Executives and pathologists from many of the nation’s most prominent clinical laboratories are on their way to the Crescent City today to share best practices, hear case studies from innovative labs, and network
NEW ORLEANS—This afternoon, more than 900 lab CEOs, administrators, and pathologists will convene for the 28th Annual Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management conference. Three topics of great interest will center around adequate lab staffing, effective cost management, and developing new sources of lab testing revenue.
Important sessions will also address the explosion in next-generation sequencing and genetic testing, proposed FDA regulation of laboratory-developed tests (LDTs), and innovative ways that clinical laboratories and pathology groups can add value and be paid for that additional value.
All this is happening amidst important changes to healthcare and medicine in the United States. “Today, the US healthcare system is transforming itself at a steady pace,” explained Robert L. Michel, Editor-in-Chief of The Dark Report and Founder of the Executive War College. “Big multi-hospital health systems are merging with each other, and payers are slashing reimbursement for many medical lab tests, even as healthcare consumers want direct access to clinical laboratory tests and the full record of their lab test history.
“Each of these developments has major implications in how clinical laboratories serve their parent organizations, offer services directly to consumers, and negotiate with payers for fair reimbursement as in-network providers,” Michel added. “Attending the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management equips lab leaders with the tools they’ll need to make smart decisions during these challenging times.”
Now in its 28th year, the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management convenes April 25-26 in New Orleans. Executive War College extends to a third day with three full-day workshops: LEAN fundamentals for lab leaders, a genetic testing program track, and a digital pathology track. Learn more at www.ExecutiveWarCollege.com. (Photo copyright: The Dark Intelligence Group.)
Challenges and Opportunities for Clinical Laboratories
With major changes unfolding in the delivery and reimbursement of clinical services, clinical laboratory and pathology practice leaders need effective ways to respond to the evolving needs of physicians, patients, and payers. As The Dark Report has often covered, three overlapping areas are a source of tension and financial pressure for labs:
Day-to-day pressures to manage costs in the clinical laboratory or pathology practice.
The growing demand for genetic testing, accompanied by reimbursement challenges.
Evolving consumer expectations in how they receive medical care and interact with providers.
Addressing all three issues and much more, the 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management features more than 80 sessions with up to 125 lab managers, consultants, vendors, and in vitro diagnostic (IVD) experts as speakers and panelists.
Old-School Lab Rules Have Evolved into New-School Lab Rules
Tuesday’s keynote general sessions (to be reported exclusively in Wednesday’s Dark Daily ebriefing) will include four points of interest for clinical laboratory and pathology leaders who are managing change and pursuing new opportunities:
Positioning the lab to prosper by serving healthcare’s new consumers, new care models, new payment models, and more, with Michel at the podium.
How old-school lab rules have evolved into new-school lab rules and ways to transition the lab through today’s disrupters in healthcare and the clinical laboratory marketplace, with Stan Schofield, Managing Principal of the Compass Group.
Generating value by identifying risk signals in longitudinal lab data and opportunities in big data from payers, physicians, pharma, and bioresearch, with Brad Bostic, Chairman and CEO of hc1.
Wednesday’s keynote sessions (see exclusive insights in Friday’s Dark Daily ebriefing) explore:
Wednesday’s keynotes conclude with a panel discussion on delivering value to physicians, patients, and payers with lab testing services.
Clinical Labs, Payers, and Health Plans Swamped by Genetic Test Claims
Attendees of the 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management may notice a greater emphasis on whole genome sequencing and genetic testing this year.
As regular coverage and analysis in The Dark Report has pointed out, clinical laboratories, payers, and health plans face challenges with the explosion of genetic testing. Several Executive War College Master Classes will explore critical management issues of genetic and genomic testing, including laboratory benefit management programs, coverage decisions, payer relations, and best coding practices, as well as genetic test stewardship.
This year’s Executive War College also devotes a one-day intensive session on how community hospitals and local labs can set up and offer genetic tests and next-generation sequencing services. This third-day track features more than a dozen experts including:
During these sessions, attendees will be introduced to “dry labs” and “virtual CLIA labs.” These new terms differentiate the two organizations that process genetic data generated by “wet labs,” annotate it, and provide analysis and interpretation for referring physicians.
State of the Industry: Clinical Lab, Private Practice Pathology, Genetic Testing, IVD, and More
For lab consultants, executives, and directors interested in state-of-the-industry Q/A and discussions concerning commercial laboratories, private-practice pathology, and in vitro diagnostics companies, a range of breakout sessions, panels, and roundtables will cover:
Action steps to protect pathologists’ income and boost practice revenue.
Important developments in laboratory legal, regulatory, and compliance requirements.
New developments in clinical laboratory certification and accreditation, including the most common deficiencies and how to reach “assessment ready” status.
An update on the IVD industry and what’s working in today’s post-pandemic market for lab vendors and their customers.
Federal government updates on issues of concern to clinical laboratories, including PAMA, the VALID Act, and more.
Long-time attendees will notice the inclusion of “Diagnostics” into the Executive War College moniker. It’s an important addition, Michel explained for Dark Daily.
“In the recent past, ‘clinical laboratory’ and ‘anatomic pathology’ were terms that sufficiently described the profession of laboratory medicine,” he noted. “However, a subtle but significant change has occurred in recent years. The term ‘diagnostics’ has become a common description for medical testing, along with other diagnostic areas such as radiology and imaging.”
Key managers of medical laboratories, pathology groups, and in vitro diagnostics have much to gain from attending the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, now in its 28th year. Look for continued coverage through social media channels, at Dark Daily, and in The Dark Report.
But even though the College of American Pathologists (CAP) and nine other organizations signed a December 12 stakeholder letter to leaders of key House and Senate committees urging passage of legislation that would enable some regulation of LDTs, the VALID Act was ultimately omitted from the year-end omnibus spending bill (H.R. 2617).
That may be due to pressure from organizations representing clinical laboratories and pathologists which lobbied hard against the bill.
Responding to criticism of its stance on FDA oversight of LDTs, in a May 2022 open letter posted on the organization’s website, anatomic pathologist and CAP president Emily Volk, MD, said “we at the CAP have an honest difference of opinion with some other respected laboratory organizations. … We believe the VALID Act is the only viable piece of legislation addressing the LDT issue. … the VALID Act contains many provisions that are similar to policy the CAP has advocated for regarding the regulation of laboratory tests since 2009. Importantly, the current version includes explicit protections for pathologists and our ability to practice medicine without infringement from the Food and Drug Administration (FDA).” (Photo copyright: College of American Pathologists.)
Organizations on Both Sides Brought Pressure to Bear on Legislators
The AAMC and AMP were especially influential, Bucshon told ProPublica. In addition to spending hefty sums on lobbying, AMP urged its members to contact legislators directly and provided talking points, ProPublica reported.
“The academic medical centers and big medical centers are in every state,” Bucshon said. As major employers in many locales, they have “a pretty big voice,” he added.
Discussing CAP’s reasoning behind its support of the VALID Act in a May 26 open letter and podcast, CAP president Emily Volk, MD, said the Valid Act “creates a risk-based system of oversight utilizing three tiers—low, moderate and high risk—in order to target the attention of the FDA oversight.”
While acknowledging that it had room for improvement, she lauded the bill’s three-tier risk-based system, in which tests deemed to have the greatest risks would receive the highest level of scrutiny.
She also noted that the bill exempts existing LDTs from an FDA premarket review “unless there is a safety concern for patients.” It would also exempt “low-volume tests, modified tests, manual interpretation tests, and humanitarian tests,” she wrote.
In addition, the bill would “direct the FDA not to create regulations that are duplicative of regulation under CLIA,” she noted, and “would require the FDA to conduct public hearings on LDT oversight.”
Pros and Cons of the VALID Act
One concern raised by opponents relates to how the VALID Act addressed user fees paid by clinical laboratories to fund FDA compliance activities. But Volk wrote that any specific fees “would need to be approved by Congress in a future FDA user fee authorization bill after years of public input.”
During the May 2022 podcast, Volk also cast CAP’s support as a matter of recognizing political realities.
“We understand that support for FDA oversight of laboratory-developed tests or IVCTs is present on both sides of the aisle and in both houses of Congress,” she said. “In fact, it enjoys wide support among very influential patient advocacy groups.” These groups “are very sophisticated in their understanding of the issues with laboratory-developed tests, and they do have the ear of Congress. There are many in the laboratory community that believe the VALID Act goes too far, but I can tell you that many of these patient groups don’t believe it goes far enough and are actively pushing for even more restrictive paradigms.”
Also urging passage of the bill were former FDA commissioners Scott Gottlieb, MD, and Mark B. McClellan, MD, PhD. In a Dec. 5 opinion piece for STAT, they noted that “diagnostic technologies have undergone considerable advances in recent decades, owing to innovation in fields like genomics, proteomics, and data science.” However, they wrote, laws governing FDA oversight “have not kept pace,” placing the agency in a position of regulating tests based on where they are made—in a medical laboratory or by a manufacturer—instead of their “distinctive complexity or potential risks.”
In their May 22 letter, opponents of the legislation outlined broad areas of concern. They contended that it would create “an onerous and complex system that would radically alter the way that laboratory testing is regulated to the detriment of patient care.” And even though existing tests would be largely exempted from oversight, “the utility of these tests would diminish over time as the VALID Act puts overly restrictive constraints on how they can be modified.”
CLIA Regulation of LDTs also Under Scrutiny
The provision to avoid duplication with the Clinical Laboratory Improvement Amendments (CLIA) program—which currently has some regulatory oversight of LDTs and IVCTs—is “insufficient,” opponents added, “especially when other aspects of the legislation call for requirements and activities that lead to duplicative and unnecessary regulatory burden.”
Opponents to the VALID Act also argued that the definitions of high-, medium-, and low-risk test categories lacked clarity, stating that “the newly created definition of moderate risk appears to overlap with the definition of high risk.”
The opponents also took issue with the degree of discretion that the bill grants to the US Secretary of Health and Human Services. This will create “an unpredictable regulatory process and ambiguities in the significance of the policy,” they wrote, while urging the Senate committee to “narrow the discretion so that stakeholders may better evaluate and understand the implications of this legislation.”
Decades ago, clinical laboratory researchers were allowed to develop assays in tandem with clinicians that were intended to provide accurate diagnoses, earlier detection of disease, and help guide selection of therapies. Since the 1990s, however, an industry of investor-funded laboratory companies have brought proprietary LDTs to the national market. Many recognize that this falls outside the government’s original intent for encouragement of laboratory-developed tests to begin with.
Survey respondents can give their opinions about the proposed VALID and VITAL acts
Two bills are pending in Congress, and each is written to change the current regulatory scheme for laboratory-developed tests (LDTs) and in vitro clinical tests (IVCTs). The bills go by the acronyms of the VALID Act and VITAL Act. Many clinical laboratories offering LDTs today may be unaware of the details within each bill as currently written.
That existing regulatory arrangement will change if one of the two pending bills in Congress were to pass and be signed into law. That proposal is known as the Verifying Accurate Leading-Edge IVCT Development Act, or VALID Act. It is a bipartisan, 245-page bill that proposes FDA oversight of LDTs and is making its way through both the Senate and the House of Representatives.
A smaller, seven-page counterproposal is also before the Senate called the Verified Innovative Testing in American Laboratories Act, or VITAL Act. The VITAL Act would keep LDTs under CLIA but mandate updates to CLIA’s rules to account for modern tests.
Readers: Are you in favor of more or less regulation of LDTs? Take this quick survey and let us know what you think. Dark Daily wants to know your thoughts about LDT oversight. Click here to take our six-question survey. Results of this survey will be reported in a coming Dark Daily e-briefing.
Alert pathologists and clinical laboratory managers know that behind every bill proposed in Congress is a party with a vested interest that brought the issue to a senator or representative. Once enacted into law, a new bill changes the status quo, generally to the benefit of the private interests that requested that bill. This is true of both the VALID Act and the VITAL Act.
The table at the bottom of this briefing compares the provisions of each act and is current as of March 28.
Who Opposes VALID Act?
The VALID Act is garnering more attention than the VITAL Act.
On March 22, the American Association for Clinical Chemistry (AACC) sent out an email message urging its members to oppose the VALID Act.
“Let your legislators know that that if VALID becomes law, your institution and other hospitals and small commercial laboratories could be forced to stop providing LDTs,” wrote Patricia Jones, PhD, DABCC, FACB, Chair of AACC’s Policy and External Affairs Core Committee. The AACC has long criticized the VALID Act..
On the other side of the debate, Philadelphia-based The Pew Charitable Trusts, a nonprofit that in part analyzes publics policy, has come out in support of the VALID Act’s proposed requirements.
“Although the [current] LDT regulatory process offers labs significant flexibility and enables a more rapid response to public health needs when no FDA-cleared or -approved test exists, the relative lack of oversight for LDTs puts the health of patients at risk,” Pew wrote in an October 2021 report on LDTs.
The Advanced Medical Technology Association also supports the VALID Act, as do many manufacturers of in vitro test kits and large commercial labs. Proponents also believe FDA regulation is needed for IVCTs because they are similar to medical devices and bring with them patient safety concerns.
The American Clinical Laboratory Association and the National Independent Laboratory Association (NILA) have not taken formal positions on the VALID Act.
Congress Could Roll VALID Act into MDUFA Vote to Win Passage
There may be an effort to attach the VALID Act to the authorization vote for the Medical Device User Fee Agreement V (MDUFA), according to a February health legislation alert from law firm Akin Gump Strauss Hauer & Feld based in Washington.
MDUFA funding provides resources to the FDA’s medical device review program. Congress is set to receive final MDUFA V recommendations in April.
Nineteen healthcare and lab industry groups, including the American Medical Association, AACC, AMP, and NILA, sent a joint letter to four Congress members on Feb. 23 requesting they deliberate the VALID Act separately and not as part of MDUFA.
Again, please complete this survey and tell us what you think about FDA regulation of LDTs, as defined in the VALID Act, compared to continuing LDT oversight via a modernized CLIA in the VITAL Act.
—Scott Wallask
Comparison of VALID Act and VITAL Act
VALID Act
VITAL Act
Full act name
Verifying Accurate Leading-Edge IVCT Development Act
Verified Innovative Testing in American Laboratories Act
Bill numbers
House Bill H.R.4128 Senate Bill S.2209
Senate Bill S.1666
Sponsors
Sen. Michael Bennet (D-CO) , Sen. Mike Braun (R-IN), Rep. Larry Bucshon, MD (R-IN), Sen. Richard Burr (R-NC), and Rep. Diana DeGette (D-CO)
Sen. Rand Paul (R-KY)
Provisions
Developers shall apply for premarket approval of IVCTs if there is insufficient evidence of analytical validity or clinical validity or if it’s reasonably possible an IVCT will cause serious adverse health effects.
Applications shall include a summary of test data and scientific evidence to support analytical and clinical validity of the test.
Through a technology certification, developers can submit an IVCT to the FDA for review, and if granted, the certification allows them to develop similar tests without going back for review each time.
The FDA must establish a program for rapid review of breakthrough IVCTs that provide effective treatment of life-threatening diseases
The federal government should work to ensure that regulatory oversight of laboratory tests does not limit patient access, impede innovation, or limit a test’s sustainability as a result of being unduly burdensome or beyond the fiscal capacity of the laboratory to reasonably validate and perform.
No aspects of LTDs shall be regulated under the FDA.
No later than 180 days after enactment of the bill, the secretary of health and human services shall report to the Senate’s Committee on Health, Education, Labor, and Pensions about recommendations to update clinical lab regulations and provide an assessment of LDT use during the 2020 pandemic response.
Exemptions
IVCTs being marketed before the VALID Act goes into effect
Low-risk tests
IVCTs that are granted emergency use
No new exemptions
Review timelines
The FDA shall make a decision no later than 90 days after an application is submitted.
No new requirements noted.
Sources: VALID Act and VITAL Act bills. Information is current as of March 28, 2022.
VCU scientists used the technique to measure mutations associated with acute myeloid leukemia, potentially offering an attractive alternative to DNA sequencing
More accurate but less-costly cancer diagnostics are the Holy Grail of cancer research. Now, research scientists at Virginia Commonwealth University (VCU) say they have developed a clinical laboratory diagnostic technique that could be far cheaper and more capable than standard DNA sequencing in diagnosing some diseases. Their method combines digital polymerase chain reaction (dPCR) technology with high-speed atomic force microscopy (HS-AFM) to generate nanoscale-resolution images of DNA.
The technique allows the researchers to measure polymorphisms—variations in gene lengths—that are associated with many cancers and neurological diseases. The VCU scientists say the new technique costs less than $1 to scan each dPCR reaction.
“We chose to focus on FLT3 mutations because they are difficult to [diagnose], and the standard assay is limited in capability,” said physicist Jason Reed, PhD, Assistant Professor in the Virginia Commonwealth University Department of Physics, in a VCU press release.
Reed is an expert in nanotechnology as it relates to biology and medicine. He led a team that included other researchers in VCU’s physics department as well as physicians from VCU Massey Cancer Center and the Department of Internal Medicine at VCU School of Medicine.
Validating the Clinical Laboratory Test
The physicists worked with two VCU physicians—hematologist/oncologist Amir Toor, MD, and hematopathologist Alden Chesney, MD—to compare the imaging technique to the LeukoStrat CDx FLT3 Mutation Assay, which they described as the “current gold standard test” for diagnosing FLT3 gene mutations.
The researchers said their technique matched the results of the LeukoStrat test in diagnosing the mutations. But unlike that test, the new technique also can measure variant allele frequency (VAL). This “can show whether the mutation is inherited and allows the detection of mutations that could potentially be missed by the current test,” states the VCU press release.
“We plan to continue developing and testing this technology in other diseases involving DNA structural mutations,” Reed said. “We hope it can be a powerful and cost-effective tool for doctors around the world treating cancer and other devastating diseases driven by DNA mutations.”
“In our approach we first used digital PCR, in which a mixed sample is diluted to less than one target molecule per aliquot and the aliquots are amplified to yield homogeneous populations of amplicons,” he said. “Then, we deposited each population onto an atomically-flat partitioned surface.”
The VCU researchers “scanned each partition with high-speed atomic force microscopy, in which an extremely sharp tip is rastered across the surface, returning a 3D map of the surface with nanoscale resolution,” he said. “We wrote code that traced the length of each imaged DNA molecule, and the distribution of lengths was used to determine whether the aliquot was a wild type [unmutated] or variant.”
In Diagnostics World, Reed said the method “doesn’t really have any more complexity than a PCR assay itself. It can easily be done by most lab technicians.”
Earlier Research
A VCU press release from 2017 noted that Reed’s research team had developed technology that uses optical lasers (similar to those in a DVD player) to accelerate the scanning. The researchers previously published a study about the technique in Nature Communications, and a patent is currently pending.
“DNA sequencing is a powerful tool, but it is still quite expensive and has several technological and functional limitations that make it difficult to map large areas of the genome efficiently and accurately,” Reed said in the 2017 VCU press release. “Our approach bridges the gap between DNA sequencing and other physical mapping techniques that lack resolution. It can be used as a stand-alone method or it can complement DNA sequencing by reducing complexity and error when piecing together the small bits of genome analyzed during the sequencing process.”
Using CRISPR technology, the team also developed what they described as a “chemical barcoding solution,” placing markers on DNA molecules to identify genetic mutations.
New DNA Clinical Laboratory Testing?
Cancer diagnostics are constantly evolving and improving. It is not clear how long it will be before VCU’s new technique will reach clinical laboratories that perform DNA testing, if at all. But VCU’s new technique is intriguing, and should it prove viable for clinical diagnostic use it could revolutionize cancer diagnosis. It is a development worth watching.
As coronavirus pandemic emerged, the Minnesota reference laboratory surged its testing capacity from 2,600 to 20,000 samples per day in an effort to meet ever-increasing demand
Over the past several years, medical laboratory workforce shortages worldwide have challenged clinical laboratory managers to process increasing numbers of clinical laboratory tests with fewer staff. But that did not prepare them for the Herculean task of processing millions of tests each week! According to the CDC’s COVID Data Tracker, as of January 11, 2021, labs nationwide have processed 264,642,631 PCR tests since the start of the SARS-CoV-2 pandemic.
How were medical laboratories able to ramp up their processing capability so quickly? Here’s one example.
A Massive Undertaking at Mayo Clinic Laboratories
On March 12, 2020, Mayo Clinic Laboratories (Mayo) of Rochester, Minn., became one of the first hospital-affiliated reference labs in the country to develop a test for the SARS-CoV-2 coronavirus. At that time, the Minneapolis Star Tribune reported, Mayo was processing 200 to 300 COVID-19 tests/day. By late March through early April, 5,000 to 6,000 COVID-testing samples were arriving daily, but the lab’s capacity topped out at 2,600 samples/day. Today, however, Mayo Clinic Laboratories processes 20,000 samples each day.
How did the Mayo increase its capacity to meet unprecedented demand for COVID-19 testing? According to the Rochester Post Bulletin (Post Bulletin) the laboratory’s tenfold increase in testing capacity “required a massive undertaking of planning, hiring, construction, acquisition of equipment, and a lot of imagination and adaptation.”
The Post Bulletin reported that Mayo Clinic Laboratories started with one advantage—it already owned two automated Roche cobas SARS-CoV-2 systems that had received emergency-use authorization (EUA) from the FDA in March to test for the novel coronavirus.
But as demand for processing kits rose worldwide, the clinical laboratory could obtain only enough kits to process 4,500 tests per day, effectively limiting testing capacity to half, the Post Bulletin reported.
Mayo responded to the supply-chain disruptions by adding less-automated platforms to their testing arsenal. But using systems that required more manpower and took longer to process tests meant lab managers needed to hire even more staff.
During a two-week span in November, the laboratory added 180 new staff, four times the number of new hires in a typical year. To get new hires on the lab floor faster, a two-week orientation course was transformed into a condensed one-day training session. Other spots were filled by employees transferring in from other departments.
“It was kind of crazy. The size of the lab area just kept growing and growing,” said Ben Larson—who volunteered to move from his job as a lab processing assistant to a crew that processed COVID-19 samples in the Hepatitis/HIV Molecular Laboratory—in a Mayo Clinic Laboratories Insights blog post. “I thought it was cool, seeing all the COVID news and being able to say, ‘I’m actually working in the lab that’s doing the testing.’ It’s something I’ll tell my kids and grandkids. When there was the huge pandemic, I was working at Mayo Clinic as one of the people on the frontlines.”
Linda Spiten, Operations Administrator, Mayo Clinic Department of Laboratory Medicine and Pathology (DLMP), credits much of the lab’s success to the 400 DLMP staffers who shifted to different roles for the COVID transformation.
“We were definitely building the car as it was rolling down the street, because so much was hitting us so fast. But our staff is resilient and gracious. Knowing we didn’t have all the answers, but trusting, they took a leap of faith that we could work it out,” she said in the Insights blog post. “Many people made many sacrifices to work nights and weekends. We had people in labs working for weeks on end training in new folks, so we could make sure we had people ready to go. It was incredible.”
Clinical Laboratory Staff Shortages a Widespread Problem
Mayo Clinic Laboratories is not alone in facing supply-chain interruptions and staffing shortages during the pandemic. An Association for Molecular Pathology (AMP) survey in August of 2020 revealed the extent of the problem. More than 85% of respondents reported supply chain interruptions had delayed and/or decreased testing. The shortages most often cited were:
swabs (60%),
transport media (53%),
testing kits (34%),
reagents (33%),
testing platforms (32%).
Eighty-five percent of those surveyed said they have staffing shortages as well:
more than half (53%) reported not having enough medical technicians.
To manage these shortages, Mayo Clinic Laboratories found innovative ways to transform its operations. The Post Bulletin noted the lab implemented an employee’s suggestion to mark lab coats with color-coded duct tape, so that new hires could more easily identify supervisors’ roles and departments.
The need for added refrigeration was solved by parking 53-foot refrigerated trucks at the lab for storage of up to 15,000 pounds of dry ice each week, a changed that necessitated installing new doors on the building.
And according to the American Association of Clinical Chemistry (AACC), Mayo Clinic Laboratories also added a third shift to the workday to increase capacity and enable lab technologists to work spaced six feet apart.
“This management team has taught us to think on our feet,” lab worker Jane Masching told the Post Bulletin.
Infectious Disease Specialist Joseph Yao, MD, was tasked with coordinating the surge in Mayo Clinic’s testing capacity to 20,000 samples a day, an amount that still falls short of demand.
“I said we had better be prepared for the worst,” Yao told the Post Bulletin, noting the lab has received up to as many as 50,000 COVID test samples in a single day. “We’re still 15, 20 thousand behind. We’re always behind by about 24 hours.”
But some say there is reason to remain positive. Though the COVID-19 pandemic has clearly stretched clinical laboratories’ ingenuity, staffing, and workflow, Christopher Doern, PhD (above), Director of Clinical Microbiology at Virginia Commonwealth University School of Medicine in Richmond, Va., believes there is a silver lining for the clinical laboratory profession. He says the general public now has firsthand knowledge of the value of clinical laboratory medicine and its important role in patient care.
Nevertheless, while Mayo Clinic Laboratories is a prime example of how an organization can bring together the resources needed to meet the demand for COVID-19 tests, many clinical laboratories in the United States still struggle to hire more staff for the lab, as well as to obtain the needed volume of SARS-CoV-2 test kits and supplies.