News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

UK Researchers Believe Somatic Mutations Play Vital Role in Aging, Longevity, and Death

Understanding why some mutations impair normal bodily functions and contribute to cancer may lead to new clinical laboratory diagnostics

New insight into the human genome may help explain the ageing process and provide clues to improving human longevity that can be useful to clinical laboratories and researchers developing cancer diagnostics. A recent study conducted at the Wellcome Sanger Institute in Cambridge, United Kingdom, suggests that the speed of DNA errors in genetic mutations may play a critical role in the lifespan and survival of a species.  

To perform their research, the scientists analyzed genomes from the intestines of 16 mammalian species looking for genetic changes. Known as somatic mutations, these mutations are a natural process that occur in all cells during the life of an organism and are typically harmless. However, some somatic mutations can impair the normal function of a cell and even play a role in causing cancer.

The researchers published their findings in the journal Nature, titled, “Somatic Mutation Rates Scale with Lifespan Across Mammals.”

 Inigo Martincorena, PhD

“Aging is a complex process, the result of multiple forms of molecular damage in our cells and tissues. Somatic mutations have been speculated to contribute to ageing since the 1950s, but studying them had remained difficult,” said Inigo Martincorena, PhD (above), Group Leader, Sanger Institute and one of the authors of the study. Greater understanding of the role DNA mutations play in cancer could lead to new clinical laboratory tools and diagnostics. (Photo copyright: Wellcome Sanger Institute.)

Lifespans versus Body Mass

The mammalian subjects examined in the study incorporated a wide range of lifespans and body masses and included humans, giraffes, tigers, mice, and the highly cancer-resistant naked mole-rat. The average number of somatic mutations at the end of a lifespan was around 3,200 for all the species studied, despite vast differences in age and body mass. It appears that species with longer lifespans can slow down their rate of genetic mutations.

The average lifespan of the humans used for the study was 83.6 years and they had a somatic mutation rate of 47 per year. Mice examined for the research endured 796 of the mutations annually and only lived for 3.7 years.

Species with similar amounts of the mutations had comparable lifespans. For example, the small, naked mole-rats analyzed experienced 93 mutations per year and lived to be 25 years of age. On the other hand, much larger giraffes encountered 99 mutations each year and had a lifespan of 24 years. 

“With the recent advances in DNA sequencing technologies, we can finally investigate the roles that somatic mutations play in ageing and in multiple diseases,” said Inigo Martincorena, PhD, Group Leader, Sanger Institute, one of the authors of the study in a press release. He added, “That this diverse range of mammals end their lives with a similar number of mutations in their cells is an exciting and intriguing discovery.”

The scientists analyzed the patterns of the mutations and found that the somatic mutations accumulated linearly over time. They also discovered that the mutations were caused by similar mechanisms and the number acquired were relatively similar across all the species, despite a difference in diet and life histories. For example, a giraffe is typically 40,000 times larger than a mouse, but both species accumulate a similar number of somatic mutations during their lifetimes.

“The fact that differences in somatic mutation rate seem to be explained by differences in lifespan, rather than body size, suggests that although adjusting the mutation rate sounds like an elegant way of controlling the incidence of cancer across species, evolution has not actually chosen this path,” said Adrian Baez-Ortega, PhD, postdoctoral researcher at the Sanger Institute and one of the paper’s authors, in the press release.

“It is quite possible that every time a species evolves a larger size than its ancestors—as in giraffes, elephants, and whales—evolution might come up with a different solution to this problem. We will need to study these species in greater detail to find out,” he speculated.

Why Some Species Live Longer than Others

The researchers also found that the rate of somatic mutations decreased as the lifespan of each species increased which suggests the mutations have a likely role in ageing. It appears that humans and animals perish after accumulating a similar number of these genetic mutations which implies that the speed of the mutations is vital in ascertaining lifespan and could explain why some species live substantially longer than others.

“To find a similar pattern of genetic changes in animals as different from one another as a mouse and a tiger was surprising. But the most exciting aspect of the study has to be finding that lifespan is inversely proportional to the somatic mutation rate,” said Alex Cagan, PhD, Postdoctoral Fellow at the Sanger Institute and one of the authors of the study in the press release.

“This suggests that somatic mutations may play a role in ageing, although alternative explanations may be possible. Over the next few years, it will be fascinating to extend these studies into even more diverse species, such as insects or plants,” he noted.

Benefit of Understanding Ageing and Death

The scientists believe this study may provide insight to understanding the ageing process and the inevitability and timing of death. They surmise that ageing is likely to be caused by the aggregation of multiple types of damage to the cells and tissues suffered throughout a lifetime, including somatic mutations.

Some companies that offer genetic tests claim their products can predict longevity, despite the lack of widely accepted evidence that such tests are accurate within an acceptable range. Further research is needed to confirm that the findings of the Wellcome Sanger Institute study are relevant to understand the ageing process.

If the results are validated, though, it is probable that new direct-to-consumer (DTC) genetic tests will be developed, which could be a new revenue source for clinical laboratories. 

JP Schlingman

Related Information:

Mystery of Why Humans Die Around 80 May Finally Be Solved

Mutations Across Animal Kingdom Shed New Light on Ageing

Somatic Mutation Rates Scale with Lifespan Across Mammals

;