News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Living Legend William Dettwyler, MT, Looks Back at Seven Decades in the Clinical Laboratory Profession

Dettwyler is set to retire at age 92 after a long career helping clinical laboratories with their coding and billing systems

When William Dettwyler, MT, began working in a clinical laboratory, Harry Truman was president of the United States and scientists had not yet discovered the structure of DNA. Now, as he approaches his 92nd birthday in March, he is finally ready to retire from a career that has spanned more than seven decades, from bench work as a medical laboratory technician (MLT) to assisting labs with their medical coding and medical billing challenges.

Along the way, one of his coding innovations helped the State of Oregon save substantial sums in its Medicaid program. He also helped many medical laboratories increase reimbursement by correcting their coding mistakes. This from someone who left school after eighth grade to help on his family’s farm in rural Oregon.

In an exclusive interview with Dark Daily, Dettwyler discusses his long career and offered pointers for labs on improving their coding and reimbursement procedures.

Back in the 1980s, when he began his consulting work for labs, “they were very poor at billing,” he recalled. “Hospital billing staff didn’t understand lab coding. Reference laboratories didn’t do a good job of picking the right codes or even billing all the codes. Up until around the 1970s, hospitals didn’t even have to bill individual lab procedures with CPT codes. They billed with a revenue center code for all their lab services.”

These days “people are much more sophisticated,” he notes. “There are fewer coding problems compared to what it was in the 1980s and 1990s up to the 2010s.” However, he says he still has a handful of clients who call on his expertise.

“It was not unusual to go to a large university medical center and in three days tell the CFO on my exit review that the following year their lab would bring in about a half million more in revenue, just from my coding review. But I did not reveal to them that I had only gone to the eighth grade in a little one room school and was the lone graduate in my eighth-grade class,” wrote William Dettwyler, MT (above), owner of Codus Medicus in Salem, Ore., in an article he penned for Medical Laboratory Observer. For 75 years Dettwyler worked in the clinical laboratory industry. For much of that time he helped labs all over America improve their coding and reimbursement systems. (Photo copyright: LinkedIn.)

How It All Began

Dettwyler got his first taste of lab work in the early 1950s as a teenager washing glassware for a medical laboratory technician at a local medical practice. A few years later he completed an MLT program at Oregon Institute of Technology in Klamath Falls and landed his first lab tech job at a clinic in Portland.

His entry to consulting came in the early 1970s while he was working for a medical group in Salem. “I was helping the accounting personnel with their billing and noticed that Medicaid was not paying for a common test for syphilis that I was performing,” he recalled. “I contacted Medicaid, and they told me they didn’t understand laboratory procedures.”

After that, “they started to call me frequently with laboratory questions,” he said. “It wasn’t long before they asked me to help them on a part-time basis.” He also assisted with questions related to radiology.

By 1976, Dettwyler was devoting 35 hours a week to assisting the state Medicaid agency while still working as a lab tech.

Simple Hack Ends Overpayments

One of his career highlights came around 1981, when he discovered that the agency was overpaying for some pathology and radiology procedures by as much as 200%.

“Pathologists and radiologists are paid based on whether they are performing the complete procedure—the technical component and the professional component—or just the professional component, where they interpret the results,” he explained.

When billing for just the professional component, the physicians would add two digits to the standard code, so it might come in as 88305-26. However, the state’s computer system could only accommodate a five-digit code, so the state was paying as if the providers had done everything.

“The computer techs said the software couldn’t handle a seven-digit number in a five-digit box, so I devised a way for the computer to read the equivalent of seven digits,” he recalled.

His solution was to modify the codes so that the last digit was an alphabetic character. Instead of billing for code 88305-26, the physicians would bill for 8830F, and the state would pay them correctly.

Around that time, Dettwyler also began assisting a Medicare office in Portland. This forced him to cut back on his work as a lab tech. But he still worked around 60 hours a week.

“For most of my life, I’ve worked three jobs,” he said. “Work is my hobby.” He also had a large family to support—by 1976, he and his wife had 10 kids.

Transition to Lab Consulting

In 1986, the state was facing a budget shortfall and cut its Medicaid consultants, so Dettwyler decided to seek consulting work with labs while continuing to work at the bench.

“I really liked the coding because I had very little competition,” he said. “But I wanted to keep working in the laboratory mainly to understand the problems.”

While working for the state, Dettwyler attended coding seminars and workshops. He noticed that labs were losing revenue due to poor billing practices. “They didn’t understand all the coding complexities, so they really hungered for this kind of assistance.”

But first, he had to find clients. So he partnered with another lab tech who was offering similar consulting services.

Business picked up after Dettwyler contributed an article to the trade publication Medical Laboratory Observer about his process, which he calls “procedure code verification and post payment analysis.”

“That went like gangbusters,” he said. “We started getting calls from all over the country.”

Dettwyler later split from his partner and went to work on his own.

“I would sit down with the person who was responsible for coding, usually the lab or radiology manager,” he explained. “We would go over the chargemaster and cover every procedure to make sure the code and units were correct. When I was done, I would give them a report of what codes we changed and why we changed them.”

Beginning in 1989, he signed on as a contractor for another consultancy, Health Systems Concepts on the East Coast, where he remained until 2019.

Advice to the Current Generation

What is Dettwyler’s advice for someone who wants to follow in his footsteps and assist labs with their coding? “I wouldn’t recommend it now,” he said. “There’s less need for that kind of assistance than in the past.”

However, he does find that labs still run into problems. The greatest need, he says, is in molecular diagnostics, due to the complexity of the procedures.

In addition, labs are sometimes confused by coding for therapeutic drug monitoring, in which a doctor is gauging a patient’s reaction to a therapy versus screening for substance abuse. “Those issues are often misunderstood,” he said.

Microbiology also poses coding challenges, he noted, because of the steps required to identify the pathogen and determine antibiotic susceptibility. “It requires quite a bit of additional coding,” he said. “Some labs don’t understand that they can’t just bill a code for culture and sensitivity. They have to bill for the individual portions.”

Labs that work with reference labs also have to be careful to verify codes for specific procedures. “I’ll review the codes used by reference labs and, surprisingly, they’re not always correct. Reference labs sometimes get it wrong.”

If someone does want to become a coding expert, Dettwyler suggests that “they should first have experience as a lab tech, especially in microbiology, because of the additional coding. And they should try to work with somebody who is already doing it. Then, they should work with the billing department to learn how it operates.”

He also advises clinical laboratory managers to follow the latest developments in the field by reading lab publications such as The Dark Report. “You have to do that to keep current,” he said.

Despite never completing high school, Dettwyler eventually received his GED and an associate degree. “But the degrees didn’t really help me,” he said. “Much of it was on-the-job training and keeping my eyes open and listening.”                     

Stephen Beale

Related Information:

Seventy-five Years Beside the Microscope

Sexual Transmission of Oropouche Virus Latest Disease Vector to Raise Concerns among Scientists in US and Beyond

Endemic in the Amazon region, recent spread of the disease caused the CDC to issue recommendations to travelers who develop symptoms after visiting certain countries

Anatomic pathologists, microbiologists, and clinical laboratories active in infectious disease testing will want to stay informed about the worldwide progression of the Oropouche virus. The infectious pathogen is spreading beyond the Amazon region (where it is endemic) into more populated areas—including the US—and possibly being transmitted in novel ways … including through sexual activity.  

In research published in Emerging Infectious Diseases (a CDC journal) titled, “Replication-Competent Oropouche Virus in Semen of Traveler Returning to Italy from Cuba, 2024,” researchers with the IRCCS Sacro Cuore Don Calabria Hospital in Negrar di Valpolicella, Italy, and the University of Brescia, Brescia, Italy, shared findings about the “potential for person-to-person transmission of Oropouche via sexual encounters.”

The researchers noted 9,852 Oropouche cases as of December 2024.

“This is a very big development,” Tulio de Oliveira, PhD, director of the Center of Epidemic Response and Innovation (CERI) at Stellenbosch University, South Africa, told NPR. “This could open a new route of transmission,” he added.

According to the Centers for Disease Control and Prevention (CDC) no vaccines or medicines exist for the treatment of prevention of Oropouche infection.

The virus primarily spreads to people through biting small flies called midges (a.k.a., no-see-ums), according to a CDC Health Alert Network (HAN) Health Advisory, which added that mosquitoes can also spread the disease.

Oropouche infections, the CDC said, are occurring in Brazil, Bolivia, Peru, Columbia, and Cuba. Cases identified in the US and Europe seem to be among travelers returning from those countries. Reported cases also include deaths in Brazil and cases of mother-to-child (vertical) transmission.

There is “an increase in Oropouche virus disease in the Americas region, originating from endemic areas in the Amazon basin and new areas in South America and the Caribbean,” CDC noted in its Health Advisory.

Though de Oliveira notes that a global outbreak is not yet expected, researchers are nevertheless raising the alarm.

“The challenge is that this is such a new disease that most clinicians—including infectious disease specialists—are not aware of it and we need to make more patients and healthcare providers aware of the disease and increase access to diagnostics so we can test for it,” said David Hamer, MD (above), infectious disease specialist and professor, global health, at Boston University School of Public Health, in an NPR article. “Over the next year, we are going to learn a lot more.” Pathologist, microbiologists, and clinical laboratories will want to keep an eye on the spread of the Oropouche virus. (Photo copyright: Boston University.)

Risks to Pregnant Women, Seniors

Research published in The Lancet Infectious Diseases estimates up to five million people in the Americas are at risk of exposure to the Oropouche virus. The authors also pointed out that cases in Brazil swelled from 261 between the years 2015 to 2022 to 7,497 by August 2024. 

About 60% of people infected with Oropouche have symptoms such as fever, chills, headache, muscle aches, and joint pains, according to the CDC Health Advisory, which added that the symptoms generally appear three to 10 days after exposure. 

Those with the highest risk of complications from the disease, according to the CDC, include pregnant women, those over age 65, and people with medical conditions such as:

“The geographic range expansion, in conjunction with the identification of vertical transmission and reports of deaths, has raised concerns about the broader threat this virus represents in the Americas,” an additional paper in Emerging Infectious Diseases noted. 

Cases of fetal loss and congenital abnormalities (birth defects) in Brazil and Cuba have been reported to the CDC by the Pan American Health Organization (PAHO).

“Healthcare providers should be aware of the risk of vertical transmission and possible adverse impacts on the fetus including fetal death or congenital abnormalities,” CDC said in an Oropouche Clinical Overview statement.

“There have been a few cases of maternal to fetal transmission, and there are four cases of congenital Oropouche infections that have been described—all of which led to microcephaly, which is a small head size,” David Hamer, MD, infectious disease specialist and professor global health, Boston University School of Public Health, told NPR.

Diagnostic Testing at Public Labs

Clinical laboratories and physicians should coordinate with state or local health departments for Oropouche virus testing and reporting. 

Health departments are performing “real-time reverse transcription-polymerase chain reaction (RT-PCR) tests to detect viral RNA and/or plaque reduction neutralization testing to detect neutralizing antibodies of serum and/or cerebrospinal fluid,” a CDC Updated Interim Guidance statement explained.

People should consider Oropouche virus testing if they have traveled to an area with documented or suspected cases, have symptoms including fever and headache, and have tested negative for other diseases, especially dengue, according to CDC.

Taking Precautions after Sex

“This [possibility of sexual transmission] brought up more questions than answers,” Hamer told NPR, adding, “we know now is that sexual transmission could happen.”

Though no documented cases of sexual transmission have been recorded, the CDC nevertheless published updated interim guidance, “recommending that male travelers who develop Oropouche symptoms after visiting areas with Level 1 or 2 Travel Health notices for Oropouche to ‘consider using condoms or not having sex for at least 6 weeks’ from the start of their symptoms,” NPR reported.

“Because stillbirths, birth defects, and severe complications and deaths in adults have been reported, CDC is providing interim recommendations on preventing possible sexual transmission based on what we know now,” the CDC stated.

Clinical laboratory leaders working with infectious disease colleagues can help educate physicians and the community about the Oropouche virus and the need to prevent bites from midges and mosquitoes by using, for example, Environmental Protection Agency (EPA) registered insect repellant.

Diagnostics professionals will want to stay abreast of developing Oropouche cases as well as changes to or expansion of clinical laboratory testing and reported guidance.                      

—Donna Marie Pocius

Related Information:

Increased Oropouche Virus Activity and Associated Risks to Travelers

Replication-Competent Oropouche Virus in Semen of Traveler Returning to Italy from Cuba, 2024

It’s a Virus You May Not Have Heard of. Here’s Why Scientists Are Worried about It

Oropouche Fever: Reports of Vertical Transmission and Deaths in Brazil

Reemergence of Oropouche Virus in the Americas and Risk for Spread in the United States and Its Territories, 2024

Clinical Overview of Oropouche Virus Disease

Updated Interim Guidance for Health Departments on Testing and Reporting for Oropouche Virus Disease

Researchers Find That Antibiotic-Resistant Bacteria Can Persist in the Body for Years

Study results from Switzerland come as clinical laboratory scientists seek new ways to tackle the problem of antimicrobial resistance in hospitals

Microbiologists and clinical laboratory scientists engaged in the fight against antibiotic-resistant (aka, antimicrobial resistant) bacteria will be interested in a recent study conducted at the University of Basel and University Hospital Basel in Switzerland. The epidemiologists involved in the study discovered that some of these so-called “superbugs” can remain in the body for as long as nine years continuing to infect the host and others.

The researchers wanted to see how two species of drug-resistant bacteria—K. pneumoniae and E. coli—changed over time in the body, according to a press release from the university. They analyzed samples of the bacteria collected from patients who were admitted to the hospital over a 10-year period, focusing on older individuals with pre-existing conditions. They found that K. pneumoniae persisted for up to 4.5 years (1,704 days) and E. coli persisted for up to nine years (3,376 days).

“These patients not only repeatedly become ill themselves, but they also act as a source of infection for other people—a reservoir for these pathogens,” said Lisandra Aguilar-Bultet, PhD, the study’s lead author, in the press release.

“This is crucial information for choosing a treatment,” explained Sarah Tschudin Sutter, MD, Head of the Division of Infectious Diseases and Hospital Epidemiology, and of the Division of Hospital Epidemiology, who specializes in hospital-acquired infections and drug-resistant pathogens. Sutter led the Basel University study.

The researchers published their findings in the journal Nature Communications titled, “Within-Host Genetic Diversity of Extended-Spectrum Beta-Lactamase-Producing Enterobacterales in Long-Term Colonized Patients.”

“The issue is that when patients have infections with these drug-resistant bacteria, they can still carry that organism in or on their bodies even after treatment,” said epidemiologist Maroya Spalding Walters, MD (above), who leads the Antimicrobial Resistance Team in the Division of Healthcare Quality Promotion at the federal Centers for Disease Control and Prevention (CDC). “They don’t show any signs or symptoms of illness, but they can get infections again, and they can also transmit the bacteria to other people.” Clinical laboratories working with microbiologists on antibiotic resistance will want to follow the research conducted into these deadly pathogens. (Photo copyright: Centers for Disease Control and Prevention.)

COVID-19 Pandemic Increased Antibiotic Resistance

The Basel researchers looked at 76 K. pneumoniae isolates recovered from 19 patients and 284 E. coli isolates taken from 61 patients, all between 2008 and 2018. The study was limited to patients in which the bacterial strains were detected from at least two consecutive screenings on admission to the hospital.

“DNA analysis indicates that the bacteria initially adapt quite quickly to the conditions in the colonized parts of the body, but undergo few genetic changes thereafter,” the Basel University press release states.

The researchers also discovered that some of the samples, including those from different species, had identical mechanisms of drug resistance, suggesting that the bacteria transmitted mobile genetic elements such as plasmids to each other.

One limitation of the study, the authors acknowledged, was that they could not assess the patients’ exposure to antibiotics.

Meanwhile, recent data from the World Health Organization (WHO) suggests that the COVID-19 pandemic might have exacerbated the challenges of antibiotic resistance. Even though COVID-19 is a viral infection, WHO scientists found that high percentages of patients hospitalized with the disease between 2020 and 2023 received antibiotics.

“While only 8% of hospitalized patients with COVID-19 had bacterial co-infections requiring antibiotics, three out of four or some 75% of patients have been treated with antibiotics ‘just in case’ they help,” the WHO stated in a press release.

WHO uses an antibiotic categorization system known as AWaRe (Access, Watch, Reserve) to classify antibiotics based on risk of resistance. The most frequently prescribed antibiotics were in the “Watch” group, indicating that they are “more prone to be a target of antibiotic resistance and thus prioritized as targets of stewardship programs and monitoring.”

“When a patient requires antibiotics, the benefits often outweigh the risks associated with side effects or antibiotic resistance,” said Silvia Bertagnolio, MD, Unit Head in the Antimicrobial resistance (AMR) Division at the WHO in the press release. “However, when they are unnecessary, they offer no benefit while posing risks, and their use contributes to the emergence and spread of antimicrobial resistance.”

Citing research from the National Institutes of Health (NIH), NPR reported that in the US, hospital-acquired antibiotic-resistant infections increased 32% during the pandemic compared with data from just before the outbreak.

“While that number has dropped, it still hasn’t returned to pre-pandemic levels,” NPR noted.

Search for Better Antimicrobials

In “Drug-Resistant Bacteria Are Killing More and More Humans. We Need New Weapons,” Vox reported that scientists around the world are researching innovative ways to speed development of new antimicrobial treatments.

One such scientist is César de la Fuente, PhD, Presidential Assistant Professor at University of Pennsylvania, whose research team developed an artificial intelligence (AI) system that can look at molecules from the natural world and predict which ones have therapeutic potential.

The UPenn researchers have already developed an antimicrobial treatment derived from guava plants that has proved effective in mice, Vox reported. They’ve also trained an AI model to scan the proteomes of extinct organisms.

“The AI identified peptides from the woolly mammoth and the ancient sea cow, among other ancient animals, as promising candidates,” Vox noted. These, too, showed antimicrobial properties in tests on mice.

These findings can be used by clinical laboratories and microbiologists in their work with hospital infection control teams to better identify patients with antibiotic resistant strains of bacteria who, after discharge, may show up at the hospital months or years later.

—Stephen Beale

Related Information:

Resistant Bacteria Can Remain in The Body for Years

‘Superbugs’ Can Linger in the Body for Years, Potentially Spreading Antibiotic Resistance

Superbug Crisis Threatens to Kill 10 Million Per Year by 2050. Scientists May Have a Solution

Drug-Resistant Bacteria Are Killing More and More Humans. We Need New Weapons.

How the Pandemic Gave Power to Superbugs

WHO Reports Widespread Overuse of Antibiotics in Patients Hospitalized with COVID-19

City of Baltimore, University of Maryland Create Pilot Program to Train People to Work in Clinical Laboratories

Funded by the CDC, the program hopes to alleviate personnel shortages in Baltimore area clinical labs while also producing a knowledge base for lab managers nationwide

Clinical laboratory managers struggling to fill vacant phlebotomy and accessioning positions will be interested to learn about a pilot program being conducted by the City of Baltimore and the University of Maryland School of Medicine to train people “for employment in hospital laboratories, phlebotomy draw sites, and reference laboratory processing centers,” according to The Elm, a publication of the University of Maryland, Baltimore.

The 14-week “Mayor’s Workforce Development Program” began on April 19 and will continue through the end of July. Participants meet twice a week for lectures and experience working with specimens in actual medical laboratories or in a “hybrid learning environment,” The Elm reported.

“I came up with the idea of doing cross-training for laboratory people and public health people in case there is another pandemic,” explained Lorraine Doucette in an exclusive interview with Dark Daily. Doucette, who is managing the pilot program, is an Assistant Professor and Medical Laboratory Science Program Director, Department of Medical and Research Technology, University of Maryland School of Medicine.

“There is already a huge shortage of laboratory people, but an enormous amount left in droves during the pandemic because they got physically burned out. Some just could not do the work anymore because of things like carpal tunnel syndrome and repetitive stress injuries,” she added.

Lorraine Doucette

“I’m confident that all 15 or 16 students who complete this workforce program will be employed within weeks of finishing as accessioners,” said Lorraine Doucette (above), Assistant Professor and Medical Laboratory Science Program Director, Department of Medical and Research Technology, University of Maryland School of Medicine, in an exclusive interview with Dark Daily. “This has been so successful. This is making a difference in people’s lives. This is changing them from being unemployed to actually having a career in a clinical laboratory. They love it. They are so proud of themselves.” (Photo copyright: LinkedIn.)

CDC Funding Part of National Program to ‘Enhance’ Clinical Lab Workforce

Doucette and her team met with people from the Baltimore Mayor’s Office of Employment Development (MOED) to discuss a possible partnership. They were interested and Doucette eventually became a recipient of funding through a cooperative agreement with the federal Centers for Disease and Control Prevention (CDC).

The collaboration is part of a CDC project titled, “Enhancing US Clinical Workforce Capacity.’ Doucette will receive a total of one million dollars over the course of three years to facilitate the program in stages.

“It is not necessarily an old-fashioned grant where they just gave me a pile of money,” Doucette told Dark Daily. “The CDC works with me constantly via reports and Zoom meetings.”

This CDC project is designed to both cross train clinical laboratory professionals in public health, clinical chemistry, microbiology, and hematology, as well as to train individuals in the workforce development program to become laboratory accessioners.

“They are going to be qualified to work as an accessioner in any local hospital,” Doucette noted. “The people who pick up the lab samples out of the tube system are the accessioners and there is a huge shortage of them also. We’re teaching them the basics so the more advanced lab personnel can perform the higher-level work.”

Students in the program learn all about lab safety and the proper handling of lab samples as well as proper data entry, professionalism, and how to communicate with medical and laboratory personnel. They work with urine and blood samples and fabricated spinal fluid samples. 

“They are taught about the different tubes, what the anticoagulants are, what makes each tube unique, why you can’t mix samples, balancing a centrifuge, and how to properly put on and remove safety gear like lab coats, gloves, and goggles,” Doucette explained. 

The Mayor’s Workforce Development Program is free for Baltimore residents looking for employment via the workforce office. The only requirements for enrolling are having a high school education and being fully vaccinated.

Phlebotomy and Additional Cross-training to Be Added

Doucette would eventually like to add a phlebotomy segment to future training sessions. “We would like to develop an additional partnership with BCCC (Baltimore City Community College) for the phlebotomy piece. That would definitely increase the people and the program’s marketability,” she said. “They could not only draw the blood, but they could also process the sample.”

After assessing the success of the current program and determining what did and did not work, there will be an additional training session held in the fall. Next year, there will be more sessions held for individuals in the workforce program and cross-training classes for current clinical laboratory professionals.

The strategy for the third year of the grant includes sharing the specifics of the program with medical laboratory professionals via the CDC’s free OneLab REACH platform. This portion includes the online delivery of documentation such as training sheets, lab exercises, Microsoft PowerPoint presentations, and videos used in both the accessioning and cross-training coursework.

“We’re going to do the OneLab REACH,” Doucette said. “I’m going to be putting it all online and marketing it all around the country in stages and increments. I will be going to a lot of professional society meetings and talking to lab managers to help them understand the concept of how this all benefits them.”

This unique collaboration between the City of Baltimore and University of Maryland School of Medicine, funded by the CDC, should help alleviate some of the clinical laboratory worker shortages that exist in the Baltimore area. Hopefully, the effort will result in additional knowledge, resources, and tools to assist medical lab managers across the country to recruit and retain talented, highly-skilled workers.   

JP Schlingman

Related Information:

Enhancing US Clinical Laboratory Workforce Capacity

What Is an Accessioner and How to Become One

Enhancing US Clinical Laboratory Workforce Capacity

93.322: CSELS Partnership: Strengthening Public Health Laboratories

NOFO OE22-2202: Enhancing US Clinical Laboratory Workforce Capacity—Frequently Asked Questions

NOFO OE22-2202: Enhancing US Clinical Laboratory Workforce Capacity—Q/A Session Transcript

Forbes Senior Contributor Covers Reasons for Growing Staff Shortages at Medical Laboratories and Possible Solutions

Medical Technologist Demand Exceeds Supply by Large Margin Across the United States as Clinical Laboratories Scramble to Stay Fully Staffed

University of Washington Researchers Use Genomic Analysis to Track Shigella Infections as Decreased Cost of Gene Sequencing Aids Public Health Research

Another study in the United Kingdom that also used genomic analysis to understand drug-resistant Shigella produced findings that may be useful for microbiologists and medical laboratory scientists

From the onset of an infectious disease outbreak, public health officials, microbiologists, and clinical laboratory managers find it valuable to trace the origin of the spread back to the “index case” or “patient zero”—the first documented patient in the disease epidemic. Given the decreased cost of genomic analysis and improved accuracy of gene sequencing, infectious disease researchers are finding that task easier and faster than ever.

One recent example is a genomic study conducted at University of Washington (UW) in Seattle that enabled researchers to “retrace” the origin and spread of a “multidrug-resistant Shigellosis outbreak” from 2017 to 2022. “The aim of the study was to better understand the community transmission of Shigella and spread of antimicrobial resistance in our population, and to treat these multi-drug resistant infections more effectively,” the UW scientists stated in a new release.

Shigellosis (aka, bacillary dysentery) is a highly contagious disease of the intestines that can lead to hospitalization. Symptoms include fever, stomach cramps, diarrhea, dysentery, and dehydration.

“Additional analysis of the gut pathogen and its transmission patterns helped direct approaches to testing, treatment, and public health responses,” the UW news release states.

Usually prevalent in countries with public health and sanitation limitations, the “opportunistic” Shigella pathogen is now being seen in high-income countries as well, UW reported.

The researchers published their findings in Lancet Infectious Diseases, titled, “Genomic Reconstruction and Directed Interventions in a Multidrug-Resistant Shigellosis Outbreak in Seattle, WA, USA: A Genomic Surveillance Study.”

Ferric Fang, MD

“You can’t really expect an infectious disease to remain confined to a specific at-risk population. [Shigella infections are] very much an emerging threat and something where our public health tools and therapeutic tools have significant limitations,” infectious disease specialist Ferric Fang, MD (above) told CIDRAP News. Fang is a UW professor of Microbiology and Clinical Laboratory Medicine and a corresponding author of the UW study. (Photo copyright: University of Washington.)

Why are Shigella Cases Increasing?

The US Centers for Disease Control and Prevention (CDC) records more than 450,000 shigellosis infections each year in the US. The most common species in the US, according to CDC statistics, is Shigellaa sonnei.

Other members of the genus include:

Generally, Shigella infects children, travelers, and men who have sex with men (MSM), the CDC noted.

The UW researchers were motivated to study Shigella when they noticed an uptick in drug-resistant shigellosis cases in Seattle’s homeless population in 2020 at the beginning of the COVID-19 pandemic, Center for Infectious Disease Research and Policy News (CIDRAP News) reported.

“Especially during the pandemic, a lot of public facilities were closed that homeless people were used to using,” infectious disease specialist Ferric Fang, MD, told CIDRAP News. Fang is Professor of Microbiology and Laboratory Medicine at University of Washington and corresponding author of the UW study.

The researchers studied 171 cases of Shigella identified from 2017 to 2022 by clinical laboratories at Harborview Medical Center and UW Medical Center in Seattle. According to CIDRAP News, the UW researchers found that:

  • 46% were men who have sex with men (MSM).
  • 51% were people experiencing homelessness (PEH).
  • Fifty-six patients were admitted to the hospital, with eight to an intensive care unit.
  • 51% of isolates were multi-drug resistant (MDR).

Whole-Genome Sequencing Reveals Origin

The UW scientists characterized the stool samples of Shigella isolates by species identification, phenotypic susceptibility testing, and whole-genome sequencing, according to their Lancet Infectious Diseases paper. The paper also noted that 143 patients received antimicrobial therapy, and 70% of them benefited from the treatment for the Shigella infection.

Whole-genome sequencing revealed that two strains of Shigella (S. flexneri and S. sonnei) appeared first in Seattle’s MSM population before infecting the PEM population.

The genomic analysis found the outbreak of drug-resistant Shigella had international links as well, according to CIDRAP News:

  • One S. flexneri isolate was associated with a multi-drug resistant (MDR) strain from China, and
  • S. sonnei isolates resembled a strain characteristic of a current outbreak of MDR Shigella in England.

“The most prevalent lineage in Seattle was probably introduced to Washington State via international travel, with subsequent domestic transmission between at-risk groups,” the researchers wrote.

“Genomic analysis elucidated not only outbreak origin, but directed optimal approaches to testing, treatment, and public health response. Rapid diagnostics combined with detailed knowledge of local epidemiology can enable high rates of appropriate empirical therapy even in multidrug-resistant infection,” they continued.

UK Shigella Study Also Uses Genomics

Another study based in the United Kingdom (UK) used genomic analysis to investigate a Shigella outbreak as well.

Motivated by a UK Health Security Agency report of an increase in drug-resistance to common strains since 2021, the UK researchers studied Shigella cases from September 2015 to June 2022.

According to a paper they published in Lancet Infectious Diseases, the UK researchers “reported an increase in cases of sexually transmitted S. flexneri harboring blaCTX-M-27 (an antibiotic-resistant gene) in England, which is known to confer resistance to third-generation cephalosporins (antibiotics),” the researchers wrote.

Their analysis of plasmids (DNA with genes having antibiotic resistance) revealed a link in two drug-resistant Shigella strains at the same time, CIDRAP News explained.

“Our study reveals a worsening outlook regarding antimicrobial-resistant Shigella strains among MSM and highlights the value of continued integration of genomic analysis into surveillance and research,” the UK-based scientists wrote.

Current challenges associated with Shigella, especially as it evades treatment, may continue to demand attention from microbiologists, clinical laboratory scientists, and infectious disease specialists. Fortunately, use of genomic analysis—due to its ongoing improvements that have lowered cost and improved accuracy—has made it possible for public health researchers to better track the origins of disease outbreak and spread.    

Donna Marie Pocius

Related Information:

Genomic Reconstruction and Directed Interventions in a Multidrug-Resistant Shigellosis Outbreak in Seattle, Washington, USA: a Genomic Surveillance Study.

Genomics Aids Study of Seattle 2017-22 Shigella Outbreak

Q/A: Shigella—Shigellosis

A Spotlight on Growing Threat of Drug-Resistant Shigella

Emergence of Extensively Drug-Resistant and Multidrug-Resistant Shigella flexneri serotype 2a Associated with Sexual Transmission Among Gay, Bisexual, and Other Men Who Have Sex with Men, in England: A Descriptive Epidemiological Study

;