News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Rice University Researchers Are Developing an Implantable Cancer Therapeutic Device That May Reduce Cancer Deaths by Half

Immunotherapy device could also enable clinical laboratories to receive in vivo biomarker data wirelessly

Researchers from Rice University in Houston and seven other states in the US are working on a new oncotherapy sense-and-respond implant that could dramatically improve cancer outcomes. Called Targeted Hybrid Oncotherapeutic Regulation (THOR), the technology is intended primarily for the delivery of therapeutic drugs by monitoring specific cancer biomarkers in vivo.

Through a $45 million federal grant from the Advanced Research Projects Agency for Health (ARPA-H), the researchers set out to develop an immunotherapy implantable device that monitors a patient’s cancer and adjusts antibody treatment dosages in real time in response to the biomarkers it measures.

It’s not a far stretch to envision future versions of the THOR platform also being used diagnostically to measure biomarker data and transmit it wirelessly to clinical laboratories and anatomic pathologists.

ARPH-A is a federal funding agency that was established in 2022 to support the development of high-impact research to drive biomedical and health breakthroughs. THOR is the second program to receive funding under its inaugural Open Broad Agency Announcement solicitation for research proposals. 

“By integrating a self-regulated circuit, the THOR technology can adjust the dose of immunotherapy reagents based on a patient’s responses,” said Weiyi Peng, MD, PhD (above), Assistant Professor of Biology and Biochemistry at the University of Houston and co-principal investigator on the research, in a UH press release. “With this new feature, THOR is expected to achieve better efficacy and minimize immune-related toxicity. We hope this personalized immunotherapy will revolutionize treatments for patients with peritoneal cancers that affect the liver, lungs, and other organs.” If anatomic pathologists and clinical laboratories could receive biometric data from the THOR device, that would be a boon to cancer diagnostics. (Photo copyright: University of Houston.)

Antibody Therapy on Demand

Omid Veiseh, PhD, Associate Professor of Bioengineering at Rice University and principal investigator on the project, described the THOR device as a “living drug factory” inside the body. The device is a rod-like gadget that contains onboard electronics and a wireless rechargeable battery. It is three inches long and has a miniaturized bioreactor that contains human epithelial cells that have been engineered to produce immune modulating therapies.

“Instead of tethering patients to hospital beds, IV bags, and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” said Veiseh in a Rice University press release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump.

But for cancer immunotherapy, it’s revolutionary.”

The team believes the THOR device will have the ability to monitor biomarkers and produce an antibody on demand that will trigger the immune system to fight cancer locally. They hope the sensor within THOR will be able to monitor biomarkers of toxicity for the purpose of fine-tuning therapies to a patient immediately in response to signals from a tumor. 

“Today, cancer is treated a bit like a static disease, which it’s not,” Veiseh said. “Clinicians administer a therapy and then wait four to six weeks to do radiological measurements to see if the therapy is working. You lose quite a lot of time if it’s not the right therapy. The tumor may have evolved into a more aggressive form.”

The THOR device lasts 60 days and can be removed after that time. It is designed to educate the immune system to recognize a cancer and prevent it from recurring. If the cancer is not fully eradicated after the first implantation, the patient can be implanted with THOR again. 

Use of AI in THOR Therapy

The researchers plan to spend the next two and a half years building prototypes of the THOR device, testing them in rodents, and refining the list of biomarkers to be utilized in the device. Then, they intend to take an additional year to establish protocols for the US Food and Drug Administration’s (FDA) good manufacturing practices requirements, and to test the final prototype on large animals. The researchers estimate the first human clinical trials for the device will begin in about four years. 

“The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology,” said Veiseh in the UH press release. 

The group is starting with ovarian cancer because research in this area is lacking and it will provide the opportunity for THOR to activate the immune system against ovarian cancer, which is typically challenging to fight with immunotherapy approaches. If successful in ovarian cancer, the researchers hope to test THOR in other cancers that metastasize within the abdomen, such as:

All control and decision-making will initially be performed by a healthcare provider based on signals transmitted by THOR using a computer or smartphone. However, Veiseh sees the device ultimately being powered by artificial intelligence (AI) algorithms that could independently make therapeutic decisions.

“As we treat more and more patients [with THOR], the devices are going to learn what type of biomarker readout better predicts efficacy and toxicity and make adjustments based on that,” he predicted. “Between the information you have from the first patient versus the millionth patient you treat, the algorithm is just going to get better and better.”

Moving Forward

In addition to UH and Rice University, scientists working on the project come from several institutions, including:

More research and clinical trials are needed before THOR can be used in the clinical treatment of cancer patients. If the device reaches the commercialization stage, Veiseh plans to either form a new company or license the technology to an existing company for further development.

“We know that the further we advance it in terms of getting that human data, the more likely it is that this could then be transferred to another entity,” he told Precision Medicine Online.

Pathologists and clinical laboratories will want to monitor the progress of the THOR technology’s ability to sense changes in cancer biomarkers and deliver controlled dosages of antibiotic treatments.

—JP Schlingman

Related Information:

UH Researcher on Team Developing Sense-and-Respond Cancer Implant Technology

Feds Fund $45M Rice-Led Research That Could Slash US Cancer Deaths by 50%

$45M Awarded to Develop Sense-and-Respond Implant Technology for Cancer Treatment

Implantable Oncotherapeutic Bioreactor Device Lands $45M Government Funding

ARPA-H Fast Tracks Development of New Cancer Implant Tech

ARPA-H Announces Funding for Programs to Support Cancer Moonshot Objectives

ARPA-H Fast Tracks Development of New Cancer Implant Tech

Feds Investing Nearly $115 Million in Three New Cancer Technology Research Projects

Hopkins Engineers Join $45M Project to Develop Sense-and-Respond Cancer Implant Technology

ARPA-H Projects Aim to Develop Novel Cancer Technologies

Closed-Loop Insulin Delivery Systems: Past, Present, and Future Directions

Researchers Create Artificial Intelligence Tool That Accurately Predicts Outcomes for 14 Types of Cancer

Nutromics Receives $14M for Development of Lab-on-a-Patch DNA Sensor Platform That Transmits Biometric Data in Real Time from Interstitial Fluid

Similar health monitoring devices have been popular with chronic disease patients and physicians who treat them; this technology may give clinical laboratories a new diagnostic tool

There is an ever-increasing number of companies working to develop lab testing technologies that would be used outside of the traditional clinical laboratory. One such example is Nutromics, an Australia-based medical technology company which recently announced it has raised US $14 million to fund its new lab-on-a-patch platform, according to a company press release.

Nutromics’ lab-on-a-patch device “uses DNA sensor technology to track multiple targets in the human body, including disease biomarkers and hard-to-dose drugs,” according to MobiHealthNews. Notably, Nutromics’ technology uses interstitial fluid as the sample source.

The funding, which is earmarked for clinical trials, research, and continued development of the technology, comes from health technology company Dexcom (through the Dexcom Ventures capital fund), VU Venture Partners, and global investment management firm Artesian Investments.

Nutromics raised $4 million last year to support a manufacturing facility and an initial human clinical trial of its “continuous molecular monitoring (CMM) platform technology that is able to track multiple targets in the human body via a single wearable sensor. The platform provides real-time, continuous molecular-level insights for remote patient monitoring and hospital-at-home systems,” MobiHealthNews reported.

Peter Vranes

“We are aiming to cause a paradigm shift in diagnostic healthcare by essentially developing a lab-on-a-patch. A lack of timely and continuous diagnostic insights can strongly impact outcomes when dealing with critical disease states. With this strategic industry and VC (venture capital) investment in us, we see more confidence in our technology and hope to accelerate our growth,” said entrepreneur and chemical engineer Peter Vranes (above), co-founder and CEO of Nutromics, in a press release. Clinical laboratory leaders have watched similar biometric monitoring devices come to fruition. (Photo copyright: Nutromics.)

.

How Nutromics’ Lab-on-a-Patch Works

“Our technology is, in fact, two technologies coming together—a marker and needle. What that does is give us access to fluid under your skin called interstitial fluid. If you’re going to measure something continuously, that’s a really good fluid [to measure],” Vranes told Outcomes Rocket.

Vranes calls the system’s aptamer-based sensor platform technology the “jewel in the crown.” An aptamer is a short sequence of artificial DNA or RNA that binds a specific target molecule. Nutromics’ aptamer sensor, Vranes said, enables targeting of analytes, unlike continuous glucose monitors (CGMs). 

“[CGMs] are limited to metabolites—things that are already in the body like glucose and lactate. We’re not limited to those. We can do a whole range of different targets. And what that gives us is a ‘blue ocean’ opportunity to go in and solve problems in areas that other technologies just can’t solve,” Vranes said.

Nutromics plans to develop multiple aptamer-based sensors that measure a variety of analytes in interstitial fluid, Medtech Insight noted.

Nutromics' wearable DNA sensor lab-on-a-patch

Nutromics’ wearable DNA sensor lab-on-a-patch technology (above) enables monitoring of multiple targets, including disease biomarkers and some medications, MobiHealthNews explained. The wearable patch contains microneedles that painlessly access interstitial fluid under the skin. Collected data is wirelessly transmitted to a software application and integrates with consumer health software and provider platforms, according to Nutromics. Medical laboratories could have a role in collecting this data and adding it other test results from patients using the wearable patch. (Photo copyright: Nutromics.)

Initial Launch Will Include Antibiotic Monitoring

Nutromics expects to initially launch therapeutic monitoring of vancomycin, a glycopeptide antibiotic medication used to treat various bacterial infections. The company says 60% of doses for this prescription antibiotic are not within therapeutic range.

The smart patch enables clinicians to give patients medicine “at the right dose and at the right time,” Sophie Stocker, PhD, a senior hospital scientist at St. Vincent’s Hospital Sydney and Senior Lecturer, University of Sydney School of Pharmacy in New South Wales, Australia, told MobiHealthNews.

Nutromics also envisions opportunity in acute kidney injury (AKI).

Other Research Using Microneedle Patch to Sample Interstitial Fluid

Nutromics is not alone in its use of a microneedle patch to access interstitial fluid (ISF) for diagnostics. In “Researchers at Washington University in St. Louis Use Microneedle Patch with Fluorescent Nanolabels to Detect Biomarkers in Skin’s Interstitial Fluid,” Dark Daily reported how engineers at the McKelvey School of Engineering at Washington University in St. Louis in Missouri have developed a disposable microneedle patch that one day could be a painless alternative to some blood draws for diagnostics tests and health monitoring.

Scientists at the Georgia Institute of Technology and Emory University in Atlanta have been studying interstitial fluid as a source of biomarkers, as compared to blood, for years.

“Interstitial fluid originates in the blood and then leaks out of capillaries to bring nutrients to cells in the body’s tissues. Because interstitial fluid is in direct communication with the cells, it should have information about the tissues themselves beyond what can be measured from testing the blood,” said Mark Prausnitz, PhD, Regents Professor and J. Erskine Love Jr. Chair, Georgia Tech School of Chemical and Biomolecular Engineering, in a 2020 news release announcing results of human trials of microneedle-based ISF sampling.

The scientists published their findings in the journal Science Translational Medicine titled, “Sampling Interstitial Fluid from Human Skin Using a Microneedle Patch.”

“We sampled interstitial fluid from 21 human participants and identified clinically relevant and sometimes distinct biomarkers in interstitial fluid when compared to companion plasma samples based on mass spectrometry analysis,” the scientists wrote.

Clinical laboratory leaders and pathologists will find it useful to monitor the development of diagnostics for use outside the lab. Nutromics is an example of a company developing wearable health technology that painlessly gathers data for lab tests to be conducted in point-of-care and near-patient settings.     

—Donna Marie Pocius

Related Information:

Nutromics Raises US$14 Million For Its Ground-breaking Wearable Diagnostic Platform

Lab-on-a-Patch Maker Nutromics Scores $14M From Dexcom Ventures, Others

Peter Vranes, Co-founder of Nutromics, Nutromics Smart Patch—The Next Evolution of the Continuous Glucose Monitor

Nutromics Raises $14m as Dexcom Signals Move into Wider Sensing Capabilities

Australian Medtech Start-up Nutromics Bags $4M in Pre-Market Funding for Continuous Monitoring Device

Extraction of Largely Unexplored Bodily Fluid Could be a New Source of Biomarkers

Sampling Interstitial Fluid from Human Skin Using a Microneedle Patch

Researchers at Washington University in St. Louis Use Microneedle Patch with Fluorescent Nanolabels to Detect Biomarkers in Skin’s Interstitial Fluid

Smart Pacifier That Monitors Electrolyte Levels in Saliva Could Prove to Be Beneficial for Vital Care of Infants in Newborn Intensive Care Units

Tiny sensors with Bluetooth technology that measure useful biomarkers may eliminate need for invasive blood draws used for clinical laboratory tests

What if a baby’s pacifier could be used to measure electrolyte levels in newborns? An international research team has developed just such a device, and it has the potential to reduce invasive blood collections required to provide specimens for clinical laboratory testing of critical biomarkers. At the same time, this device may allow continuous monitoring of electrolyte levels with wireless alerts to caregivers.

Developed at Washington State University (WSU) Vancouver with researchers from the United States and South Korea, the wireless bioelectronic pacifier monitors electrolyte levels in newborn intensive care unit (NICU) babies and sends the collected data to caregivers and hospital information systems in real time.

Reliable Information from Consistent Monitoring

Typical blood draws for NICU babies can cause information gaps as they are usually  only performed twice a day. This can be problematic in cases where more frequent monitoring of these biomarkers is required to monitor the infant’s condition.

“We know that premature babies have a better chance of survival if they get a high quality of care in the first month of birth,” said Jong-Hoon Kim, PhD, Associate Professor at the WSU School of Electrical Engineering and Computer Science, in a WSU news release. “Normally, in a hospital environment, they draw blood from the baby twice a day, so they just get two data points. This device is a non-invasive way to provide real-time monitoring of the electrolyte concentration of babies.”

Kim is a co-corresponding author of the WSU study published in the peer-reviewed journal Biosensors and Bioelectronics, titled, “Smart Bioelectronic Pacifier for Real-Time Continuous Monitoring of Salivary Electrolytes.”

The smart pacifier (above) developed by researchers at the Washington State University School of Electrical Engineering and Computer Science—in collaboration with scientists in two South Korean institutions—provides continuous monitoring of sodium and potassium ion levels. This can help detect and prevent potentially dangerous dehydration issues in NICU babies without invasive blood draws for traditional clinical laboratory testing. (Photo copyright: University of Washington.)

How the Smart Pacifier Works

The miniature system developed by the WSU researchers utilizes a typical, commercially available pacifier outfitted with ion-selective sensors, flexible circuits, and microfluidic channels that monitor salivary electrolytes. These flexible, microfluidic channels attract the saliva when the pacifier is in the infant’s mouth which enables continuous and efficient saliva collection without the need for any type of pumping system. The gathered data is relayed wirelessly to caregivers using Bluetooth technology.

When the researchers tested their smart pacifier on infants, they discovered that the results captured from the device were comparable to information obtained from normal blood draws and standard clinical laboratory tests. Kim noted in the press release that technology currently in use to test infant saliva for electrolytes tend to be bulky, rigid devices that require a separate sample collection.

“You often see NICU pictures where babies are hooked up to a bunch of wires to check their health conditions such as their heart rate, the respiratory rate, body temperature, and blood pressure,” said Kim in the press release. “We want to get rid of those wires.”

The researchers intend to make the components for the device more affordable and recyclable. They also plan to perform testing for their smart pacifier on larger test groups to prove efficacy and hope the gadget will help make NICU treatment less disruptive for infant patients.

Co-authors on the WSU study include researchers from the Georgia Institute of Technology, and Pukyong National University and Yonsei University College of Medicine in South Korea.

Before the ‘Smart’ Pacifier Were ‘Smart’ Diapers!

Going as far back as 2013, Dark Daily has covered research into the use of sensors placed in wearables and disposables to detect and monitor health issues.

In “New ‘Smart Diaper’ Tests Baby’s Urine for Urinary Tract Infections, Dehydration, and Kidney Problems—then Alerts Baby’s Doctor,” Dark Daily reported on how the advent of digital technology and smartphones was moving medical laboratory testing out of the central laboratory and into the bedside, homes, and into diapers!

And this past fall, in “Researchers in Japan Have Developed a ‘Smart’ Diaper Equipped with a Self-powered Biosensor That Can Monitor Blood Glucose Levels in Adults,” we reported on researchers who were combining diagnostics with existing products to help medical professionals and patients monitor bodily functions and chronic diseases.

“It should be noted that the ability to put reliable diagnostic sensors in disposables like diapers has been around for almost a decade and does not seem to have caught on with either caregivers or the public,” said Robert Michel, Editor-in-Chief of Dark Daily and its sister publication, The Dark Report. “Because the researchers who developed the pacifier are attempting to solve a problem for NICU babies, this solution might find acceptance.”

This is another example of how researchers are thinking outside the box as to how to measure critical biomarkers without the need to send a specimen to the core clinical laboratory and wait hours—sometimes overnight—for results.

JP Schlingman

Related Information:

Smart Pacifier Developed to Monitor Infant Health in Hospitals

Smart Bioelectronic Pacifier for Real-time Continuous Monitoring of Salivary Electrolytes

Researchers in Japan Have Developed a ‘Smart’ Diaper Equipped with a Self-powered Biosensor That Can Monitor Blood Glucose Levels in Adults

New ‘Smart Diaper’ Tests Baby’s Urine for Urinary Tract Infections, Dehydration, and Kidney Problems—then Alerts Baby’s Doctor

Researchers at Emory University School of Medicine Develop Technology That Makes Urine Fluorescent When Transplanted Organs Are Rejected

This new technology could replace needle biopsies and allow physicians to detect rejection of transplanted organs earlier, saving patients’ lives

Anatomic pathologists may be reading fewer biopsy reports for patients with organ transplants in the future. That’s thanks to a new technology that may be more sensitive to and capable of detecting organ rejection earlier than traditional needle biopsies.

When clinicians can detect organ transplant rejection earlier, patients survive longer. Unfortunately, extensive organ damage may have already occurred by the time rejection is detected through a traditional needle biopsy. This led a group of researchers at Emory University School of Medicine to search for a better method for detecting organ rejection in patients with transplants.

The Emory researchers describe the method and technology they devised in a paper published in Nature Biomedical Engineering, titled, “Non-Invasive Early Detection of Acute Transplant Rejection Via Nanosensors of Granzyme B Activity.” The new technology could make it easier for clinicians to detect when a patient’s body is rejecting a transplanted organ at an earlier time than traditional methods.

This technology also provides a running measure of processes, so clinicians have more powerful tools for deciding on the most appropriate dosage of immunosuppressant drugs.

“Right now, most tests are aimed at organ dysfunction, and sometimes they don’t signal there is a problem until organ function is below 50 percent,” Andrew Adams, MD, PhD Co-Principal Investigator and an Associate Professor of Surgery at Emory University School of Medicine, in a Georgia Institute of Technology news release.

How the Technology Works

The method that Adams and his colleagues tested involves the detection of granzyme B, a serine protease often found in the granules of natural killer cells (NK cells) and cytotoxic T cells. “Before any organ damage can happen, T cells have to produce granzyme B, which is why this is an early detection method,” said Gabe Kwong, PhD, Assistant Professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, in the news release.

The new technology is made up of sensor nanoparticles in the shape of a ball with iron oxide in the middle. Amino acids stick out of the ball like bristles. Each amino acid has a fluorescent molecule attached to the tip.

The nanoparticles are injected into the patient. Their size prevents them from gathering in the patient’s tissue or from being flushed out through the kidneys. They are designed to accumulate in the tissue of the transplanted organ.

If the T cells in the transplanted organ begin to produce granzyme B, the amino acids break away from the nanoparticles, releasing the fluorescent molecules attached to their tips. Those molecules are small enough to be processed through the kidneys and can be detected in the patient’s urine.

Pathologists Play Crucial Role on Transplant Teams

Anatomical pathologists (histopathologists in the UK) are key members of transplant teams for many reasons, including their ability to assess biopsies. The current method for detecting organ transplant rejection involves needle biopsies. It is considered the gold standard.

However, according to a paper published in the International Journal of Organ Transplantation Medicine: “Although imaging studies and laboratory findings are important and helpful in monitoring of the transplanted liver, in many circumstances they are not sensitive enough. For conditions such as rejection of the transplant, liver histology remains the gold-standard test for the diagnosis of allograft dysfunction. Therefore, histopathologic assessments of allograft liver biopsies have an important role in managing patients who have undergone liver transplantation.”

There are two main problems with needle biopsies. The first, as mentioned above, is that they don’t always catch the rejection soon enough. The second is that the needle may cause damage to the transplanted organ.

“The biggest risk of a biopsy is bleeding and injury to the transplanted organ,” noted Andrew Adams, MD, PhD (above), Co-Principal Investigator and an Associate Professor of Surgery at Emory University School of Medicine, in the Georgia Tech news release. “Then there’s the possibility of infection. You’re also just taking a tiny fraction of the transplanted organ to determine what’s going on with the whole organ, and you may miss rejection or misdiagnose it because the needle didn’t hit the right spot,” he added.

And, according to Kwong, even though biopsies are the gold standard, the results represent one moment in time. “The biopsy is not predictive. It’s a static snapshot. It’s like looking at a photo of people in mid-jump. You don’t know if they’re on their way up or on their way down. With a biopsy, you don’t know whether rejection is progressing or regressing.”

Future Directions of Emory’s Research

The research conducted by Adams and Kwong, et al, is in its early stages, and the new technology they created won’t be ready to be used on patients for some time. Nevertheless, there’s reason to be excited.

Nanoparticles are not nearly as invasive as a needle biopsy. Thus, risk of infection or damaging the transplanted organ is much lower. And Emory’s technology would allow for much earlier detection, as well as giving clinicians a better way to adjust the dose of immunosuppressant drugs the patient takes.

“Adjusting the dose is very difficult but very important because heavy immunosuppression increases occurrence of infections and patients who receive it also get cancer more often,” said Kwong. The new technology provides a method of measuring biological activity rates, which would give clinicians a clearer picture of what’s happening.

The Emory team’s plan is to enhance the new sensors to detect at least one other major cause of transplant rejection—antibodies. When a patient’s body rejects a transplanted organ, it produces antibodies to neutralize what it sees as a foreign entity.

“Antibodies kill their target cells through similar types of enzymes. In the future, we envision a single sensor to detect both types of rejection,” said Kwong.

Adams adds, “This method could be adapted to tease out multiple problems like rejection, infection, or injury to the transplanted organ. The treatments for all of those are different, so we could select the proper treatment or combination of treatments and also use the test to measure how effective treatment is.”

This line of research at Emory University demonstrates how expanding knowledge in a variety of fields can be combined in new ways. As this happens, medical laboratories not only get new biomarkers that can be clinically useful without the need for invasive procedures like needle biopsies, but these same biomarkers can guide the selection of more effective therapies.

—Dava Stewart

Related Information:

Non-Invasive Early Detection of Acute Transplant Rejection Via Nanosensors of Granzyme B Activity

Role of Histopathologist in Liver Transplantation

Urine Test Detects Organ Transplant Rejection, Could Replace Needle Biopsies

23andMe and Udacity Launch ‘Massive Online Open Course’ in Human Genetics

Innovative web-based educational formats might add value to training initiatives for pathology residents and fellows and medical laboratory workers

In the final months of 2013, the regulatory fight between gene testing company 23andMe.com and the Food and Drug Administration (FDA) generated national headlines. In that encounter, 23andMe.com blinked and ceased offering health-related genetic tests to consumers.

However, the company continues to work to position itself as a major player in genetic testing and genetic medicine. In the second half of 2013, for example, 23andMe.com initiated a business campaign to position itself as a source of on-line information about genetics for educational purposes. (more…)

;