News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Australia Moves to Fully Eliminate Cervical Cancer by 2035, Especially in Underserved and Diverse Populations

By emphasizing HPV vaccinations while having clinical laboratories continue to perform Pap smears, Australia’s rate of cervical cancer has dropped notably

There is currently a global push to completely eradicate cervical cancer and Australia is leading the way with increased funding. It is also focusing on hard-to-reach and underserved populations. Australia is hoping to be first in the world to accomplish this feat by 2035.

For a number of decades, the Pap smear has been the primary screening tool for cervical cancer, as most pathologists and clinical laboratory managers know. However, today it plays a lesser role due to the effectiveness of HPV (human papillomavirus) diagnostic testing, which was put into cervical cancer screening guidelines in 2004.

Then came the first HPV vaccine in 2006. Australia was one of the first nations to implement HPV vaccination programs. By 2010, Australia was working to vaccinate every child. Now, 14 years later, the pool of adults vaccinated against HPV in that nation is causing the rates of cervical cancer to fall.

That means much less cervical cancer test volume for cytotechnologists and cytopathologists, freeing them up to devote their skills to other diagnostic tests.

As the country continues to funnel resources into hitting a zero cancer status, the additional drive will “connect Australia’s world-leading cervical cancer expertise with governments across the region to get HPV vaccine programs up and running, expand screening and treatment, and build health workforce capacity,” said Australia’s Minister for Foreign Affairs office in a press release.

Hon Ged Kearney, MP, RN

“Australia has always punched above its weight when it comes to cervical cancer, and now Australia is on track to be the first country in the world to eliminate this deadly disease,” said Hon Ged Kearney, MP, RN (above), Assistant Minister for Health and Aged Care and a member of the government’s House of Representatives, in a press release. “By supporting the Pacific and Southeast Asia region [to] eliminate cervical cancer, we are another step closer to ridding the world of this disease.” Clinical laboratories and cytopathologists may soon see less reliance on Pap smears for screening and a shift toward HPV vaccinations to lower the rate of cervical cancer in the US as well. (Photo copyright: Australian Labor Party.)

Starting a Movement

Australia began with a vaccine push in 2010 and created the National Strategy for the Elimination of Cervical Cancer program “for the elimination of cervical cancer, including targets for HPV vaccination, cervical screening, cervical cancer treatment and case rates,” according to the Australian Government Department of Health and Aged Care website. The movement, a press release noted, has three primary objectives:

  • 90% of eligible people will be vaccinated against HPV (including girls and boys).
  • 70% of eligible people will be screened every five years.
  • 95% of eligible people will receive the best possible treatment for precancer and cancer.

In addition to $48.2 million in funding over four years, the program provides:

  • On the spot testing of samples in First Nations [aka, First Peoples] communities, allowing immediate follow up.
  • Support for nurses, First Nations health practitioners, and midwives to request pathology for cervical screening.
  • Increasing support for GPs to undertake colposcopies.

Helping the Underserved

Reaching a wider audience is a large part of Australia’s focus.

“One of my priorities is to address inequities in our health system. I want to make sure that everyone can get access to screening—and all healthcare—no matter where [they] live,” Kearney added. Among the populations sought are First Nations, LGBTIQA+, disabled individuals, and those living away from large cities.

“$8.3 million has been allocated to implement innovate screening models to support such communities,” the Minister for Foreign Affairs office noted in the press release.

Meeting people where they are, and reaching underserved populations, can make a huge difference, especially considering how cervical cancer affects these people. “First Nations women are almost twice as likely to be diagnosed with cervical cancer and face significant barriers to participating in cervical screening compared to non-indigenous women,” the press release notes.

“These tests allow privacy and help to break down barriers for thousands of people who have never screened—including women who have experienced sexual violence, LGBTIQA+ people, and culturally and linguistically diverse and First Nations communities,” the Minister for Foreign Affairs office stated.

There is hope that the push will cause a great shift to other underserved communities as well.

“A quarter of global cervical cancer cases occur in our region, the Indo-Pacific. Tragically, in the Pacific, women are dying at up to 13 times the rate of women in Australia,” said Penny Wong, Australian Minister for Foreign Affairs, in the press release.

How the US Fares in Cervical Cancer Vaccinations

Australia’s vaccination rates far exceed those in the United States. The US government currently recommends HPV vaccination between the ages of 11-12 years old, though it could be administered starting at age nine.

“HPV vaccination is recommended for all persons through age 26 years who were not adequately vaccinated earlier,” the NIH’s National Cancer Institute (NCI) reports.

For years the standard focus for cervical cancer screening has been on the Pap smear. Data show the US lags behind many countries on the rate of HPV vaccination. NCI data show that, as of 2021, in the US just 58.5% of 13-15 year-olds “had received two or three doses of HPV vaccine as recommended,” NCI reported.

With the US’s standard of care still focused on the Pap smear, patients are beginning their cervical cancer prevention journey at a later age. This is because the preliminary age to get a Pap smear in the US is 21 years old, with follow-up exams every three years, the NCI reported.

Even those in this country who are sexually active are not recommended to get screening earlier than 21.

The NCI recommends HPV testing every five years starting at age 30 until 65, with Pap tests every three years.

Clinical laboratories may soon find that, while the US has been slower to get on board with HPV vaccinations, trends in other nations indicate that this may soon change. The reliance that was once placed on the Pap smears prior to 2000 will likely give way to HPV vaccinations at ages and vaccination rates that mirror programs in countries like Australia—where marked reductions in the rate of cervical cancer demonstrate the effectiveness of a successful HPV vaccination program.

—Kristin Althea O’Connor

Related Information:

Eliminating Cervical Cancer in Australia

Making History by Eliminating Cervical Cancer in Australia and Our Region

Cervical Cancer Almost Eradicated in Norway by the Year 2039

Impact of ‘Even Faster’ Concept to Accelerate Cervical Cancer Elimination in Norway: A Model-Based Analysis

National Strategy for the Elimination of Cervical Cancer in Australia

NIH-NCI: Cervical Cancer Screening

NIH-NCI: Human Papillomavirus (HPV) Vaccines

NIH-NCI: HPV Vaccination

Australia’s First Peoples

WHO: Cervical Cancer Elimination Initiative

WHO: Global Partners Cheer Progress Towards Eliminating Cervical Cancer and Underline Challenges

University of Oslo Research Study Suggests Most Cancer Screenings Do Not Prolong Lives

Norwegian researchers reviewed large clinical trials of six common cancer screenings, including clinical laboratory tests, but some experts question the findings

Cancer screenings are a critical tool for diagnosis and treatment. But how much do they actually extend the lives of patients? According to researchers at the University of Oslo in Norway, not by much. They recently conducted a review and meta-analysis of 18 long-term clinical trials, five of the six most commonly used types of cancer screening—including two clinical laboratory tests—and found that with few exceptions, the screenings did not significantly extend lifespans.

The 18 long-term clinical trials included in the study were randomized trials that collectively included a total of 2.1 million participants. Median follow-up periods of 10 to 15 years were used to gauge estimated lifetime gain and mortality.

The researchers published their findings in JAMA Internal Medicine titled, “Estimated Lifetime Gained with Cancer Screening Tests: A Meta-analysis of Randomized Clinical Trials.”

“The findings of this meta-analysis suggest that current evidence does not substantiate the claim that common cancer screening tests save lives by extending lifetime, except possibly for colorectal cancer screening with sigmoidoscopy,” the researchers wrote in their published paper.

The researchers noted, however, that their analysis does not suggest all screenings should be abandoned. They also acknowledged that some lives are saved by screenings.

“Without screening, these patients may have died of cancer because it would have been detected at a later, incurable stage,” the scientists wrote, MedPage Today reported. “Thus, these patients experience a gain in lifetime.”

Still, some independent experts questioned the validity of the findings.

Gastroenterologist Michael Bretthauer, MD, PhD (above), a professor at the University of Oslo in Norway led the research into cancer screenings. In their JAMA Internal Medicine paper, he and his team wrote, “The findings of this meta-analysis suggest that colorectal cancer screening with sigmoidoscopy may extend life by approximately three months; lifetime gain for other screening tests appears to be unlikely or uncertain.” How their findings might affect clinical laboratory and anatomic pathology screening for cancer remains to be seen. (Photo copyright: University of Oslo.)

Pros and Cons of Cancer Screening

The clinical trials, according to MedPage Today and Oncology Nursing News covered the following tests:

  • Mammography screening for breast cancer (two trials).
  • Prostate-specific antigen (PSA) testing for prostate cancer (four trials).
  • Computed tomography (CT) screening for lung cancer in smokers and former smokers (three trials).
  • Colonoscopy for colorectal cancer (one trial).
  • Sigmoidoscopy for colorectal cancer (four trials).
  • Fecal occult blood (FOB) testing for colorectal cancer (four trials).

As reported in these trials, “colorectal cancer screening with sigmoidoscopy prolonged lifetime by 110 days, while fecal testing and mammography screening did not prolong life,” the researchers wrote. “An extension of 37 days was noted for prostate cancer screening with prostate-specific antigen testing and 107 days with lung cancer screening using computed tomography, but estimates are uncertain.”

The American Cancer Society (ACS) recommends certain types of screening tests to detect cancers and pre-cancers before they can spread, thus improving the chances for survival.

The ACS advises screenings for breast cancer, colorectal cancer, and cervical cancer regardless of whether the individual is considered high risk. Lung cancer screenings are advised for people with a history of smoking. Men who are 45 to 50 or older should discuss the pros and cons of prostate cancer screening with their healthcare providers, the ACS states.

A CNN report about the University of Oslo study noted that the benefits and drawbacks of cancer screening have long been well known to doctors.

“Some positive screening results are false positives, which can lead to unnecessary anxiety as well as additional screening that can be expensive,” CNN reported. “Tests can also give a false negative and thus a false sense of security. Sometimes too, treatment can be unnecessary, resulting in a net harm rather than a net benefit, studies show.”

In their JAMA paper, the University of Oslo researchers wrote, “The critical question is whether the benefits for the few are sufficiently large to warrant the associated harms for many. It is entirely possible that multicancer detection blood tests do save lives and warrant the attendant costs and harms. But we will never know unless we ask,” CNN reported.

Hidden Impact on Cancer Mortality

ACS Chief Scientific Officer William Dahut, MD, told CNN that screenings may have an impact on cancer mortality in ways that might not be apparent from randomized trials. He noted that there’s been a decline in deaths from cervical cancer and prostate cancer since doctors began advising routine testing.

“Cancer screening was never really designed to increase longevity,” Dahut said. “Screenings are really designed to decrease premature deaths from cancer.” For example, “if a person’s life expectancy at birth was 80, a cancer screening may prevent their premature death at 65, but it wouldn’t necessarily mean they’d live to be 90 instead of the predicted 80,” CNN reported.

Dahut told CNN that fully assessing the impact of cancer screenings on life expectancy would require a clinical trial larger than those in the new study, and one that followed patients “for a very long time.”

Others Question the OSLO University Findings

Another expert who questioned the findings was Stephen W. Duffy, MSc, Professor of Cancer Screening at the Queen Mary University of London.

“From its title, one would have expected this paper to be based on analysis of individual lifetime data. However, it is not,” he wrote in a compilation of expert commentary from the UK’s Science Media Center. “The paper’s conclusions are based on arithmetic manipulation of relative rates of all-cause mortality in some of the screening trials. It is therefore difficult to give credence to the claim that screening largely does not extend expected lifetime.”

He also questioned the inclusion of one particular trial in the University of Oslo study—the Canadian National Breast Screening Study—“as there is now public domain evidence of subversion of the randomization in this trial,” he added.

Another expert, Leigh Jackson, PhD, of the University of Exeter in the UK, described the University of Oslo study as “methodologically sound with some limitations which the authors clearly state.”

But he observed that “the focus on 2.1 million individuals is slightly misleading. The study considered many different screening tests and 2.1 million was indeed the total number of included patients, however, no calculation included that many people.”

Jackson also characterized the length of follow-up as a limitation. “This may have limited the amount of data included and also not considering longer follow-up may tend to underestimate the effects of screening,” he said.

This published study—along with the range of credible criticisms offered by other scientists—demonstrates how analysis of huge volumes of data is making it possible to tease out useful new insights. Clinical laboratory managers and pathologists can expect to see other examples of researchers assembling large quantities of data across different areas of medicine. This huge pools of data will be analyzed to determine the effectiveness of many medical procedures that have been performed for years with a belief that they are helpful.

—Stephen Beale

Related Information:

Estimated Lifetime Gained with Cancer Screening Tests: A Meta-analysis of Randomized Clinical Trials

The Future of Cancer Screening—Guided without Conflicts of Interest

Most Cancer Screenings Don’t Extend Life, Study Finds, but Don’t Cancel That Appointment

Does Cancer Screening Actually Extend Lives?

Cancer Screening May Not Extend Patients’ Life Spans

Opinion: Cancer Screenings, Although Not Perfect, Remain Valuable Expert Reaction to Study Estimating Lifetime Gained with Cancer Screening Tests

ASCO Study Shows Cervical Cancer Cases Have Declined by More than 1% Per Year Over the Past 16 Years, Likely Due to HPV Screening and Vaccine

Some experts question the usefulness of Pap testing going forward. But how would cutting back on Pap testing affect clinical laboratory revenue and is it safe for cancer patients?

Recently, a major medical society issued its findings that cervical cancer in the United States has been on a sustained decline for more than a decade and a half. This confirms what cytopathologists and cytotechnologists have watched as the development of new clinical laboratory tests, and the introduction of a vaccine for HPV (human papillomavirus) about 15 years ago, contributed to a reduction in the number of cervical cancer deaths annually here in the United States and in several other nations.

Pap tests have been a primary screening test for cervical cancer since the 1990s. As such, they also have been a major source of revenue for clinical laboratories that performed the tests. Now, the American Society of Clinical Oncology (ASCO) has published a study, titled, “HPV-Associated Cancers in the United States Over the Last 15 Years: Has Screening or Vaccination Made Any Difference?” The study authors wrote that “Over the last 16 years, the incidence of cervical cancer has decreased at an annual percent change (APC) of 1.03% (p<0.001).”

As incidences of cervical cancer declined, so have orders for Pap tests. Thus, clinical laboratory revenues in this area also have declined. This is a change from the 1990s and early 2000s, when Pap tests were the primary screening tool for cervical cancer. About 55 million Pap tests were performed annually during those years and many labs maintained sizeable numbers of cytotechs to perform these tests.

HPV Testing Drove Decreases in Cervical Cancer, Decline in Pap Testing

For at least the past decade, there are pathologists, cytotechnologists, and medical laboratory scientists who graduated from their training programs and began working in labs unaware that, since the 1990s, conventional Pap testing as a major source of test referrals and revenue for clinical laboratories and pathology groups has been on the decline.

What is the reason for the decline? Advances in several areas of medicine, implemented over the past 25 years, have greatly altered how we screen for cervical cancer today. And, in a stepwise fashion, the HPV test and HPV vaccine steadily reduced the role of Pap tests as a primary screening tool.

The ASCO study showed incidence of cervical cancer in the US has decreased more than 1% each year for 16 years amid HPV screening and vaccination guidelines. Thus, the US may be on the same path as Australia, which—according to research Dark Daily cited in “Australia’s HPV Vaccination Program Could Eliminate Cervical Cancer If Its National HPV Vaccination and Screening Programs Remain on Current Pace,” has nearly eliminated cervical cancer rates due to HPV screenings and vaccinations.

HPV, a common sexually-transmitted virus, is linked to not only cervical cancer, but also cancers of the vulva, vagina, penis, and anus, according to the Centers for Disease Control and Prevention (CDC) data, which recorded 43 million HPV infections in the US in 2018.

Cheng-I Liao, MD

“It is likely that the significant decrease in cervical cancer incidence (in the US) results from clear guidelines for cervical cancer screening and may also reflect promotion and acceptance of [HPV] vaccination, particularly in younger women,” said the ASCO study’s lead author Cheng-I Liao, MD (above), in a news release. Liao is affiliated with Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan. (Photo copyright: Healio.)

Cervical Cancer Down, But Other HPV Cancers Up

Though cervical cancer incidence is down, other HPV-related cancers may need additional screening standards to head off rising cancer cases, the ASCO study suggests.

To conduct their study, the ASCO researchers analyzed data for 657,317 people in the US Cancer Statistics (USCS) program from 2001 to 2017. The researchers reported their findings at the 2021 ASCO Annual Meeting held online in June. They include:

  • Cervical cancer incidence rate decreased each year by 1.03% annually over 16 years.
  • In the 20 to 24 age group, a “disproportionately higher decrease” of 4.6% per year in cervical cancer incidence rate suggested “potential effect of vaccinations.”
  • Without screenings, HPV-related cancers incidence increased in women over 16 years.
  • Oropharyngeal, anal, rectal, and vulvar cancer increased 1.3% in women per year.
  • In men, oropharyngeal cancer incidence represented 81% of all HPV-related cancers—five times more than cases for women over 16 years.
  • HPV-related cancers in men increased 2.36% per year over 16 years, and oropharyngeal cancer had the biggest increase.

“Without standardized screening, HPV-related cancers—such as oropharyngeal cancers and anal rectal cancers—are increasing. To reduce these trends and achieve success comparable to what we’re seeing with cervical cancer we must develop effective screening strategies and determine vaccine efficacy in these patient populations,” Liao said in the news release.

Should PAP Tests Be Dropped as a Primary Screen for Cervical Cancer?

Today’s American Cancer Society (ACS) guidelines for cervical cancer screening denote the primary (FDA-designated) HPV test as the “preferred test” for people 25 to 65 years of age. A Pap test (or Pap smear) can be done at the same time, or in instances when a primary HPV test is not available, the ACS said.

HPV screening aims to detect high risk strains of HPV by looking for DNA in cervical cells and the Pap test involves collecting cells from the cervix for review in the medical laboratory for cancer and pre-cancer, the ACS added.

However, pathologists and cytotechnologists who have examined Pap smear slides for many years know that indications of cervical cancer are not always detected by HPV screening. A Pap test often picks up indications of cervical cancer that might not have been detected by the HPV test.

One reason is HPV tests only monitor about 20 of the genetic mutations known to cause cervical cancer. There are about 80 mutations that can cause cervical cancer, but most are so rare, it does not pay to include them in the HPV test panel.

“The Pap is not something that we should look at as replaceable. In some circumstances, we can get a Pap smear that has some significant cellular changes on it,” Jessica Shepherd, MD, an obstetrician and gynecologist at Baylor University Medical Center in Dallas, told USA Today.

Medicine Advancing, Pap Referrals Not So Much 

In the 1990s, Pap tests were the front line for cervical cancer screening and a source of about 55 million referrals to clinical laboratories each year, recalls Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report

“Interestingly, in the past decade, many cytotechnologists and laboratory scientists who started work in labs at the time of the new HPV screening guidelines and vaccination were unaware of the Pap test’s impact on revenue for clinical labs and pathology groups,” he said.

Medical advancements over the past 25 years have altered how providers screen women for cervical cancer and help them prevent it. And as HPV screening and HPV vaccination gained prominence, the standard Pap test became a kind of “co-pilot” to HPV testing. Unfortunately, this meant less oncology referrals to medical labs.     

Donna Marie Pocius

Related Information:

HPV Associated Cancers in the US over the Last 15 Years: Has Screening or Vaccination Made Any Difference?

With Strong Screening and Vaccination Guidelines, Cervical Cancer Rates Drop; Other HPV-Related Cancers Are on the Rise

Cervical Cancer Incidence Declines as Rates of Other HPV-Associated Cancers Rise

Decreasing Incidence of Cervical Cancer in United States and Taiwan: Have We Left Anyone Behind?

FDA Approves First HPV Test for Primary Cervical Cancer Screening

Cervical Cancer Detection, Diagnosis, Staging, Screening Tests

Are Pap Smears ‘Obsolete?’ There’s a Better Option for Cervical Cancer Screening, American Cancer Society Says

Australia’s HPV Vaccination Program Could Eliminate Cervical Cancer if its National HPV Vaccination and Screening Programs Remain on Current Pace

Australia’s HPV Vaccination Program Could Eliminate Cervical Cancer If Its National HPV Vaccination and Screening Programs Remain on Current Pace

CDC estimates that 92% of cancers caused by HPV could be eliminated in the US if HPV vaccination recommendations in this country are followed

Medical laboratories in the United States once processed as many as 55-million Pap tests each year. However, the need for cervical cancer screening tests is diminishing. That’s primarily because the human papilloma virus (HPV) vaccination effectively eliminates new cases of cervical cancer. At least, that’s what’s happening in Australia.

When it was introduced in 2007, Australia’s nationwide publicly-funded HPV vaccination program only included girls, but was extended to boys in 2013. Today, it is being credited with helping slash the country’s cervical cancer rates.

Research published in The Lancet Public Health (Lancet) predicts cervical cancer could be eliminated in Australia by 2028 if current vaccination rates and screening programs continue. Cervical cancer would be classified as effectively eliminated once there are four or fewer new cases per 100,000 women each year. These developments will be of interests to pathologists and cytotechnologists in the United States.

“From the beginning, I think the [Australian] government successfully positioned the advent of HPV vaccination as a wonderful package that had a beneficial effect for the population,” Karen Canfell, PhD, Director, Cancer Research Division at Cancer Council New South Wales, Australia, and Adjunct Professor, University of Sydney, told the Texas Tribune. “It was celebrated for that reason, and it was a great public health success.”

In addition to high vaccination rates, the Lancet study notes that last year Australia transitioned from cytology-based cervical screening every two years for women aged 18 to 69 years, to primary HPV testing every five years for women aged 25 to 69 and exit testing for women aged 70 to 74 years.

“Large-scale clinical trials and detailed modelling suggest that primary HPV screening is more effective at detecting cervical abnormalities and preventing cervical cancer than screening with cytology at shorter intervals,” the Lancet study states.

The incidence of cervical cancer in Australia now stands at seven cases per 100,000. That’s about half the global average. The country is on pace to see cervical cancer officially considered a “rare” cancer by 2020, when rates are projected to drop to fewer than six new cases per 100,000 women.

US Cervical Cancer Rates

In Texas, meanwhile, the state’s failure to embrace HPV vaccination is being blamed for slowing potential improvements in cervical cancer rates. In 2007, Texas lawmakers rejected legislation that would have mandated girls entering sixth grade be vaccinated for HPV. The Texas Tribune reports that, in the decade that followed, vaccination rates remained stagnant with only about 40% of Texans between 13 and 17 years old having been vaccinated for HPV by 2017.

Though Texas has a similar size population as Australia, the state’s low vaccination rates have meant cervical cancer rates have shown little improvement. Statistics compiled by the federal Centers for Disease Control and Prevention (CDC) show that Texas’ age-adjusted rate of new cervical cancer cases sits at 9.2 per 100,000 women—unchanged since 2006.

Texas has the fifth highest rate of cervical cancer in the nation, according to the CDC.

Texas State Rep. Jessica Farrar, a Democrat from Houston, maintains Texas should have followed the example of Australia, which in 2007 began a publicly funded HPV vaccination program that has the country on the verge of eliminating cervical cancer by 2028. Texas rejected mandatory HPV vaccinations and now has one of the highest cervical cancer rates in the US. “This is a preventable disease, and we should and can be doing more,” she told the Texas Tribune. “Here we are 12 years later, and look where we could’ve been, but because of certain beliefs, we’re suffering from cancers that could have been avoided.” (Photo copyright: The Texas Tribune.)

Lois Ramondetta, MD, Professor of Gynecologic Oncology at MD Anderson Cancer Center in Houston, told the Texas Tribune the state ignored an opportunity that Australia seized. “[Australia] embraced the vaccine at that time, and our fear kind of began around then,” Ramondetta said. “Really, vaccination in general has just gone down the tube since then.”

CDC Study Pushes HPV Vaccination Recommendations in US

Texas is not the only state failing to capitalize on the HPV vaccine’s cancer-curing promise. The CDC recently stated in a news release announcing a recent study that 92% of cancers caused by HPV could be eliminated if HPV vaccine recommendations were followed. CDC published the study in its Morbidity and Mortality Weekly Report.

HPV is a common virus that is linked to not only cervical cancer but also cancers of the penis, head, and neck, as well as conditions like genital warts. Though the CDC recommends children get the two-dose vaccine at ages 11-12, the study findings indicate that only 51% of teens ages 11 to 17 have received the recommended doses of HPV vaccine, a 2% increase from 2017 to 2018.

“A future without HPV cancers is within reach, but urgent action is needed to improve vaccine coverage rates,” Brett Giroir, MD, Assistant Secretary for Health, US Department of Health and Human Services (HHS), stated in the CDC news release. “Increasing HPV vaccination overage to 80% has been and will continue to be a priority initiative for HHS, and we will continue to work with our governmental and private sector partners to make this a reality.”

Can Australia Eliminate Cervical Cancer?

University of Queensland Professor Ian Frazer, MD, who co-authored the Lancet Public Health study, believes Australia is on the verge not only of eliminating cervical cancer, but also eradicating the HPV virus itself.

“Because this human papillomavirus only infects humans, and the vaccine program prevents the spread of the virus, eventually we’ll get rid of it, like we did with smallpox,” Frazer told The Age.

“It’s not going to happen in my lifetime,” he added. “But it could happen in the lifetime of my kids if they go about it the right way.”

If Australia’s combination of high HPV vaccination rates and new HPV screening program succeeds in effectively eliminating cervical cancer, clinical laboratories in this country should expect stepped-up efforts to increase HPV vaccination rates in the United States. A renewed focus on reducing—and ultimately eliminating—cervical cancer, could lead to fewer or less-frequently performed Pap tests as part of cervical cancer screening protocols.

—Andrea Downing Peck

Related Information:

The Projected Timeframe Until Cervical Cancer Elimination in Australia: A Modelling Study

Years after Texas Backed Off HPV Vaccine Mandate, Cervical Cancer Rate Soars

Cervical Cancer Set to Be Eliminated from Australia in Global First

An Estimated 92% of Cancers Caused by HPV Could be Prevented by Vaccine

Morbidity and Mortality Weekly Report

Top-5 Diagnostics Trends Identified by Kalorama Will Impact In Vitro Diagnostics Manufacturers, Medical Laboratories in 2017

Report states IVD companies are focusing on core lab, seeking China FDA approval, and targeting urgent care

Several of the same powerful trends reshaping healthcare and clinical laboratory services are having equally significant influence on in vitro diagnostics (IVD) manufacturers. In particular, the consolidation of hospitals and physicians, as well as the emergence of new sites of service—such as urgent care centers and retail clinics—are motivating IVD companies to tailor new diagnostic systems to the unique needs of these entities.

Kalorama, a division of MarketResearch.com, has released its list of Top-Trends that will affect IVD developers in 2017. IVDs are at the heart of the medical laboratory industry. Thus, these reports are critical to keeping clinical laboratory managers and pathology groups informed on anything that could affect the production, voracity, and availability of diagnostic testing. (more…)

;