News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Becker’s Hospital Review Ranks 16 Healthcare Systems with the Largest Investment in EHR Platforms

Compilation shows US Veterans Administration spent the most at $16B

Clinical laboratory leaders and pathologists will be interested in which hospital systems are making the largest investments in electronic health record (EHR) technologies. Especially considering laboratory information systems (LIS) must interface with these platforms and require extensive reworking when hospitals change their EHRs. For example, hospitals moving to the Epic Systems EHR often require their laboratories to implement the Epic Beaker LIS as well.

According to information sourced by Becker’s Hospital Review, the top 16 hospital systems each spent $500 million or more on EHRs, adding, however, that the information is “not an exhaustive list.” 

Number three on the list is Kaiser Permanente which operates multiple hospitals within its nine healthcare networks across the United States serving 12.5 million members. For that reason, its total investment in EHR technology represents a much larger number of hospitals than the other health systems on the list.

Of the 16 providers on the list, 12 installed EHRs provided by Epic Systems of Verona, Wis. Four of the providers implemented EHRs from Oracle Health (formerly Cerner), North Kansas City, Mo., and Meditech of Westwood, Mass.

“Looking forward, there are many advantages in terms of investing in the future and how we will be aligned with technologies including digital and AI applications,” said pathologist Angelique W. Levi, MD (above), vice chair and director of pathology reference services at Yale School of Medicine, in a news release following a site visit to Geisinger Diagnostic Medicine Institute in Danville, Pa., to see Epic Beaker in operation at Geisinger’s clinical laboratory. “But what we gain immediately—having all the patient information accessible in one place in a linked and integrated fashion—is very important.” (Photo copyright: Yale School of Medicine.)

Provider, EHR, Investment

Becker’s list below shows the total amount invested by the 16 healthcare systems was approximately $38.32 billion. The average EHR implementation cost is $2.39 billion for a large healthcare provider. 

  • US Department of Veteran Affairs, Washington, D.C. (Oracle)    $16 billion.
  • Military Health System, Washington, D.C. (Oracle)                    $5.5 billion.
  • Kaiser Permanente, Oakland, Calif. (Epic)                                 $4.0 billion.
  • Catholic Health Initiatives (CommonSpirit Health),
    Englewood, Colo. (Oracle/Meditech)                                         $1.5 billion.
  • Mayo Clinic, Rochester, Minn. (Epic)                                        $1.5 billion.
  • Mass General Brigham, Somerville, Mass. (Epic)                       $1.2 billion.
  • Northwell Health, New Hyde Park, N.Y. (Epic)                          $1.2 billion.
  • Dignity Health, San Francisco (Oracle/Meditech)                          $1 billion.
  • NYC Health and Hospitals, New York, N.Y. (Epic)                       $1 billion.
  • Sutter Health, Sacramento, Calif. (Epic)                                        $1 billion.
  • NewYork-Presbyterian, New York, N.Y. (Epic)                       $964 million.
  • Providence, Renton, Wash. (Epic)                                            $800 million.
  • Trinity Health, Livonia, Mich. (Epic)                                       $800 million.
  • Duke University Health System, Durham, N.C. (Epic)              $700 million. 
  • AdventHealth, Altamonte Springs, Fla. (Epic)                          $660 million.
  • Memorial Hermann Health System, Houston (Epic)                  $500 million.

Becker’s stated they assembled this list from public sources and that there may be other EHR/hospital contracts with a total cost that also would make the list. It is not common to see a list of what hospitals actually spend to acquire and deploy a new EHR.

Shifting EHR Market

According to KLAS’ 2024 US Acute Care EHR Market Share report, Epic was the only EHR vendor to increase its market share in 2023.

Epic added 153 hospitals to its client base in 2023. Epic’s EHR competitors—Oracle and Meditech—both experienced declines in client retention rate, Healthcare IT News reported based on the KLAS data.

“Both current and prospective large organization customers are drawn to Epic because they see the vendor as a consistently high performer that provides strong healthcare IT [information technology], quality relationships, and the opportunity to streamline workflows and improve clinicians’ satisfaction,” Healthcare IT News said of the KLAS report’s findings.

In a blog post, authors of the KLAS report explained that in 2023 Oracle added specialty hospital clients and Meditech “saw several new sales” which included healthcare systems and independent providers.

In the next few years, the industry is “ripe for disruption. Another vendor could come in and turn everything on its head,” the KLAS blog article concluded. “Even those who choose Epic want to have more competitive options to choose from.”

Preparing for an LIS Change

Clinical laboratory leaders who may be transitioning their LIS during a new EHR installation may learn from colleagues who completed such an implementation. 

In September, Yale School of Medicine in New Haven, Conn., sent a department of pathology team to visit Geisinger Diagnostic Medicine Institute, Danville, Pa. Geisinger had adopted Epic Beaker and has a workflow similar to Yale’s, according to a Yale News article. 

Angelique Levi, MD, vice chair and director of pathology reference services at Yale School of Medicine, who was part of the pathology team, noted that one challenge for labs is addressing “information that’s from many different places when we’re talking about cancer care, prognostic testing, and diagnostics.

“It’s become much more complicated to manage all those data points,” she continued. “Without being on an integrated and aligned system, you’re getting pieces of information from different places, but not the ability to have linked and integrated reports in one spot.”

EHR implementations are among the most labor-intensive, expensive projects undertaken by hospitals. Therefore, it is crucial that clinical laboratory and pathology leaders research and learn why an EHR (and possibly LIS) change is needed, what is expected, and when results will be received.

—Donna Marie Pocius

Related Information:

Most Expensive EHRs, Ranked

Broward Health Transforms Care with Epic Implementation

US Acute Care EHR Market Share 2024

Top 6 EHR Vendors Worldwide

Epic’s EHR Market Share Gains Continue, KLAS Report Shows

US Acute Care EHR Market Share in 2024

Pathology Team Encouraged about Migration to Epic Beaker Laboratory Information System

Mayo Clinic Researchers Uses Exome Sequencing to Identify Individuals at Risk of Hereditary Cancer

Half of the people tested were unaware of their genetic risk for contracting the disease

Existing clinical laboratory genetic screening guidelines may be inadequate when it comes to finding people at risk of hereditary breast-ovarian cancer syndromes and Lynch syndrome (aka, hereditary nonpolyposis colorectal cancer). That’s according to a study conducted at the Mayo Clinic in Rochester, Minn., which found that about half of the study participants were unaware of their genetic predisposition to the diseases.

Mayo found that 550 people who participated in the study (1.24%) were “carriers of the hereditary mutations.” The researchers also determined that half of those people were unaware they had a genetic risk of cancer, and 40% did not meet genetic testing guidelines, according to a Mayo Clinic news story.

The discoveries were made following exome sequencing, which the Mayo Clinic news story described as the “protein-coding regions of genes” and the sites for most disease-causing mutations.

“Early detection of genetic markers for these conditions can lead to proactive screenings and targeted therapies, potentially saving lives of people and their family members,” said lead author Niloy Jewel Samadder, MD, gastroenterologist and cancer geneticist at Mayo Clinic’s Center for Individualized Medicine and Comprehensive Cancer Center.

The Mayo researchers published their findings in the journal JCO Precision Oncology titled, “Exome Sequencing Identifies Carriers of the Autosomal Dominant Cancer Predisposition Disorders Beyond Current Practice Guideline Recommendations.”

“This study is a wake-up call, showing us that current national guidelines for genetic screenings are missing too many people at high risk of cancer,” said lead author Niloy Jewel Samadder, MD (above), gastroenterologist and cancer geneticist at Mayo Clinic’s Center for Individualized Medicine and Comprehensive Cancer Center. New screening guidelines may increase the role of clinical laboratories in helping physicians identify patients at risk of certain hereditary cancers. (Photo copyright: Mayo Clinic.)

Advancing Personalized Medicine

“The goals of this study were to determine whether germline genetic screening using exome sequencing could be used to efficiently identify carriers of HBOC (hereditary breast and ovarian cancer) and LS (Lynch syndrome),” the authors wrote in JCO Precision Oncology.

Their work was a project of the Mayo Clinic Center for Individualized Medicine Tapestry study, which aims at advancing personalized medicine and developing a dataset for genetic research.

For the current study, Helix, a San Mateo, Calif. population genomics company, collaborated with Mayo Clinic to perform exome sequencing on the following genes:

According to the Mayo Clinic:

  • BRCA1 can lead to a 50% chance of breast cancer, and a 40% chance of ovarian cancer, respectively, as well as other cancers.
  • BRCA2 mutations suggest risk of breast cancer and ovarian cancer is 50% and 20%, respectively.
  • Lynch syndrome relates to an 80% lifetime risk of developing colorectal cancer and 50% risk of uterine and endometrial cancer.

Mayo/Helix researchers performed genetic screenings on more than 44,000 study participants. According to their published study, of the 550 people who were found to have hereditary breast cancer or Lynch syndrome:

  • 387 had hereditary breast and ovarian cancer (27.2% BRCA1, 42.8% BRCA2).
  • 163 had lynch syndrome (12.3% MSH6, 8.8% PMS2, 4.5% MLH1, 3.8% MSH2, and 0.2% EPCAM).
  • 52.1% were newly diagnosed carriers.
  • 39.2% of the 550 carriers did not meet genetic evaluation criteria set by the National Comprehensive Cancer Network (NCCN).
  • Participants recruited by researchers hailed from Rochester, Minn.; Phoenix, Ariz.; and Jacksonville, Fla.
  • Minorities were less likely to meet the NCCN criteria than those who reported as White (51.5% as compared to 37.5%).

“Our results emphasize the importance of expanding genetic screening to identify people at risk for these cancer predisposition syndromes,” Samadder said.

Exome Data in EHRs  

Exomes of more than 100,000 Mayo Clinic patients have been sequenced and the results are being included in the patients’ electronic health records (EHR) as part of the Tapestry project. This gives clinicians access to patient information in the EHRs so that the right tests can be ordered at the right time, Mayo Clinic noted in its article.

“Embedding genomic data into the patient’s chart in a way that is easy to locate and access will assist doctors in making important decisions and advance the future of genomically informed medicine.” said Cherisse Marcou, PhD, co-director and vice chair of information technology and bioinformatics in Mayo’s Clinical Genomics laboratory.

While more research is needed, Mayo Clinic’s accomplishments suggest advancements in gene sequencing and technologies are making way for data-driven tools to aid physicians.

As the cost of gene sequencing continue to fall due to improvement in the technologies, more screenings for health risk factors in individuals will likely become economically feasible. This may increase the role medical laboratories play in helping doctors use exomes and whole genome sequencing to screen patients for risk of specific cancers and health conditions.

—Donna Marie Pocius

Related Information:

Exome Sequencing Identifies Carriers of the Autosomal Dominant Cancer Predisposition Disorders Beyond Current Practice Guideline Recommendation

Mayo Clinic Uncovers Genetic Cancer Risk in 550 Patients

Mayo Clinic’s Data-Driven Quest to Advance Individualized Medicine

All of Us Genomic Research Program Hits Milestone of 250,000 Whole Genome Sequences

Expanded genomic dataset includes a wider racial diversity which may lead to improved diagnostics and clinical laboratory tests

Human genomic research has taken another important step forward. The National Institutes of Health’s All of Us research program has reached a milestone of 250,000 collected whole genome sequences. This accomplishment could escalate research and development of new diagnostics and therapeutic biomarkers for clinical laboratory tests and prescription drugs.

The wide-reaching program aimed at gathering diverse genomic data is giving scientists access to the nearly quarter million whole genome sequences—as well as genotyping arrays, long-read genome sequences, and more—to aid precision medicine studies, the National Institutes of Health (NIH) announced in a news release.

The NIH’s All of Us program “has significantly expanded its data to now include nearly a quarter million whole genome sequences for broad research use. About 45% of the data was donated by people who self-identify with a racial or ethnic group that has been historically underrepresented in medical research,” the news release noted.

Detailed information on this and future data releases is available at the NIH’s All of us Data Roadmap.

Andrea Ramirez, MD

“For years, the lack of diversity in genomic datasets has limited our understanding of human health,” said Andrea Ramirez, MD, Chief Data Officer, All of Us Research Program, in the news release. Clinical laboratories performing genetic testing may look forward to new biomarkers and diagnostics due to the NIH’s newly expanded gene sequencing data set. (Photo copyright: Vanderbilt University.)

Diverse Genomic Data is NIH’s Goal

NIH launched the All of Us genomic sequencing program in 2018. Its aim is to involve more than one million people from across the country and reflect national diversity in its database.

So far, the program has grown to include 413,450 individuals, with 45% of participants self-identifying “with a racial or ethnic group that has been historically under-represented in medical research,” NIH said.

“By engaging participants from diverse backgrounds and sharing a more complete picture of their lives—through genomic, lifestyle, clinical, and social environmental data—All of Us enables researchers to begin to better pinpoint the drivers of disease,” said Andrea Ramirez, MD, Chief Data Officer of the All of Us research program, in the news release.

More than 5,000 researchers are currently registered to use NIH’s All of Us genomic database. The vast resource contains the following data:

  • 245,350 whole genome sequences, which includes “variation at more than one billion locations, about one-third of the entire human genome.”
  • 1,000 long-read genome sequences to enable “a more complete understanding of the human genome.”
  • 413,350 survey responses.
  • 337,500 physical measurements.
  • 312,900 genotyping arrays.
  • 287,000 electronic health records.
  • 15,600 Fitbit records (data on sleep, activity, step count, heart rate).

The research could lead to:

  • Better understanding of genetic risk factors for disease.
  • Development of predictive markers for disease risk.
  • Analysis of drugs effectiveness in different patients.

Data Shared with Participants

Participants in the All of Us program, are also receiving personalized health data based on their genetic sequences, which Dark Daily previously covered.

In “US National Institutes of Health All-of-Us Research Program Delivering Genetic Test Results and Personalized Disease Risk Assessments to 155,000 Study Participants,” we reported how the NIH had “begun returning personalized health-related DNA results” to more than 155,000 study participants. In addition, participants who requested their results will receive genetic reports that detail whether they “have an increased risk for specific health conditions and how their body might process certain medications.”

“Through a partnership with participants, researchers, and diverse communities across the country, we are seeing incredible progress towards powering scientific discoveries that can lead to a healthier future for all of us,” said Josh Denny, MD, Chief Executive Officer, All of Us Research Program, in the news release.

Cloud-based Tool Aids Access to Data

The All of Us program makes a cloud-based platform—called Researcher Workbench—available to scientists for the study of genetic variation and other issues, Inside Precision Medicine explained.

“[Researchers] can get access to the tools and the data they need to conduct a project with our resources in as little as two hours once their institutional data use agreement is signed,” said Fornessa Randal, Executive Director, Center for Asian Health Equity, University of Chicago, in a YouTube video about Researcher Workbench.

A paper published in Annual Review of Biomedical Data Science titled, “The All of Us Data and Research Center: Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research,” noted that  the diseases most often being studied by researchers using All of Us data include:

Database’s Growth Good for Precise Diagnostics

For diagnostics professionals, the growth of available whole human genome sequences as well as access to participants in the All of Us program is noteworthy.

Also impressive is the better representation of diversity. Such information could result in medical laboratories having an expanded role in precision medicine.  

—Donna Marie Pocius

Related Information:

All of Us Research Program Makes Nearly 250,000 Whole Genome Sequences Available to Advance Precision Medicine

US National Institutes of Health All of Us Research Program Delivering Genetic Test Results and Personalized Disease Risk Assessments to 155,000 Study Participants

All of Us Research Hub

All of Us Researcher Workbench

All of Us Program Expands Whole Genome Data Available to Researchers

All of Us Releases Almost 250,000 Genomes

All of Us Data and Research Center Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research

Mapping Out the Human Genome

Transition from Fee-for-Service to Value-Based Reimbursement for Hospitals, Physicians, and Clinical Laboratories Continues, Albeit Slowly, Reports Say 

Medical laboratories and anatomic pathologists may need to squeeze into narrow networks to be paid under value-based schemes, especially where Medicare Advantage is concerned

Pathologists have likely heard the arguments in favor of value-based payment versus fee-for-service (FFS) reimbursement models: FFS encourages providers to order medically unnecessary procedures and lab tests. FFS removes incentives for providers to order patient services more carefully. Fraudsters can generate huge volumes of FFS claims that take payers months/years to recognize and stop.

Studies that favor value-based payment schemes support these claims. But do hospitals and other healthcare providers also accept them? And how is value-based reimbursement really doing?

To find out, Chicago-based thought leadership and advisory company 4Sight Health culled data from various organizations’ reports that suggest value-based reimbursement shows signs of growth as well as signs of stagnation.

Value-Based Payment Has Its Ups and Downs

Healthcare journalist David Burda is News Editor and Columnist at 4Sight Health. In his article, “Is Value-Based Reimbursement Mostly Dead or Slightly Alive?” Burda commented on data from various industry reports that indicated value-based reimbursement shows “signs of life.” For example:

On the other hand, Burda reported that value-based reimbursement also has these declining indicators:

  • 39.3% of provider payments “flowed” through FFS plans in 2020 with no link to cost or quality. This was unchanged since 2019. (HCPLAN report)
  • 19.8% of FFS payments to providers in 2020 were linked to cost or quality, down from 22.5% in 2019. (HCPLAN report)
  • 88% of doctors reported accepting FFS payments in 2019, an increase from 87% in 2018. (AMA report)

Does Today’s Healthcare Industry Support Value-based Care?

A survey of 680 physicians conducted by the Deloitte Center for Health Solutions suggests the answer could be “not yet.” In “Equipping Physicians for Value-Based Care,” Deloitte reported:

  • “Physician compensation continues to emphasize volume more than value.
  • “Availability and use of data-driven tools to support physicians in practicing value-based care continue to lag.
  • “Existing care models do not support value-based care.”

Deloitte analysts wrote, “Physicians increasingly recognize their role in improving the affordability of care. We repeated a question we asked six years ago and saw a large increase in the proportion of physicians who say they have a prominent role in limiting the use of unnecessary treatments and tests: 76% in 2020 vs. 57% in 2014.

“Physicians also recognize that today’s care models are not geared toward value,” Deloitte continued. “They see many untapped opportunities for improving quality and efficiency. They estimate that even today, sizable portions of their work can be performed by nonphysicians (30%) in nontraditional settings (30%) and/or can be automated (18%), creating opportunities for multidisciplinary care teams and clinicians to work at the top of their license.”

Hospital CFOs Also See Opportunities for Value-based Care

In his 4sight Health article, Burda reported on data from a “Guidehouse Center for Health Insights’ analysis of a 2021 Healthcare Financial Management Association (HFMA) survey of more than 100 health systems CFOs that found that most said they are still interested in seeking value-based payment arrangements this year.”

According to the HFMA survey, among the arrangement CFOs indicated, 59% expressed interest in Medicare Advantage value-based payment contracts.

This could be problematic for clinical laboratories, according to Robert Michel, Editor-in-Chief of Dark Daily and our sister publication The Dark Report. According to Guidehouse, “Nearly 60% of health systems plan to advance into risk-based Medicare Advantage models in 2022.”

Medicare Advantage (MA) enrollments have escalated over 10 years: 26.4 million people of the 62.7 million eligible for Medicare chose MA in 2021, noted a Kaiser Family Foundation brief that also noted MA enrollment in 2021 was up by 2.4 million beneficiaries or 10% over 2020.

Graph of Medicare Advantage Enrollment
The graph above is taken from the Kaiser Family Foundation report, “Medicare Advantage in 2021: Enrollment Update and Key Trends.” According to the KFF, “In 2021, more than four in 10 (42%) Medicare beneficiaries—26.4 million people out of 62.7 million Medicare beneficiaries overall—are enrolled in Medicare Advantage plans; this share has steadily increased over time since the early 2000s.” Since MA employs narrow networks for its healthcare providers, it’s likely this trend will continue to affect clinical laboratories that may find it difficult to access these providers. (Graphic copyright: Kaiser Family Foundation.)

“The shift from Medicare Part B—where any lab can bill Medicare on behalf of patients for doctor visits and outpatient care, including lab tests—to Medicare Advantage is a serious financial threat for smaller and regional labs that do a lot of Medicare Part B testing. The Medicare Advantage plans often have networks that exclude all but a handful of clinical laboratories as contracted providers,” Michel cautioned. “Moving into the future, it’s incumbent on regional and smaller clinical laboratories to develop value-added services that solve health plans’ pain points and encourage insurers to include local labs in their networks.”

Medical laboratories and anatomic pathology groups need to be aware of this trend. Michel says value-based care programs call on clinical laboratories to collaborate with healthcare partners toward goals of closing care gaps.

“Physicians and hospitals in a value-based environment need a different level of service and professional consultation from the lab and pathology group because they are being incented to detect disease earlier and be active in managing patients with chronic conditions to keep them healthy and out of the hospital,” he added.

Value-based reimbursement may eventually replace fee-for-service contracts. The change, however, is slow and clinical laboratories should monitor for opportunities and potential pitfalls the new payment arrangements might bring.

—Donna Marie Pocius

Related Information:

Is Value-Based Reimbursement Mostly Dead or Slightly Alive?

APM Measurement Progress of Alternative Payment Models: 2020-2021 Methodology and Results Report   

Policy Research Perspectives: Payment and Delivery in 2020

Equipping Physicians for Value-Based Care: What Needs to Change in Care Models, Compensation, and Decision-Making Tools

Nearly 60% of Health Systems Pursuing Risk-Based Medicare Advantage Models in 2022, Guidehouse Analysis Shows

Medicare Advantage in 2021: Enrollment Update and Key Trends

CMS’ Latest Value-Based Reimbursement Model Explores Geographic Direct Contracting for Medicare and Focuses on Costs and Quality

Forbes Ranks Epic’s Judith Faulkner the Richest Woman in Healthcare in Its 2021 List of 100 Richest Self-Made Women in US

Within the in vitro diagnostics and clinical laboratory space, Bio-Rad’s Alice Schwartz and 23andMe’s Anne Wojcicki also were recognized by Forbes

At $6.5 billion net worth, Forbes, in its 2021 list of the 100 richest self-made women in the US, ranked Judith Faulkner, Chief Executive Officer and founder of Epic Systems Corp., in second place overall. But in the industry of healthcare, she tops the list by far. The next nearest healthcare-related “richest woman” is Alice Schwartz, co-founder of Bio-Rad Laboratories, at $2.9 billion.

Faulkner was surpassed on Forbes’ list only by roofing material magnate Diane Hendricks, co-founder of ABC Supply Co., whose net worth of $11 billion puts her squarely in the top spot.

Richest Self-Made Women in Healthcare

Becker’s Hospital Review highlighted the seven richest “self-made” women who ran healthcare-related companies. They include:

Also listed by Forbes was Anne Wojcicki, CEO and founder of 23andMe, a personal genomics and biotechnology company. Wojcicki’s net worth of $1.1 billion puts her in the 25th position, according to Forbes.

In “Genetic Test Company 23andMe Completes Merger with Richard Branson’s VG Acquisition Corp., Stock Now Trades on NASDAQ,” Dark Daily noted that since the Sunnyvale, Calif. direct-to-consumer (DTC) genetic testing company will now be filing quarterly earnings reports, pathologists and clinical laboratory managers will have the opportunity to learn more about how 23andMe serves the consumer market for genetic types and how it is generating revenue from its huge database containing the genetic sequences from millions of people.

Judith Faulkner and Alice Schwartz

Judith Faulkner (left), founder and CEO of Epic Systems Corp., and Alice Schwartz (right), co-founder of Bio-Rad Laboratories, ranked 2nd and 10th respectively in Forbes’ list of the top 100 richest self-made women. In healthcare, Faulkner ranks 1st and Schwartz 2nd. Clinical laboratory personnel will likely be familiar with Epic Beaker, which, according to Healthcare IT Leaders, “is Epic’s laboratory information system (LIS) for hospitals, clinics, patient service centers, and reference labs. The software supports common workflows for clinical pathology (CP) labs as well as anatomic pathology (AP) labs.”  (Photo copyrights: HIT Consultant/Science History Institute.)

How did Faulkner Make Epic So Epic?

It all started in 1979 when Faulkner and a colleague invested $70,000 to launch Human Services Computing, which became Epic, noted Forbes in “The Billionaire Who Controls Your Medical Records.”

“I always liked making things out of clay. And the computer was clay of the mind. Instead of physical, it was mental,” Faulkner, who is 77, told Forbes.

Company milestones noted by Forbes include:

  • Inking a deal in 2004 with Kaiser Permanente for a three-year, $400-million project.
  • Moving in 2005 to a corporate campus in southern Wisconsin—an “adult Disney World” with the largest underground auditoriums and more “fantastical” buildings.
  • More recently, AdventHealth of Altamonte Springs, Fla., contracted with Epic for a $650 million remote build and installation.

“Epic’s system has tentacles that go out through amazing networks. You can actually help a person get the care they need wherever they need to get it,” AdventHealth’s CEO Terry Shaw told Forbes.

In about two years, Epic plans to launch an artificial intelligence (AI) Electronic Health Record (EHR) documentation tool aimed at transcribing clinician and patient conversations in real-time, EHR Intelligence reported.

However, Epic may face competition from IT startups in areas including ancillary services, where clinical laboratories, for example, are seeking genomic data storage and introducing new genetic tests, according to Becker’s Hospital Review in its report on analysis by CB Insights, titled, “Unbundling Epic: How The Electronic Health Record Market Is Being Disrupted.”

“I think that what will happen is that a few of them will do very well. And the majority of them won’t. “It’s not us as much as the health systems who have to respond to the patient saying, ‘Send my data here,’ or ‘Send my data there,’” Faulkner told Forbes.

Bio-Rad’s Alice Schwartz an IVD ‘Pioneer’

As Faulkner rose to prominence in healthcare IT, Alice Schwartz of Bio-Rad Laboratories found massive success in the in vitro diagnostics industry.

She and her late husband, David, started Bio-Rad with $720 in 1952 in Berkeley, Calif. They were intent on offering life science products and services aimed at identifying, separating, purifying, and analyzing chemical and biological materials, notes the company’s website.

“They were at the right place and at the right time as they became pioneers in the industry,” International Business Times (IBT) stated.

Bio-Rad Laboratories (NYSE:BIO and BIOb) of Hercules, Calif., offers life science research and clinical diagnostic products. The company’s second quarter (Q2) 2021 net sales were $715.9 million, an increase of about 33% compared to $536.9 million in Q2 2020, according to a news release. Its Clinical Diagnostics segment Q2 sales were $380 million, an increase of 34% compared to 2020.

Norman Schwartz, the founders’ son, is Bio-Rad’s Chairman of the Board,

President, and CEO. However, at age 94, Alice Schwartz, the oldest person on Forbes’ richest self-made women list, “has no sign of stopping soon,” IBT reported.

Lists are fun. Medical laboratory and diagnostics professionals may admire such foresight and perseverance. Judith Faulkner and Alice Schwartz are extraordinary examples of innovative thinkers in healthcare. There are others­—many in clinical laboratories and pathology groups.

Donna Marie Pocius

Related Information

Forbes’ Ranking of the Country’s Most Successful Women Entrepreneurs and Executives 2021

Healthcare’s Richest Self-Made Women, Per Forbes

Epic Systems Founder-CEO Judy Faulkner Wields Great Power and Responsibility in Healthcare IT

Unbundling Epic: How the Electronic Health Record Market is Being Disrupted

The Billionaire Who Controls Your Medical Records

Epic in Process of Developing AI EHR Documentation Assistant

Epic’s Revenue Hit $3.3B in 2020; 10 ways the EHR Giant’s Dominance is Opening Doors for Competition

Bio-Rad Reports Second Quarter 2021 Financial Results

Alice Schwartz Net Worth: Oldest, Richest Woman in U.S. is Worth $2.2B

Genetic Test Company 23andMe Completes Merger with Richard Branson’s VG Acquisition Corp; Stock Now Trades on NASDAQ

;