News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Guidehouse Healthcare Experts Outline Six Ways COVID-19 Pandemic Is Accelerating Healthcare Transformation

Financial losses for hospitals and health systems due to cancelled procedures and coronavirus expenses will lead to changes in healthcare delivery, operations, and clinical laboratory test ordering

COVID-19 is reshaping how people work, shop, and go to school. Is healthcare the next target of the coronavirus-induced transformation? According to two experts, the COVID-19 pandemic is pushing hospitals and health systems toward a “fundamental and likely sustained transformation,” which means clinical laboratories must be prepared to adapt to new provider needs and customer demands.

In “Industry Voices—6 Ways the Pandemic Will Remake Health Systems,” published in Fierce Healthcare, authors David Burik, Partner, and Brian Fisher, Director, at Guidehouse (formerly Navigant Consulting and a “portfolio company of Veritas Capital”), stated that COVID-19 has wreaked havoc with the finances of America’s hospitals and healthcare systems.

Burik and Fisher called attention to the staggering $50 billion-per-month loss for hospitals and health systems that was first revealed in an American Hospital Association (AHA) report published in May. The AHA report estimated a $200 billion loss from March 1, 2020, to June 30, 2020, due to increased COVID-19 expenses and cancelled elective and non-elective surgeries.

Adding to the financial carnage is the expectation that patient volumes will be slow to return. In “Hospitals Forecast Declining Revenues and Elective Procedure Volumes, Telehealth Adoption Struggles Due to COVID-19,” Burik said, “Healthcare has largely been insulated from previous economic disruptions, with capital spending more acutely affected than operations. But this time may be different since the COVID-19 crisis started with a one-time significant impact on operations that is not fully covered by federal funding.

“Providers face a long-term decrease in commercial payment, coupled with a need to boost caregiver and consumer-facing digital engagement, all during the highest unemployment rate the US has seen since the Great Depression,” he continued. “For organizations in certain locations, it may seem like business as usual. For many others, these issues and greater competition will demand more significant, material change.”

A Guidehouse analysis of a Healthcare Financial Management Association (HFMA) survey, suggests one-in-three provider executives expect to end 2020 with revenues at 15% below pre-pandemic levels, while one-in-five of them anticipate a 30% or greater drop in revenues. Government aid, Guidehouse noted, is likely to cover COVID-19-related costs for only 11% of survey respondents.

“The figures illustrate how the virus has hurled American medicine into unparalleled volatility. No one knows how long patients will continue to avoid getting elective care or how state restrictions and climbing unemployment will affect their decision making once they have the option,” Burik and Fisher wrote. “All of which leaves one thing for certain: Healthcare’s delivery, operations, and competitive dynamics are poised to undergo a fundamental and likely sustained transformation.”

As a result, the two experts predict these pandemic-related changes to emerge:

  • Payer-Provider Complexity on the Rise; Patients Will Struggle. As the pandemic has shown, elective services are key revenues for hospitals and health systems. But the pandemic also will leave insured patients struggling with high deductibles, while the number of newly uninsured will grow. Furthermore, upholding of the hospital price transparency ruling will add an unwelcomed spotlight on healthcare pricing and provider margins.
  • Best-in-Class Technology Will Be a Necessity, Not a Luxury. COVID-19 has been a boon for telehealth and digital health usage, creating what is likely to be a permanent expansion of virtual healthcare delivery. But only one-third of executives surveyed say their organizations currently have the infrastructure to support such a shift, which means investments in speech recognition software, patient information pop-up screens, and other infrastructure to smooth workflows will be needed.
Chuck Peck, MD
“Through all the uncertainty COVID-19 has presented, one thing hospitals and health systems can be certain of is their business models will not return to what they were pre-pandemic,” Guidehouse Partner Chuck Peck, MD (above), a former health system CEO, said in a statement. “A comprehensive consumer-facing digital strategy built around telehealth will be a requirement for providers. Moreover, shifting hardware and physical assets to the cloud, and use of robotic process automation, has proven to be successful in improving back-office operations in other industries. Providers will need to follow suit.” Clinical laboratories and anatomic pathology groups should track these developments and respond appropriately to meet the changing needs of the hospitals and physicians they serve with diagnostic testing services. (Photo copyright: Athens Banner-Herald.)
  • The Tech Giants Are Coming. Both major retailers and technology stalwarts, such as Amazon, Walmart, and Walgreens, are entering the healthcare space. In January, Dark Daily reported on Amazon’s roll out of Amazon Care, a 24/7 virtual clinic, for its Seattle-based employees. Amazon (NASDAQ:AMZN) is adding to a healthcare portfolio that includes online pharmacy PillPack and joint-venture Haven Healthcare. Meanwhile, Walmart is offering $25 teeth cleaning and $30 checkups at its new Health Centers. Dark Daily covered this in an e-briefing in May, which also covered a new partnership between Walgreens and VillageMD to open up to 700 primary care clinics in 30 US cities in the next five years.
  • Work Location Changes Mean Construction Cost Reductions. According to Guidehouse’s analysis of the HFMA COVID-19 survey, one-in-five executives expect some jobs to remain virtual post-pandemic, leading to permanent changes in the amount of real estate needed for healthcare delivery. The need for a smaller real estate footprint could reduce capital expenditures and costs for hospitals and healthcare systems in the long term.
  • Consolidation is Coming. COVID-19-induced financial pressures will quickly reveal winners and losers and force further consolidation in the healthcare industry. “Resilient” healthcare systems are likely to be those with a 6% to 8% operating margins, providing the financial cushion necessary to innovate and reimagine healthcare post-pandemic.
  • Policy Will Get More Thoughtful and Data-Driven. COVID-19 reopening plans will force policymakers to craft thoughtful, data-driven approaches that will necessitate engagement with health system leaders. Such collaborations will be important not only during this current crisis, but also will provide a blueprint for policy coordination during any future pandemic.

As Burik and Fisher point out, hospitals and healthcare systems emerged from previous economic downturns mostly unscathed. However, the COVID-19 pandemic has proven the exception, leaving providers and health systems facing long-term decreases in commercial payments, while facing increased spending to bolster caregiver- and consumer-facing engagement.

“While situations may differ by market, it’s clear that the pre-pandemic status quo won’t work for most hospitals or health systems,” they wrote.

The message for clinical laboratory managers and surgical pathologists is clear. Patients may be permanently changing their decision-making process when considering elective surgery and selecting a provider, which will alter provider test ordering and lab revenues. Independent clinical laboratories, as well as medical labs operated by hospitals and health systems, must be prepared for the financial stresses that are likely coming.

—Andrea Downing Peck

Related Information:

Industry Voices–6 Ways the Pandemic Will Remake Health Systems

Amazon Care, the Company’s Virtual Medical Clinic, Is Now Live for Seattle Employees

Checkup for $30, Teeth Cleaning $25: Walmart Gets into Health Care

Walgreens and VillageMD to Open 500 to 700 Full-Service Doctor Offices within Next Five Years in a Major Industry First

New AHA Report Finds Financial Impact of COVID-19 on Hospitals and Health Systems to be Over $200 Billion through June

Hospitals Forecast Declining Revenues and Elective Procedure Volumes, Telehealth Adoption Struggles Die to COVID-19

Amazon Care Pilot Program Offers Virtual Primary Care to Seattle Employees; Features Both Telehealth and In-home Care Services That Include Clinical Laboratory Testing

Walmart Opens Second Health Center Offering Clinical Laboratory Tests and Primary Care Services

Where Did all the Antibodies Go? Emory University’s Vaccine Center Studies Bone Marrow to Find Out Why Influenza Vaccines are Short-Lived

Pathologists and clinical laboratory scientists know that influenza vaccines typically produce short-lived protection and researchers have new clues as to why this is true

With so much interest in development of a COVID-19 vaccine, findings by researchers at Atlanta’s Emory Vaccine Center into why the vaccine for influenza (Flu) is so short-lived offer a new window on how the body’s immune system responds to invading viruses and what happens to the immunity over time.

Because the autumn influenza season is just weeks away, these insights into the body’s immune response to influenza will be of interest to clinical laboratories that provide testing for influenza, as well as SARS-CoV-2, the coronavirus that causes COVID-19.

Clinical laboratory managers recognize that an influenza vaccine is an annual imperative for people—especially the elderly and those with existing comorbidities—and medical laboratory tests are typically used to diagnose the illness and identify which strains of viruses are present. The flu vaccine is even more important amid the COVID-19 pandemic, infectious disease authorities say.

The scientists at the Emory Vaccine Center published their findings in the journal Science.  

How Does Influenza Differ from Other Viruses?

Vaccines for some viruses, such as Hepatitis A, Hepatitis B, and the human papillomavirus, may be taken only one time, but the immunity can last a lifetime.  

Not so with influenza vaccines. The immunity they impart generally only lasts for a single flu season and are “lost within one year,” the Emory study notes.

As Genetic Engineering and Biotechnology News (GEN) explains, the influenza genome has eight RNA segments which can change as the virus enters a cell. This antigenic shift creates new influenza strains that require updated vaccines, GEN noted.

However, the Emory researchers stated that “The fact that a small number did persist over one year raises prospects that the longevity of flu vaccines can be improved and provides key information for the development of universal vaccines against influenza.”

Bone Marrow Has Major Role in Producing New Flu Antibodies

The Emory study focused on the influenza vaccine’s role in how it affects the immune system and what needs to change to create a longer-lasting influenza vaccine. “Our results suggest that most bone marrow plasma cells (BMPC) generated by influenza vaccination in adults are short-lived. Designing strategies to enhance their persistence will be key,” the Emory researchers wrote in Science.

The scientists analyzed bone marrow from 53 healthy volunteers (age 20 to 45). An Emory news release states that bone marrow is the “home base for immune cells producing antibodies.”

Besides the bone marrow, the researchers also examined blood samples from the volunteers, all of which was collected between 2009 and 2018:

  • before influenza vaccination,
  • one month after influenza vaccination, and
  • one year post vaccination.

Through DNA sequencing the samples, the Emory researchers found the number of flu-specific cells increased from 0.8% to 1.9% after one month. They concluded that an annual vaccine does increase antibody-producing cells for influenza in bone marrow.

However, in follow-up visits one year after vaccination, they found that the number of cells present in the volunteers had fallen back to the starting point.

“Specific cells produced by the vaccine … produced unique antibodies that can be identified using sequencing techniques,” Carl Davis, PhD, postdoctoral fellow in the Rafi Ahmed Laboratory at Emory and first author of the paper, said in the news release, adding, “We could see that these new antibodies expanded in the bone marrow one month after vaccination and then contracted after one year.”

He continued, “On the other hand, antibodies against influenza that were in the bone marrow before the vaccine was given stayed at a constant level over one year.”

Vaccine Adjuvants Help Boost Immunity

A vaccine additive called an adjuvant could be the answer to extending the power of  influenza vaccines, the Emory scientists noted.

“Just getting to the bone marrow is not enough. A plasma cell has to find a niche within the bone marrow and establish itself there and undergo gene expression and metabolism changes that promote longevity,” Rafi Ahmed, PhD, Director of the Emory Vaccine Center, said in the news release.

Adjuvants could boost BMPC, because they act as “irritants” to beef up immune response, an article in Science titled, “Why Flu Vaccines Don’t Protect People for Long,” explained.

“It’s totally crazy (that the most commonly used influenza vaccines don’t include an adjuvant), Ahmed told Science. “I’m hoping that things will change in the influenza vaccine world, and 10 years from now, you will not be getting any nonadjuvanted vaccines.” 

Adjuvants used in vaccine studies for the SARS-CoV-1 coronavirus could be useful in developing vaccines for the SARS-CoV-2
Taken from the published study, “Potential Adjuvants for the Development of a SARS-CoV-2 Vaccine Based on Experimental Results from Similar Coronaviruses,” the graphic above shows adjuvants used in vaccine studies for the SARS-CoV-1 coronavirus could be useful in developing vaccines for the SARS-CoV-2 coronavirus as well. (Graphic copyright: Immunopharmacology/Elsevier.)

Are Adjuvants the Answer for COVID-19 Vaccines?

According to USA Today, about 20-million “essential” workers will likely be the first to receive the new COVID-19 vaccine and participate in check-in text messages with the Centers for Disease Control and Prevention (CDC) by the end of 2020.

In its COVID-19 vaccine testing, Novavax, a late-state biotechnology company, suggests that “an adjuvant is critical to its vaccine working well,” National Public Radio (NPR) reported in “The Special Sauce That Makes Some Vaccines Work.” However, vaccine developers may be reluctant to share their adjuvant research.

“Adjuvants end up being very proprietary. It’s kind of the secret sauce on how to make your protein vaccine work,” Barney Graham, MD, PhD, Deputy Director, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, told NPR.

Still, a study published in Immunopharmacology revealed potential adjuvants for the COVID-19 vaccine based on vaccine studies of other coronaviruses. While there are many adjuvants available, not all have safety track records that can be leveraged to gain clearance from regulatory bodies, the researchers pointed out. But some do.

CpG 1018, MF59, and AS03 are already approved for human vaccine and their inclusion may expedite the vaccine development process. Further, Protollin has shown promising results in pre-clinical studies,” the authors wrote.

Clinical laboratories that provide influenza testing will want to follow these types of research studies. Findings on immunity will affect development of vaccines that medical labs provide—including for COVID-19.

—Donna Marie Pocius

Related Information:

Why Flu Vaccine Immunity is Short-Lived

Influenza Vaccine-induced Human Bone Marrow Plasma Cells Decline Within a Year After Vaccination

Seasonal Flu Vaccinations Don’t “Stick” Long-Term in Bone Marrow

Why Flu Vaccines Don’t Protect People for Long

First COVID-19 Vaccine Recipients Get Daily CDC Check Texts

Administration Announces $200 Million From CDC to Jurisdictions for COVID-19 Vaccine Preparedness

All You Wanted to Know About the Coronavirus Vaccine Science but Were Afraid to Ask

Potential Adjuvants for the Development of a SARS-CoV-2 Vaccine Based on Experimental Results from Similar Coronaviruses

New Artificial Intelligence Algorithm Uses Routine Clinical Laboratory Tests to Identify Patients Likely Infected with COVID-19

At hospitals where results of molecular COVID-19 testing can take up to several days to return, this new method for identifying potentially infected patients could improve triage

Frustrated by shortages of essential COVID-19 tests and supplies—as well by lengthy coronavirus test turn-around times—researchers at Weill Cornell Medicine have created an Artificial Intelligence (AI) algorithm that can use routine clinical laboratory test data to determine if a patient is infected with SARS-CoV-2, the coronavirus that causes the COVID-19 disease.

This is an important development because the turn-around-time (TAT) for common lab tests is generally much shorter than COVID-19 molecular diagnostics—such as real-time reverse transcription polymerase chain reaction (RT-PCR), currently the most popular coronavirus test—and certainly serological (antibody) diagnostics, which require an infection incubation time of as much as 10-14 days before testing.

Some RT-PCR diagnostic tests for COVID-19, which detect viral RNA on nasopharyngeal swab specimens, can take up to several days to return depending on the test and on the lab’s location. But routine medical laboratory tests generally return much sooner, often within minutes or hours, making this a potential game-changer for triaging infected patients.

Machine Learning Brings AI to COVID-19 Diagnostics

Advances in the use of AI in healthcare have led to the development of machine-learning algorithms that are being utilized as diagnostic tools for anatomic pathology, radiology, and for specific complex diseases, such as cancer. The Weill Cornell scientists wanted to see if alternative lab test results could be used by an algorithmic model to identify people infected with the SARS-CoV-2 coronavirus.

Sarina Yang, MD, PhD
“When patients come to the [emergency department] and the doctor orders several panels of routine lab [tests] and also the [SARS-CoV-2] RT-PCR test, generally the routine test results come back in a couple of hours,” Sarina Yang, MD, PhD (above), one of the authors of the study, told Modern Healthcare. “So, we thought it could be useful to use the routine labs to predict whether the RT-PCR results would be positive or negative to improve the triage process.” Yang is an assistant professor in the Department of Pathology and Laboratory Medicine, and Assistant Director of the central laboratory and Director of the toxicology laboratory at Weill Cornell Medicine. (Photo copyright: Weill Cornell Medicine.)

To perform the research, the team incorporated patients’ age, sex, and race, into a machine learning model that was based on results from 27 routine lab tests chosen from a total of 685 different tests ordered for the patients. The study included 3,356 patients who were tested for SARS-CoV-2 at New York-Presbyterian Hospital/Weill Cornell Medical Center between March 11 and April 29 of this year. The patients ranged in ages from 18 to 101 with the mean age being 56.4 years. Of those patients, 1,402 were RT-PCR positive and the remaining 1,954 were RT-PCR negative.  

Using a machine-learning technique known as a gradient-boosting decision tree, the algorithm identified SARS-CoV-2 infections with 76% sensitivity and 81% specificity. When looking at only emergency department (ED) patients, the model performed even better with 80% sensitivity and 83% specificity. ED patients comprised just over half (54%) of the patients used for the study. 

Weill Cornell Medicine Algorithm Could Lower False Negative Test Results

The algorithm also correctly identified patients who originally tested negative for COVID-19, but who tested positive for the coronavirus upon retesting within two days. According to the researchers, these results indicated their model could potentially decrease the amount of incorrect test results.

“We are thinking that those potentially false negative patients may demonstrate a different routine lab test profile that might be more similar to those that test positive,” Fei Wang, PhD, Assistant Professor of Healthcare Policy and Research at Weill Cornell Medicine and the study’s senior author, told Modern Healthcare. “So, it offers us a chance to capture those patients who are false negatives.”

The researchers validated their model by comparing the results with patients seen at New York Presbyterian Hospital/Lower Manhattan Hospital during the same time period. Among those patients, 496 were RT-PCR positive and 968 were negative and the algorithmic model performed with 74% specificity and 76% sensitivity. 

In their study, published in the Oxford Academic journal Clinical Chemistry, titled, “Routine Laboratory Blood Tests Predict SARS-CoV-2 Infection Using Machine Learning,” the Weill Cornell Medicine scientists concluded that their research illustrated the algorithm could:

  • preliminarily identify high-risk SARS-CoV-2 infected patients before RT-PCR results are available,
  • risk stratify patients in the ED,
  • select patients who need relatively urgent retesting if initial RT-PCR results are negative,
  • help isolate infected patients earlier, and
  • assist in the identification of SARS-CoV-2 infected patients in areas where RT-PCR testing is unavailable due to financial or supply constraints.

Early Results of Study Promising, But More Research is Needed

Wang noted that more research is needed on the algorithm and that he and his colleagues are currently working on ways to improve the model. They are hoping to test it with different conditions and geographies.

“Our model in the paper was built on data from when New York was at its COVID peak,” he told Modern Healthcare. “At that time, we were not doing wide PCR testing, and the patients who were getting tested were pretty sick.”

At the time of the study, the positivity rate for COVID-19 at New York-Presbyterian Hospital was in the 40% to 50% range. That was substantially higher than the current positivity rate, which is in the 2% to 3% range, Modern Healthcare reported.

“This model we built in a population in New York in a certain time period, so we can’t guarantee that it will work well universally,” Wang told Modern Healthcare.

It’s exciting to think that advances in software algorithms may one day make it possible to combine routine clinical laboratory testing and create diagnostics that identify diseases in ways the individual tests were not originally designed to do.

This study is an example that researchers in AI and informatics are working to bring new tools and diagnostic capabilities to clinical laboratories. Also, this is a demonstration of how a patient’s results from multiple other types of lab tests can by analyzed using AI and similar analytical algorithms to diagnose a health condition unrelated to the original reasons for performing those tests.

If this can be demonstrated with other diseases and health conditions, it would open up one more way that pathologists and clinical laboratory scientists can contribute to more accurate diagnoses and improved selection of the most appropriate therapies for individual patients.

—JP Schlingman

Related Information:

Routine Lab Tests Could Help Identify COVID-19 Patients

Routine Laboratory Blood Tests Predict SARS-CoV-2 Infection Using Machine Learning

Mobile Device Software Companies Are Developing Smartphone Apps That Use Artificial Intelligence to Test for COVID-19, Potentially Bypassing the Clinical Laboratory Altogether

Florida Hospital Utilizes Machine Learning Artificial Intelligence Platform to Reduce Clinical Variation in Its Healthcare, with Implications for Medical Laboratories

Apple Updates Its Mobile Health Apps, While Microsoft Shifts Its Focus to Artificial Intelligence. Both Will Transform Healthcare, But Which Will Impact Clinical Laboratories the Most?

Amazon’s Prime Air Drone Fleet Receives FAA Approval to Make Deliveries to Customers, Could Clinical Laboratory Specimens and Supplies be Next?

Delivery of clinical laboratory specimens and medical supplies by drone is beginning to happen in different parts of the world

The idea that fleets of flying drones may someday legally transport clinical laboratory specimens may sound good—it may even be beneficial from a healthcare perspective—but it also could be hugely disruptive to medical labs that maintain large and expensive courier/logistics capabilities. 

So, the announcement that the FAA had granted approval to Amazon’s new drone delivery fleet—Amazon Prime Air—may come as something of a mixed blessing to clinical laboratory managers and large healthcare networks.

Nevertheless, it’s done. Amazon Prime Air has joined Alphabet Inc’s Wing and the United Parcel Services’ Flight Forward as “the only companies that have gotten FAA approval to operate under the federal regulations governing charter operators and small airlines,” Bloomberg reported.

But will this trend bode well for clinical laboratories?

Does Amazon Plan to Deliver Clinical Laboratory Specimens?

As yet, Amazon has not announced its intention to deliver clinical laboratory specimens. But given the company’s trajectory as a disrupter of traditional retail and shipping industries, it seems reasonable that competing with Wing and Flight Forward might be part of Amazon’s plan.

Wing and UPS are already operating fledgling clinical laboratory delivery networks in the US and other nations, such as Australia and Switzerland. Wing has been testing limited drone deliveries in Christiansburg, VA, since it received FAA approval to operate drone deliveries last year. UPS received similar approval last year to operate drones to deliver biological specimens and clinical laboratory supplies between physicians’ offices and the central clinical laboratory on WakeMed’s medical campus in Raleigh, NC.

Dark Daily covered both of these events in “UPS and WakeMed Now Use Aerial Drone for Daily Transport of Clinical Laboratory Specimens; In Australia, Google Wing Initiates Drone Delivery Service.”

Amazon’s MK27 drone
Amazon’s MK27 drone (above) is a hybrid aircraft that can take off and land vertically like a helicopter and sustain forward flight. The drone has several built-in safety features, including thermal cameras, depth cameras, onboard computers and sonar to detect hazards in its path and navigate around them. Click here to watch a video of the drone in flight. (Video copyright: Amazon.)

Amazon’s drones can fly up to 7.5 miles from a distribution site (a 15-mile round trip) and can deliver packages that weigh less than five pounds to customers. The goal is to deliver small items that can fit in the drone’s cargo box to consumers in under 30 minutes. 

Are Drones the Future of Medical Laboratory Specimen Delivery?

Routine deliveries via drones are still a long way off as more trial runs are needed and the FAA has to develop standards and regulations for drone delivery operations to maintain order in the skies. However, in a statement, the FAA said it is trying to support innovation in the expanding drone arena while ensuring that the devices operate safely. The FAA plans to finalize a set of regulations for drones by the end of this year, Bloomberg reported.

“This certification is an important step forward for Prime Air and indicates the FAA’s confidence in Amazon’s operating and safety procedures for an autonomous drone delivery service that will one day deliver packages to our customers around the world,” David Carbon, Vice President Prime Air at Amazon, said in a statement to Business Insider. “We will continue to develop and refine our technology to fully integrate delivery drones into the airspace and work closely with the FAA and other regulators around the world to realize our vision of 30-minute delivery.”

So, will Amazon one day announce plans to deliver medical supplies and clinical laboratory specimens in under 30 minutes too? It wouldn’t be unreasonable to believe in the possibility.

Dark Daily previously covered similar drone delivery services under development for healthcare situations around the world. In “Drones Used to Deliver Clinical Laboratory Specimens in Switzerland,” we reported how a multiple-facility hospital group in Switzerland was using drones to deliver lab samples between two of their locations.

In “WakeMed Uses Drone to Deliver Patient Specimens,” our sister publication, The Dark Report, covered how in April, 2019, clinical lab professionals at WakeMed Health and Hospitals completed the first successful revenue-generating commercial transport of lab supplies by drone in the United States. The satellite lab now sends urine, blood, and other patient specimens for routine testing to the main lab.

And in “California Company Creates ‘Uber for Blood’ to Speed the Transport of Life-Saving Medical Laboratory Supplies and Blood Products in Rwanda,” we reported how drones are being utilized to transport vital blood supplies to remote areas of Rwanda and Tanzania.

Dark Daily also reported in 2017 that researchers from Johns Hopkins University had successfully flown a drone carrying lab specimens more than 161 miles across the Arizona desert, setting a US record for the longest distance drone delivery of viable medical specimens.

Amazon would fit right in.

Though regular drone delivery of medical supplies and clinical laboratory specimens may take some time to develop, it is a trend that laboratory managers should watch closely. The potential for drones to safely and inexpensively transport clinical laboratory specimens could become a reality sooner than expected.

—JP Schlingman

Related Information:

Amazon’s Drone Delivery Fleet Hits Milestone with FAA Clearance

FAA Approves Amazon’s Drone Delivery Fleet

FAA Clears Amazon’s Fleet of Prime Air Drones for Liftoff

Here’s Amazon’s New Transforming Prime Air Delivery Drone

UPS and WakeMed Now Use Aerial Drone for Daily Transport of Clinical Laboratory Specimens; In Australia, Google Wing Initiates Drone Delivery Service

Drones Used to Deliver Clinical Laboratory Specimens in Switzerland

California Company Creates ‘Uber for Blood’ to Speed the Transport of Life-Saving Medical Laboratory Supplies and Blood Products in Rwanda

Johns Hopkins’ Test Drone Travels 161 Miles to Set Record for Delivery Distance of Clinical Laboratory Specimens

Chairman and CEO David Abney Explains UPS’ Drive Toward Drone Technology

Canada’s Early Response to COVID-19 Garnered Praise, But Critical Shortages of Clinical Lab Tests and Delays in Test Results Brought Criticism of the Government’s Actions. Sound Familiar?

Though coronavirus infections were detected nearly simultaneously in both Canada and the US, total cases and total deaths vary dramatically leading experts to question how differences in healthcare systems might have contributed

Can clinical laboratories in the United States learn from Canada’s response to the COVID-19 pandemic? While our northern neighbor won praise for its early response to the coronavirus, since then Canada has faced criticism over a lack of access to SARS-CoV-2 testing and long wait times for test results—criticism levied at the United States’ response to the outbreak as well.

In “Canada Shows How Easy Virus Testing Can Be,” Foreign Policy reported that Canada was more prepared to mount a successful response to COVID-19 because it systematically improved its pandemic-response preparedness and testing capacity after the 2003 SARS coronavirus (SARS-CoV-1) outbreak.

“Provincial laboratories put the infrastructure in place that would allow them to run their own testing and validation without help from the federal government,” Foreign Policy wrote. “At the same time, the federally run National Microbiology Laboratory in Winnipeg expanded its own capacity to support those efforts.”

However, Canada’s pandemic response has not been criticism free. In “Health Minister Says Test Result Wait Times ‘Not Acceptable’ As Ontario Confirms 25 New COVID-19 Cases,” CBC News reported in late March about COVID-19 testing shortages and four-day wait times for test results that were “not acceptable,” particularly in Ontario, where people with mild symptoms were being refused testing and sent home unless they worked in high-risk settings.

In “Why It’s So Difficult to Get Tested for COVID-19 in Canada,” CBC News suggested that Canada’s test rationing was due to a laboratory-supply shortage, a problem which The New York Timesreports still has not been overcome in the US more than six months into the pandemic.

Government Bureaucracy’s Effect on Response to COVID-19

In “Canada’s Coronavirus Response Has Not Been Perfect. But It’s Done Far Better than the US,” The Washington Post reported that the initial exposure to the virus by the US and Canada was similar. Both the US and Canada have extensive ties to Europe and China, resulting in the two countries identifying their first cases of COVID-19 within a week of one another in January. Since then, however, the progression of the disease diverged dramatically in the two nations.

To date, the US has experienced 7,361,611 total cases with 209,808 total deaths, placing it in the number one spot globally on Worldometers’ COVID-19 tracking site. By contrast, Canada is in 26th place, with 155,301 total cases and 9,278 total deaths. However, to date the US has conducted 105,401,706 total clinical laboratory tests, as opposed to Canada’s 7,220,108 total tests. This might account for the disparity in total cases, but what accounts for the huge difference in total US deaths due to COVID-19 compared to Canada?

A Fraser Institute blog post authored by Steven Globerman, PhD, Resident Scholar and Addington Chair in Measurement at the Institute and Professor Emeritus at Western Washington University, titled, “US COVID Experience Highlights Risks of Centralized Management of Healthcare,” blamed the US’ “top-down, centralized approach to testing” for the “testing fiasco” that marked the US’ initial slow response to the pandemic. Globerman maintained the Centers for Disease Control and Prevention’s insistence on producing its own COVID-19 diagnostic test, rather than using a proven German-produced test, was the first of several missteps by the US.

Steven Globerman, PhD
“While there has been much criticism of the decentralized private insurance industry in the US, the major shortcomings in testing that characterize the US experience during the current pandemic seem to be the result of the government healthcare bureaucracy,” wrote Steven Globerman, PhD, (above), Resident Scholar and Addington Chair in Measurement at the Fraser Institute and Professor Emeritus at Western Washington University. (Photo copyright: Fraser Institute.)

Globerman also noted the problems were compounded by the US government’s low initial Medicare payments to private laboratories for COVID-19 tests. “Medicare is reputed to have paid about half the price it pays for a flu test, even though the coronavirus test is substantially more expensive to produce. The price forced labs to take losses on the test, blocking many labs from scaling up production to expand the nation’s testing capacity.

“Only after major lab organizations made public pleas for increased Medicare reimbursement, and long backlogs emerged for testing and reporting test results, did Medicare agree to double its payments for coronavirus tests,” Globerman wrote.

Could National Differences in Healthcare Systems Be to Blame for Disparate COVID-19 Outcomes?

In “Canada Succeeded on Coronavirus Where America Failed. Why?” Canadian public health experts told Vox differences in the two countries’ political leadership, public health funding, and healthcare systems are to blame for the US experiencing a worse coronavirus outbreak than Canada.

Is that true? Sally C. Pipes, CEO, and Thomas W. Smith Fellow in Health Care Policy at the Pacific Research Institute, a former resident of Canada and an ardent critic of single-payer healthcare, argued that Canada’s healthcare system is plagued by long waits for elective procedures, equipment shortages, and limited access to cutting-edge drugs and therapies.

In “The Canadian Health-Care Scare,” Pipes wrote, “Our northern neighbors wait months for routine care and lack access to the latest life-saving medications and technology. Importing this system would lead to widespread misery,” adding, “Is a six-month wait for a knee replacement—the median in Canada last year—reasonable, when it keeps someone in pain and unable to work? One study puts the total cost of waiting for joint-replacement surgery after taking into account lost wages and additional tests and scans at almost $20,000. It’s no wonder that more than 323,000 Canadians left the country to seek care abroad in 2017.”

A Fraser Institute study of wait times in Canada for medically-necessary treatments underscores Pipes’ claims. According to the study, the median wait time—from general practitioner referral to treatment—across 12 medical specialties was 20.9 weeks in 2019, the second highest recorded by the Institute. If this is the case, how did Canada earn praise for its early COVID-19 response?

It’s unclear what lessons American clinical laboratories can glean from Canada’s response to COVID-19. Nevertheless, lab managers should closely watch their counterparts in other nations around the world. The coronavirus does not respect borders or care about disparities in healthcare systems.

—Andrea Downing Peck

Related Information:

The Canadian Health-Care Scare

Waiting Your Turn: Waiting Times for Healthcare in Canada, 2019 Report

Worldometers COVID-19 Coronavirus Pandemic Tracking

Canada Succeeded on Coronavirus Where America Failed. Why?

Coronavirus Test Results Are Still Delayed

U.S. Doctor in Canada: Medicare for All would Have Made America’s COVID Response Much Better

Canada’s Coronavirus Response Has Not Been Perfect. But It’s Done Far Better than the U.S.

Why It’s so Difficult to Get Tested for COVID-19 in Canada

Health Minister Says Test Result Wait Times ‘Not Acceptable’ as Ontario Confirms 25 New COVID-19 Cases

Canada Shows How Easy Virus Testing Can Be

;