Another Milestone for CRISPR-Cas9 Technology: First Trial Data for Treatment Delivered Intravenously

Unlike most other CRISPR/Cas-9 therapies that are ex vivo treatments in which cells are modified outside the body, this study was successful with an in vivo treatment Use of CRISPR-Cas9 gene editing technology for therapeutic purposes can be a boon for clinical laboratories. Not only is this application a step forward in the march toward precision medicine, but it can give clinical labs the essential role of sequencing a patient’s DNA to help the referring physician identify how CRISPR-Cas9...

New Understanding of CRISPR-Cas9-Guided Base Editors Could Trigger Development of Gene-Editing Tools Targeting Diseases and New Types of Clinical Laboratory Tests

Being able to study the 3D-structure of a CRISPR base editor could help refine the entire CRISPR system, says lead study author Jennifer Doudna, PhD Molecular biology laboratories engaged in CRISPR gene editing will be interested to note that researchers at the University of California Berkeley (UC Berkeley) have created for the first time a three-dimensional (3D) view of the molecular structure of a base editor for CRISPR-Cas9. This breakthrough may lead to new, more accurate gene-editing...

Patent Dispute over CRISPR Gene-Editing Technology May Determine Who Will Be Paid Licensing Royalties by Medical Laboratories

U.S. Patent and Trademark Office will hold hearings to determine whether University of California Berkeley, or Broad Institute of Harvard and MIT, should receive patents for new genomic engineering technique In the race to master gene-editing in ways that will advance genetic medicine and patient care, one of the hottest technologies is CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats. But now a patent fight has the potential to complicate how pathologists and...
;