pilot study involving 147 patients. They found their testing method had a 94% accuracy rate, which is higher than that of PSA testing alone. They discovered their test significantly improved the overall detection of prostate cancer in men who are at risk for the disease. 

“When tested in the context of screening a population at risk, the PSE test yields a rapid and minimally invasive prostate cancer diagnosis with impressive performance,” Dmitry Pshezhetskiy, PhD, Professorial Research Fellow at UEA and one of the authors of the study told Science Daily. “This suggests a real benefit for both diagnostic and screening purposes.”

The UK scientists hope their test can eventually be used in everyday clinical practice as there is a need for a highly accurate method for prostate cancer screening that does not subject patients to unnecessary, costly, invasive procedures. 

The UEA researchers published their findings in the peer-reviewed journal Cancers, titled, “Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection.”

Cedars-Sinai’s Research into Nanotechnology Cancer Testing

Researchers from Cedars-Sinai Cancer took a different approach to diagnosing prostate cancer by developing a nanotechnology-based liquid biopsy test that detects the disease even in microscopic amounts.  

Their test isolates and identifies extracellular vesicles (EVs) from blood samples. EVs are microscopic non-reproducing protein and genetic material shed by all cells. Cedars-Sinai’s EV Digital Scoring Assay accurately extracts EVs from blood and analyzes them faster than similar currently available tests.

“This research will revolutionize the liquid biopsy in prostate cancer,” said oncologist Edwin Posadas, MD, Medical Director of the Urologic Oncology Program and co-director of the Experimental Therapeutics Program in Cedars-Sinai Cancer in a press release. “The test is fast, minimally invasive and cost-effective, and opens up a new suite of tools that will help us optimize treatment and quality of life for prostate cancer patients.”

The researchers tested blood samples from 40 patients with prostate cancer. They found that their EV test could distinguish between cancer localized to the prostate and cancer that has spread to other parts of the body.

Microscopic cancer deposits, called micrometastases, are not always detectable, even with advanced imaging methods. When these deposits spread outside the prostate area, focused radiation cannot prevent further progression of the disease. Thus, the ability to identify cancer by locale within the body could lead to new precision medicine treatments for the illness.

“[The EV Digital Scoring Assay] would allow many patients to avoid the potential harms of radiation that isn’t targeting their disease, and instead receive systemic therapy that could slow disease progression,” Posadas explained.

The Cedars-Sinai researchers published their findings in Nano Today, titled, “Prostate Cancer Extracellular Vesicle Digital Scoring Assay: A Rapid Noninvasive Approach for Quantification of Disease-relevant mRNAs.”

Other Clinical Laboratory Tests for Prostate Cancer Under Development

According to the American Cancer Society, the number of prostate cancer cases is increasing. One out of eight men will be diagnosed with the illness during his lifetime. Thus, developers have been working on clinical laboratory tests to accurately detect the disease and save lives for some time.

In “University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test,” Dark Daily reported on a urine test also developed by scientists at the University of East Anglia that clinical laboratories can use to not only accurately diagnose prostate cancer but also determine whether it is an aggressive form of the disease.

And in “UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer ,” we outlined how researchers at the University of Pittsburgh Medical Center (UPMC) working with Ibex Medical Analytics in Israel had developed an artificial intelligence (AI) algorithm for digital pathology that can accurately diagnose prostate cancer. In the initial study, the algorithm—dubbed the Galen Prostate AI platform—accurately detected prostate cancer with 98% sensitivity and 97% specificity.

More research and clinical trials are needed before the new US and UK prostate cancer testing methods will be ready to be used in clinical settings. But it’s clear that ongoing research may soon produce new clinical laboratory tests and diagnostics for prostate cancer that will steer treatment options and allow for better patient outcomes.  

—JP Schlingman

Related Information:

The New Prostate Cancer Blood Test with 94 Percent Accuracy

Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection

Invention: A Blood Test to Unlock Prostate Cancer Mysteries

Prostate Cancer Extracellular Vesicle Digital Scoring Assay: A Rapid Noninvasive Approach for Quantification of Disease-relevant mRNAs

Could a Urine Test Detect Pancreatic and Prostate Cancer? Study Shows 99% Success Rate

University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test

UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer

Dutch Researchers Investigating Prostate Cancer Discover That a Common Protein Increases Resistance to Therapy in Aggressive Cancer Cells

Study may lead to clinical laboratory involvement in repurposing hormonal treatments to prevent cancer treatment resistance

Diagnosing prostate cancer and identifying which patients have aggressive forms of the cancer has been a challenge. But new insights into how aggressive cancers become resistant to drug therapies—and the discovery of a way to repurpose hormonal treatment to block or slow aggressive prostate cancer—may lead to clinical laboratories monitoring the progress of patients’ being treated with this new type of therapy.

Instead of treating tumors directly, the new approach developed by an international team of scientists would target proteins that typically regulate a cell’s circadian rhythm, but which have been found to be helping cancerous cells become resistant to treatment therapies.

That’s according to a news release from the Antoni van Leeuwenhoek Netherlands Cancer Institute (NKI), Amsterdam, and Oncode Institute, Utrecht, in the Netherlands. The NKI is an oncology-focused hospital and research institute, and Oncode is an independent organization specializing in molecular oncology.

The researchers published their findings in Cancer Discovery, a journal of the American Association for Cancer Research (AACR), titled, “Drug-Induced Epigenomic Plasticity Reprograms Circadian Rhythm Regulation to Drive Prostate Cancer toward Androgen Independence.”

Wilbert Zwart, PhD

“Our discovery has shown us that we will need to start thinking outside the box when it comes to new drugs to treat prostate cancer and test medicines that affect the circadian clock proteins in order to increase sensitivity to hormonal therapy in prostate cancer,” said Wilbert Zwart, PhD (above), Lead Researcher and Senior Group Leader Oncogenomics Division at NKI, in a news release. This discovery could give clinical laboratories and anatomic pathology groups an effective way to monitor new forms of cancer hormonal treatments. (Photo copyright: Netherlands Cancer Institute.)

Breakthrough Could Mean New Treatment for Aggressive Cancer

The aim of prostate cancer hormone therapy (AKA, androgen suppression therapy) is to halt signals by male hormones (usually testosterone) that stimulate tumor growth. This approach works until cancer becomes resistant to the drug therapy.

So, the challenge in metastatic prostate cancer treatment is finding a drug that prevents resistance to hormonal therapy.

In addressing the challenge, the researchers made a surprising discovery about what exactly dilutes anti-hormonal therapy’s effectiveness. Proteins that regulate the body’s sleep-wake cycle, or circadian rhythm, were found to also “dampen the effects of the anti-hormonal therapy,” according to the study.

“Prostate cancer cells no longer have a circadian rhythm. But these ‘circadian clock’ proteins acquire an entirely new function in the tumor cells upon hormonal therapy: they keep these cancer cells alive, despite treatment. This has never been seen before,” said Wilbert Zwart, PhD, Lead Researcher and Senior Group Leader Oncogenomics Division, NKI, in the news release.

The research suggests treatment for metastatic prostate cancer requires drugs “which influence the day-and-night rhythm of a cell,” and not necessarily medications that fight cancer, Technology Networks noted.

“Fortunately, there are already several therapies that affect circadian proteins, and those can be combined with anti-hormonal therapies. This lead, which allows for a form of drug repurposing, could save a decade of research,” Zwart added.

Questioning Hormonal Therapy Resistance

In their paper, the Dutch researchers acknowledged that androgen receptor (AR)-targeting agents are effective in prostate disease stages. What they wanted to learn was how tumor cells bypass AR suppression.

For the study, the scientists enrolled 56 patients with high-risk prostate cancer in a neoadjuvant clinical trial. Unlike adjuvant therapy, which works to lower the risk that cancer will return following treatment, the purpose of neoadjuvant therapy is to reduce the size of a tumor prior to surgery or radiation therapy, according to the National Institute of Health (NIH) National Cancer Institute (NCI).

The researchers performed DNA analysis of tissue samples from patients who had three months of anti-hormonal therapy before surgery. They observed that “genes keeping tumor cells alive were controlled by a protein that normally regulates the circadian (body) clock,” said Simon Linder, PhD student and researcher at NKI, in the news release.

“We performed integrative multi-omics analyses on tissues isolated before and after three months of AR-targeting enzalutamide monotherapy from patients with high-risk prostate cancer enrolled in a neoadjuvant clinical trial. Transcriptomic analyses demonstrated that AR inhibition drove tumors toward a neuroendocrine-like disease state,” the researchers wrote in Cancer Discovery.

“Understanding how prostate cancers adapt to AR-targeted interventions is critical for identifying novel drug targets to improve the clinical management of treatment-resistant disease. Our study revealed an enzalutamide-induced epigenomic plasticity toward pro-survival signaling and uncovered the circadian regulator ARNTL [Aryl hydrocarbon receptor nuclear translocator-like protein 1] as an acquired vulnerability after AR inhibition, presenting a novel lead for therapeutic development,” the scientists concluded.

More Research Planned

The scientists expressed intent to follow-up with Oncode to develop a drug therapy that would increase anti-hormonal therapy’s effectiveness in prostate cancer patients.

Given the molecular processes involved in the researchers’ discovery, there may be a supportive role for clinical laboratories and anatomic pathology groups in the future. But that can only happen after more studies and a US Food and Drug Administration (FDA) review of any potential new therapy to combat hormonal treatment resistance in prostate cancer patients.

Donna Marie Pocius

Related Information:

Drug-induced Epigenomic Plasticity Reprograms Circadian Rhythm Regulation to Drive Prostate Cancer Towards Androgen-Independence

Prostate Cancer Hijacks Tumor Cells Biorhythm to Evade Hormone Therapy

Scientists Make a Prostate Cancer Breakthrough

Prostate-specific Antigen Test Fact Sheet

Types of Hormone Therapy

Polygenic Scores Show Potential to Predict Humans’ Susceptibility to a Range of Chronic Diseases; New Clinical Laboratory Genetic Tests Could Result from Latest Research

Access to vast banks of genomic data is powering a new wave of assessments and predictions that could offer a glimpse at how genetic variation might impact everything from Alzheimer’s Disease risk to IQ scores

Anatomic pathology groups and clinical laboratories have become accustomed to performing genetic tests for diagnosing specific chronic diseases in humans. Thanks to significantly lower costs over just a few years ago, whole-genome sequencing and genetic DNA testing are on the path to becoming almost commonplace in America. BRCA 1 and BRCA 2 breast cancer gene screenings are examples of specific genetic testing for specific diseases.

However, a much broader type of testing—called polygenic scoring—has been used to identify certain hereditary traits in animals and plants for years. Also known as a genetic-risk score or a genome-wide score, polygenic scoring is based on thousands of genes, rather than just one.

Now, researchers in Cambridge, Mass., are looking into whether it can be used in humans to predict a person’s predisposition to a range of chronic diseases. This is yet another example of how relatively inexpensive genetic tests are producing data that can be used to identify and predict how individuals get different diseases.

Assessing Heart Disease Risk through Genome-Wide Analysis

Sekar Kathiresan, MD, Co-Director of the Medical and Population Genetics program at Broad Institute of MIT/Harvard and Director of the Center for Genomics Medicine at Massachusetts General Hospital (Mass General); and Amit Khera, MD, Cardiology Fellow at Mass General, told MIT Technology Review “the new scores can now identify as much risk for disease as the rare genetic flaws that have preoccupied physicians until now.”

“Where I see this going is that, at a young age, you’ll basically get a report card,” Khera noted. “And it will say for these 10 diseases, here’s your score. You are in the 90th percentile for heart disease, 50th for breast cancer, and the lowest 10% for diabetes.”

However, as the MIT Technology Review article points out, predictive genetic testing, such as that under development by Khera and Kathiresan, can be performed at any age.

“If you line up a bunch of 18-year-olds, none of them have high cholesterol, none of them have diabetes. It’s a zero in all the columns, and you can’t stratify them by who is most at risk,” Khera noted. “But with a $100 test we can get stratification [at the age of 18] at least as good as when someone is 50, and for a lot of diseases.”

Sekar Kathiresan, MD (left), Co-Director of the Medical and Population Genetics program at Broad Institute at MIT/Harvard and Director of the Center for Genomics Medicine at Massachusetts General Hospital; and Amit Khera, MD (right), Cardiology Fellow at Mass General, are researching ways polygenic scores can be used to predict the chance a patient will be prone to develop specific chronic diseases. Anatomic pathology biomarkers and new clinical laboratory performed genetic tests will likely follow if their research is successful. (Photo copyrights: Twitter.)

Polygenic Scores Show Promise for Cancer Risk Assessment

Khera and Kathiresan are not alone in exploring the potential of polygenic scores. Researchers at the University of Michigan’s School of Public Health looked at the association between polygenic scores and more than 28,000 genotyped patients in predicting squamous cell carcinoma.

“Looking at the data, it was surprising to me how logical the secondary diagnosis associations with the risk score were,” Bhramar Mukherjee, PhD, John D. Kalbfleisch Collegiate Professor of Biostatistics, and Professor of Epidemiology at U-M’s School of Public Health, stated in a press release following the publication of the U-M study, “Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative.”

“It was also striking how results from population-based studies were reproduced using data from electronic health records, a database not ideally designed for specific research questions and [which] is certainly not a population-based sample,” she continued.

Additionally, researchers at the University of California San Diego School of Medicine (UCSD) recently published findings in Molecular Psychiatry on their use of polygenic scores to assess the risk of mild cognitive impairment and Alzheimer’s disease.

The UCSD study highlights one of the unique benefits of polygenic scores. A person’s DNA is established in utero. However, predicting predisposition to specific chronic diseases prior to the onset of symptoms has been a major challenge to developing diagnostics and treatments. Should polygenic risk scores prove accurate, they could provide physicians with a list of their patients’ health risks well in advance, providing greater opportunity for early intervention.

Future Applications of Polygenic Risk Scores

In the January issue of the British Medical Journal (BMJ), researchers from UCSD outlined their development of a polygenic assessment tool to predict the age-of-onset of aggressive prostate cancer. As Dark Daily recently reported, for the first time in the UK, prostate cancer has surpassed breast cancer in numbers of deaths annually and nearly 40% of prostate cancer diagnoses occur in stages three and four. (See, “UK Study Finds Late Diagnosis of Prostate Cancer a Worrisome Trend for UK’s National Health Service,” May 23, 2018.)

An alternative to PSA-based testing, and the ability to differentiate aggressive and non-aggressive prostate cancer types, could improve outcomes and provide healthcare systems with better treatment options to reverse these trends.

While the value of polygenic scores should increase as algorithms and results are honed and verified, they also will most likely add to concerns raised about the impact genetic test results are having on patients, physicians, and genetic counselors.

And, as the genetic testing technology of personalized medicine matures, clinical laboratories will increasingly be required to protect and distribute much of the protected health information (PHI) they generate.

Nevertheless, when the data produced is analyzed and combined with other information—such as anatomic pathology testing results, personal/family health histories, and population health data—polygenic scores could isolate new biomarkers for research and offer big-picture insights into the causes of and potential treatments for a broad spectrum of chronic diseases.

—Jon Stone

Related Information:

Forecasts of Genetic Fate Just Got a Lot More Accurate

Polygenic Scores to Classify Cancer Risk

Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-Wide Study: Results from the Michigan Genomics Initiative

Polygenic Risk Score May Identify Alzheimer’s Risk in Younger Populations

Use of an Alzheimer’s Disease Polygenic Risk Score to Identify Mild Cognitive Impairment in Adults in Their 50s

New Polygenic Hazard Score Predicts When Men Develop Prostate Cancer

Polygenic Hazard Score to Guide Screening for Aggressive Prostate Cancer: Development and Validation in Large Scale Cohorts

UK Study Finds Late Diagnosis of Prostate Cancer a Worrisome Trend for UK’s National Health Service

UK Study Finds Late Diagnosis of Prostate Cancer a Worrisome Trend for UK’s National Health Service

Pathologists around the world will be interested to learn that, for the first time in the UK, prostate cancer has surpassed breast cancer in numbers of deaths annually and nearly 40% of prostate cancer diagnoses occur in stages three and four

Early detection of prostate cancer, and the ability to identify its more aggressive forms, are important goals for every nation’s health system. However, a new study in the United Kingdom (UK) will be of interest to all anatomic pathologists handling prostate biopsies. Researchers determined that late diagnosis of prostate cancer is an issue that should be addressed by healthcare policymakers in the UK.

In 2015, deaths due to prostate cancer surpassed those of breast cancer in the UK. According to data from Cancer Research UK, this trend continued into 2016 with 11,631 deaths from prostate cancer and 11,538 deaths from breast cancer. The trend continued even though breast cancer saw roughly 8,000 more new cases in 2015, according to the same data.

Now, a report from Orchid—a UK male cancer charity—highlights a trend that should interest medical laboratories and histopathology (anatomic pathology in the US) groups that analyze prostate cancer samples. They found that 37% of UK prostate cancer cases involved diagnoses in stages three or four.

Late-Stage Diagnosis of Prostate Cancer: The US and UK Compared

“With prostate cancer due to be the most prevalent cancer in the UK within the next 12 years, we are facing a potential crisis in terms of diagnostics, treatment, and patient care,” stated Rebecca Porta, Chief Executive of Orchid, in a press release. “Urgent action needs to be taken now if we are to be in a position to deliver world class outcomes for prostate cancer patients and their families in the future.”

Orchid Chief Executive Rebecca Porta (far right) and her team are shown above receiving a check from the Industrial Agents Society (AIS) to help fund the charity’s research into male specific cancers, such as prostate cancer. (Photo copyright: AIS.)

The latest data from the Centers for Disease Control and Prevention (CDC) on prostate cancer and mortality rates in the US shows an interesting picture. In 2014, 172,258 men received a prostate cancer diagnosis. However, deaths from prostate cancer were at 28,343.

According to Statista, an international statistics portal, the UK is home to more than 32.3-million males. And, Statista’s data shows the US is home to 159.1-million males. This implies that despite the US having nearly five times the number of males, the number of prostate cancer deaths/year in the UK is significantly higher in relation to population size.

Cancer Research UK notes that despite decreasing by 13% in the last decade, prostate cancer mortality rates are still 21% higher than in the 1970s.

Awareness and Early Detection Key Components in the Fight Against Cancer

A study published in BMC Public Health offers one possible explanation for this disparity.

“When compared to analogous countries in Europe, Canada, and Australia, older adults in the UK have markedly different survival outcomes,” noted lead author of the study Sara Macdonald, PhD, Lecturer in Primary Care at the Institute of Health and Wellbeing at the University of Glasgow, Scotland.

“Poorer outcomes in the UK are at least in part attributable to later stage diagnoses,” she explained. “Older adults should be vigilant about cancer. Yet, this is not reflected in the news media coverage of cancer risk. Taken together, invisibility, inaccuracy, and information overload build a skewed picture that cancer is a disease which affects younger people.”

While treatment options have improved in the past decade, early detection is a key part of successful treatment—especially as prostate cancer has both aggressive and slow variants. Effective timely health screening also is of critical concern.

In the US, however, prolific prostatic-specific antigen (PSA) testing and other screenings for chronic disease—particularly within the elderly population—is under increased scrutiny and criticism, which Dark Daily reported on in April. (See, “Kaiser Health News Labels Routine Clinical Laboratory Testing and Other Screening of Elderly Patients an ‘Epidemic’ in US,” April 11, 2018.)

New Tools to Detect Prostate Cancer

Faster diagnosis and the ability to detect whether a prostate cancer is slow or aggressive could help to shift these numbers around the world.

According to BBC News, the NHS hopes to reduce diagnosis times and make the screening process less invasive by using magnetic resonance imaging (MRI). Hashim Ahmed, PhD, Chairman of Urology, Imperial College London, told BBC News, “Fast access to high-quality prostate MRI allows many men to avoid invasive biopsies as well as allowing precision biopsy in those men requiring it to find high-risk tumors much earlier.”

A team from the University of Dundee is trialing a shear wave elastography imaging (SWEI) process to detect prostate tumors as well. Speaking with The Guardian, team leader and Chair of the School of Medicine at The University of Dundee, Dr. Ghulam Nabi, noted, “We have been able to show a stark difference in results between our technology and existing techniques such as MRI. The technique has picked up cancers which MRI did not reveal. We can now see with much greater accuracy what tissue is cancerous, where it is, and what level of treatment it needs. This is a significant step forward.”

Should these tools prove successful, they might help to reverse current trends in the UK and offer greater insight and options for the histopathology groups there, as well as the medical laboratories, oncologists, and other medical specialists helping to treat cancer.

Until then, raising awareness and streamlining both detection and treatment protocols will remain a critical concern, not just in the UK, but around the world as the human population continues to age.

—Jon Stone

Related Information:

Prostate Cancer: Four in 10 Cases Diagnosed Late, Charity Says

New Report Reveals 4 in 10 Prostate Cancer Cases Are Diagnosed Late and an Impending Crisis in Prostate Cancer Provision

Prostate Cancer Deaths Overtake Those from Breast Cancer

Cutting Prostate Cancer Diagnosis Times

Prostate Cancer on the Rise; Time to Revisit Guidelines?

More High-Risk Prostate Cancer Now in the US than Before

Prostate Cancer Breakthrough as UK Team Develops More Accurate Test

Mass Media and Risk Factors for Cancer: The Under-Representation of Age

Kaiser Health News Labels Routine Clinical Laboratory Testing and Other Screening of Elderly Patients an ‘Epidemic’ in US

Genetic Fingerprint Helps Researchers Identify Aggressive Prostate Cancer from Non-aggressive Types and Determine If Treatment Will Be Effective

New Super-Sensitive Clinical Lab Test Technology Combines ELISA and Nanotechnology for Simpler, Cheaper and Earlier Detection of Disease

Pathologists and clinical laboratory managers can expect to see new technology translated to a wide variety of diagnostic tests

Researchers claim a new diagnostic technology for detecting the HIV virus is 10 times more sensitive than traditional techniques. More remarkable is the fact that this new technology enables analyte detection at very low concentrations with the naked eye!

Pathologists and clinical laboratory managers won’t see this technology enter clinical use for some time. That is because the developers hope to deploy the accurate, fast, and very cheap HIV medical laboratory tests in Africa first. Once validated in actual clinical use, this radically innovative technology could be adapted for use in a wide variety of clinical laboratory tests.

Scientists at the London Centre for Nanotechnology at Imperial College London (ICL) developed the prototype biosensing mechanism, according to a press release published by EurekAlert!. They claim that the qualitative visual sensor technology is 10 times more sensitive than the current gold standard methods for measuring biomarkers. (more…)