News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Rice University Researchers Develop ‘Molecular Jackhammer’ That Kills Cancer Cells

Research could lead to similar treatments for other diseases, as well as creating a demand for a new line of oncology tests for clinical labs and pathology groups

Cancer treatment has come a long way in the past decades, and it seems poised to take another leap forward thanks to research being conducted at Rice University in Houston. Molecular scientists there have developed what they call a “molecular jackhammer” that uses special molecules and near-infrared light to attack and kill cancer cells.

The technique has been effective in research settings. Should it be cleared for use in patient care, it could change the way doctors treat cancer patients while giving clinical laboratories a new diagnostic tool that could guide treatment decisions.      

The researchers “found that the atoms of a small dye molecule used for medical imaging can vibrate in unison—forming what is known as a plasmon [a quantum of plasma oscillation]—when stimulated by near-infrared light, causing the cell membrane of cancerous cells to rupture,” a Rice University news release noted.

The small dye molecule is called aminocyanine, a type of fluorescent synthetic dye that is already in use in medical imaging.

“These molecules are simple dyes that people have been using for a long time,” said physical chemistry scientist Ciceron Ayala-Orozco, PhD, the researcher who led the study, in the news release. “They’re biocompatible, stable in water, and very good at attaching themselves to the fatty outer lining of cells. But even though they were being used for imaging, people did not know how to activate these as plasmons.” 

The Rice University scientists published their findings in the journal Nature Chemistry titled, “Molecular Jackhammers Eradicate Cancer Cells by Vibronic-Driven Action.”

“The method had a 99% efficiency against lab cultures of human melanoma cells, and half of the mice with melanoma tumors became cancer-free after treatment,” according to the Rice University news release.

“I spent approximately four years working with these ideas on using molecular forces and what is called blue-light activated molecular motors,” Ciceron Ayala-Orozco, PhD (above), told Oncology Times. “At some point, I connected the dots that what I wanted to do is use a simple molecule, not necessarily a motor, that absorbs NIR light in similar ways as plasmonic nanoparticles do and go deeper into the tissue. When activated, we found that the molecules vibrate even faster than our minds can imagine and serve as a force to break the cancer cells apart.” Once approved for use treating cancer patients, clinical laboratories working with oncologists may play a key role in diagnosing candidates for the new treatment. (Photo copyright: Rice University.)

How the Technique Works

Nuclei of the aminocyanine molecules oscillate in sync when exposed to near-infrared radiation and pummel the surface of the cancer cell. These blows are so powerful they rupture the cell’s membrane sufficiently enough to destroy it. 

“The speed of this type of therapy can completely kill the cancer much faster than, say, photodynamic therapy,” Ayala-Orozco noted. “The mechanical action through the molecular jackhammer is immediate, within a few minutes.”

One advantage to near-infrared light is that it can infiltrate deeper into the body than visible light and access organs and bones without damaging tissue. 

“Near-infrared light can go as deep as 10 centimeters (four inches) into the human body as opposed to only half a centimeter (0.2 inches), the depth of penetration for visible light, which we used to activate the nanodrills,” said James Tour, PhD, T. T. and W. F. Chao Professor of Chemistry, Professor of Materials Science and NanoEngineering at Rice University, in the news release. “It is a huge advance.”

The molecular plasmons identified by the team had a near-symmetrical structure. The plasmons have an arm on one side that does not contribute to the motion, but rather anchors the molecule to the lipid bilayer of the cell membrane. The scientists had to prove that the motion could not be categorized as a form of either photodynamic or photothermal therapy

“What needs to be highlighted is that we’ve discovered another explanation for how these molecules can work,” Ayala-Orozco said in the Rice news release. “This is the first time a molecular plasmon is utilized in this way to excite the whole molecule and to actually produce mechanical action used to achieve a particular goal—in this case, tearing apart cancer cells’ membrane.

“This study is about a different way to treat cancer using mechanical forces at the molecular scale,” he added. 

New Ways to Treat Cancer

The likelihood of cancer cells developing a resistance to these molecular jackhammers is extremely low, which renders them a safer and more cost effective method for inducing cancer cell death. 

“The whole difference about this is because it’s a mechanical action, it’s not relying on some chemical effect,” Tour told KOMO News. “It’s highly unlikely that the cell will be able to battle against this. Once it’s cell-associated, the cell is toast once it gets hit by light. Only if a cell could prevent a scalpel from being able to cut it in half, could it prevent this.

“It will kill all sorts of cell types. With our other mechanical action molecules, we’ve demonstrated that they kill bacteria; we’ve demonstrated that they kill fungi. If a person has lost the ability to move a limb, if you can stimulate the muscle with light, that would be quite advantageous. Cancer is just the beginning,” he added.

“From the medical point of view, when this technique is available, it will be beneficial and less expensive than methods such as photothermal therapy, photodynamics, radio-radiation, and chemotherapy,” said Jorge Seminario, PhD, Professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University in a news release.

Researchers from Texas A&M University and the University of Texas-MD Anderson Cancer Center participated in the study. 

“This is one of the very few theoretical-experimental approaches of this nature. Usually, research in the fields related to medicine does not use first principles quantum-chemistry techniques like those used in the present work, despite the strong benefit of knowing what the electrons and nuclei of all atoms are doing in molecules or materials of interest,” Seminario noted.

“It’s really a tremendous advance. What this is going to do is open up a whole new mode of treatment for medicine,” Tour said. “It’s just like when radiation came in [and] when immunotherapy came in. This is a whole new modality. And when a new modality comes in, so much begins to open up.

“Hopefully, this is going to change medicine in a big way,” he added.

More research and clinical studies are needed before this new technology is ready for patient care. Clinical laboratories and anatomic pathology groups will likely be involved identifying patients who would be good candidates for the new treatment. These molecular jackhammers could be a useful tool in the future fight against cancer, which is ranked second (after heart disease) as the most common cause of death in the US.

—JP Schlingman

Related Information:

New Molecular Jackhammer Technique Achieves 99% Cancer Treatment Success in Labs

Scientists Destroy 99% of Cancer Cells in the Lab Using Vibrating Molecules

Molecular Jackhammers Drill Pathway to Killing Cancer Cells   

Molecular Jackhammers Eradicate Cancer Cells by Vibronic-driven Action

Molecular Jackhammers’ “Good Vibrations” Eradicate Cancer Cells

Molecular Jackhammers’ Non-Invasive Approach to Destroy Cancer Cells

University of Florida Study Determines That ChatGPT Made Errors in Advice about Urology Cases

Research results call into question the safety and dependability of using artificial intelligence in medical diagnosis, a development that should be watched by clinical laboratory scientists

ChatGPT, an artificial intelligence (AI) chatbot that returns answers to written prompts, has been tested and found wanting by researchers at the University of Florida College of Medicine (UF Health) who looked into how well it could answer typical patient questions on urology. Not good enough according to the researchers who conducted the study.

AI is quickly becoming a powerful new tool in diagnosis and medical research. Some digital pathologists and radiologists use it for data analysis and to speed up diagnostic modality readings. It’s even been said that AI will improve how physicians treat disease. But with all new discoveries there comes controversy, and that’s certainly the case with AI in healthcare.

Many voices in opposition to AI’s use in clinical medicine claim the technology is too new and cannot be trusted with patients’ health. Now, UF Health’s study seems to have confirmed that belief—at least with ChatGPT.

The study revealed that answers ChatGPT provided “fell short of the standard expected of physicians,” according to a UF Health new release, which called ChatGPT’s answers “flawed.”

The questions posed were considered to be common medical questions that patients would ask during a visit to a urologist.

The researchers believes their study is the first of its kind to focus on AI and the urology specialty and which “highlights the risk of asking AI engines for medical information even as they grow in accuracy and conversational ability,” UF Health noted in the news release.

The researchers published their findings in the journal Urology titled, “Caution! AI Bot Has Entered the Patient Chat: ChatGPT Has Limitations in Providing Accurate Urologic Healthcare Advice.”

Russell S. Terry, MD

“I am not discouraging people from using chatbots,” said Russell S. Terry, MD (above), an assistant professor in the UF College of Medicine’s department of urology and the study’s senior author, in a UF Health news release. “But don’t treat what you see as the final answer. Chatbots are not a substitute for a doctor.” Pathologists and clinical laboratory managers will want to monitor how developers improve the performance of chatbots and other applications using artificial intelligence. (Photo copyright: University of Florida.)

UF Health ChatGPT Study Details

UF Health’s study featured 13 of the most queried topics from patients to their urologists during office visits. The researchers asked ChatGPT each question three times “since ChatGPT can formulate different answers to identical queries,” they noted in the news release.

The urological conditions the questions covered included:

The researchers then “evaluated the answers based on guidelines produced by the three leading professional groups for urologists in the United States, Canada, and Europe, including the American Urological Association (URA). Five UF Health urologists independently assessed the appropriateness of the chatbot’s answers using standardized methods,” UF Health noted.

Notable was that many of the results were inaccurate. According to UF Health, only 60% of responses were deemed appropriate from the 39 evaluated responses. Outside of those results, the researchers noted in their Urology paper, “[ChatGPT] misinterprets clinical care guidelines, dismisses important contextual information, conceals its sources, and provides inappropriate references.”

When asked, for the most part ChatGPT was not able to accurately provide the sources it referenced for its answers. Apparently, the chatbot was not programmed to provide such sources, the UF Health news release stated.

“It provided sources that were either completely made up or completely irrelevant,” Terry noted in the new release. “Transparency is important so patients can assess what they’re being told.”

Further, “Only 7 (54%) of 13 topics and 21 (54%) of 39 responses met the BD [Brief DISCERN] cut-off score of ≥16 to denote good-quality content,” the researchers wrote in their paper. BD is a validated healthcare information assessment questionnaire that “provides users with a valid and reliable way of assessing the quality of written information on treatment choices for a health problem,” according to the DISCERN website.

ChatGPT often “omitted key details or incorrectly processed their meaning, as it did by not recognizing the importance of pain from scar tissue in Peyronie’s disease. As a result … the AI provided an improper treatment recommendation,” the UF Health study paper noted.

Is Using ChatGPT for Medical Advice Dangerous to Patients?

Terry noted that the chatbot performed better in some areas over others, such as infertility, overactive bladder, and hypogonadism. However, frequently recurring UTIs in women was one topic of questions for which ChatGPT consistently gave incorrect results.

“One of the more dangerous characteristics of chatbots is that they can answer a patient’s inquiry with all the confidence of a veteran physician, even when completely wrong,” UF Health reported.

“In only one of the evaluated responses did the AI note it ‘cannot give medical advice’ … The chatbot recommended consulting with a doctor or medical adviser in only 62% of its responses,” UF Health noted.

For their part, ChatGPT’s developers “tell users the chatbot can provide bad information and warn users after logging in that ChatGPT ‘is not intended to give advice,’” UF Health added.

Future of Chatbots in Healthcare

In UF Health’s Urology paper, the researchers state, “Chatbot models hold great promise, but users should be cautious when interpreting healthcare-related advice from existing AI models. Additional training and modifications are needed before these AI models will be ready for reliable use by patients and providers.”

UF Health conducted its study in February 2023. Thus, the news release points out, results could be different now due to ChatGPT updates. Nevertheless, Terry urges users to get second opinions from their doctors.

“It’s always a good thing when patients take ownership of their healthcare and do research to get information on their own,” he said in the news release. “But just as when you use Google, don’t accept anything at face value without checking with your healthcare provider.”

That’s always good advice. Still, UF Health notes that “While this and other chatbots warn users that the programs are a work in progress, physicians believe some people will undoubtedly still rely on them.” Time will tell whether trusting AI for medical advice turns out well for those patients.

The study reported above is a useful warning to clinical laboratory managers and pathologists that current technologies used in ChatGPT, and similar AI-powered solutions, have not yet achieved the accuracy and reliability of trained medical diagnosticians when answering common questions about different health conditions asked by patients.

—Kristin Althea O’Connor

Related Information:

UF College of Medicine Research Shows AI Chatbot Flawed when Giving Urology Advice

Caution! AI Bot Has Entered the Patient Chat: ChatGPT Has Limitations in Providing Accurate Urologic Healthcare Advice

;