News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Multiple Researcher Groups Find Increasing Concentrations of Microplastics in Human Tissue

Scientists suspect that the plastics can be linked to a host of medical conditions, but clear evidence is elusive without appropriate biomarkers for clinical laboratory testing

Recent research indicates that microplastics and nanoplastics (MNPs) are accumulating in human organs at an increasing rate. The health impact is not entirely clear, but the research suggests that clinical laboratories could someday find themselves testing for levels of MNPs in patients.

In one study, scientists at the University of New Mexico and Oklahoma State University analyzed autopsy samples of liver, kidney, and frontal cortex brain tissue collected in 2016 and 2024. “Brains exhibited higher concentrations of MNPs than liver or kidney samples,” they wrote. However, “all organs exhibited significant increases from 2016 to 2024.”

The study, titled, “Bioaccumulation of Microplastics in Decedent Human Brains Assessed by Pyrolysis Gas Chromatography-Mass Spectrometry,” was published as a preprint by the National Institutes of Health (NIH) and has not yet been peer reviewed.

“The concentrations we saw in the brain tissue of normal individuals, who had an average age of around 45 or 50 years old, were 4,800 micrograms per gram, or 0.5% by weight,” lead author Matthew Campen, PhD, Regents’ Professor, Pharmaceutical Sciences, University of New Mexico, and Director of the New Mexico Center for Metals in Biology and Medicine (CMBM), told CNN. “Compared to autopsy brain samples from 2016, that’s about 50% higher.”

Researchers have not yet uncovered clear evidence of specific health risks, but “what scientists worry about is several trends in disease prevalence that have been unexplained—Alzheimer’s disease and dementia, colorectal cancer in people under 50, inflammatory bowel disease, and global reductions in sperm count,” Campen told Everyday Health.

In another recent study, a different team of researchers at the University of New Mexico found high levels of microplastics in human and canine testicular tissue.

“At the beginning, I doubted whether microplastics could penetrate the reproductive system,” said lead author Xiaozhong Yu, MD, PhD, Professor, University of New Mexico College of Nursing in a university news story. “When I first received the results for dogs I was surprised. I was even more surprised when I received the results for humans.”

That study appeared in the journal Toxicological Sciences titled, “Microplastic Presence in Dog and Human Testis and Its Potential Association with Sperm Count and Weights of Testis and Epididymis.”

“The rate of increase in microplastics in the environment is exponential and we have every reason to believe that the concentrations in our bodies will continue to increase in the coming years and decades,” Matthew Campen, PhD (above), of the University of New Mexico told Everyday Health. As studies continue to produce evidence that nanoplastics affect human health, testing companies may develop biomarkers for clinical laboratory tests that measure the amount of microplastics in different organ locations. (Photo copyright: University of New Mexico.)

How They Get Into the Body

“Studies have found these plastics in the human heart, the great blood vessels, the lungs, the liver, the testes, the gastrointestinal tract, and the placenta,” epidemiologist Philip J. Landrigan, MD, pediatrician, public health physician, and professor in Boston College’s Department of Biology, told CNN. He also serves as director of the Program for Global Public Health and the Common Good and the Global Observatory on Planetary Health at Boston College.

Landrigan told CNN that most people are exposed to MNPs through their diet, “but inhalation is also an important route.”

However, he added, “it’s important not to scare the hell out of people, because the science in this space is still evolving, and nobody in the year 2024 is going to live without plastic.”

CNN noted that experts consider nanoplastics to be the biggest concern [as opposed to microplastics] because they can infiltrate human cells.

“Somehow these nanoplastics hijack their way through the body and get to the brain, crossing the blood-brain barrier,” Campen told CNN. “Plastics love fats, or lipids, so one theory is that plastics are hijacking their way with the fats we eat which are then delivered to the organs that really like lipids—the brain is top among those.”

The US Food and Drug Administration (FDA) states that microplastics typically measure less than 5mm, whereas nanoplastics are less than a micron (micrometer). However, the agency notes that “there are currently no standard definitions for the size of microplastics or nanoplastics.”

What Are the Health Risks?

Scientists suspect that MNPs could be associated with cancer, cardiovascular disease, kidney disease, Alzheimer’s disease, and infertility, The Washington Post reported, but that they “still don’t have a clear sense of what these materials are doing to the human body.”

One challenge is that microplastics come in different forms, such as polyethylene, polypropylene, and polyethylene terephthalate, often with chemical additives.

“In a 2021 study, researchers in Switzerland identified more than 10,000 chemicals used in the manufacture of plastic—of which over 2,400 were potentially ‘of concern’ for human health,” The Post noted.

“To be able to say we have a health impact, we need to have a direct correlation between a product and a health outcome,” Phoebe Stapleton, PhD, Associate Professor at the Rutgers University Ernest Mario School of Pharmacy (EMSOP), told The Post. “It’s very narrow, that straight line. And there’s so many different health outcomes there could be, and we’re finding these particles in so many different tissues.”

One study published in the New England Journal of Medicine (NEJM) suggested that MNPs in arteries could be risk factors for heart attacks or strokes. But even here, the authors wrote, “direct evidence that this risk extends to humans is lacking.”

Yu suspects that MNPs could be a factor in a global decline in sperm count, along with other environmental contaminants such as heavy metals and pesticides. His study found that polyethylene was the most prevalent plastic in dogs, followed by polyvinyl chloride (PVC). Higher levels of PVC correlated with lower sperm count, but there was no correlation with polyethylene.

“PVC can release a lot of chemicals that interfere with spermatogenesis, and it contains chemicals that cause endocrine disruption,” he said in the UNM news story.

Clinical laboratory managers should recognize that interest in identifying micro- and nanoplastics in every organ of the human body will increase. At some point, physicians may want labs to test their patients for microplastic levels in certain organ sites. This will likely be when enough published studies show a correlation between high levels of microplastics in certain locations of the body and specific disease states.

—Stephen Beale

Related Information:

UNM Researchers Find Microplastics in Canine and Human Testicular Tissue

Microplastics Are Infiltrating Brain Tissue, Studies Show: ‘There’s Nowhere Left Untouched’

Microplastics Found in Every Human Testicle in Study

Minuscule Plastic Pieces Found in Human and Dog Testicles

What Are the Health Risks of Microplastics in Our Bodies?

With Microplastics, Scientists Are in a Race Against Time

Tiny Shards of Plastic Are Increasingly Infiltrating Our Brains, Study Says

In Massive Crackdown, US Department of Justice Charges 193 Defendants with $2.75 Billion in Healthcare Fraud

Charges include $1.1 billion in alleged telemedicine and fraudulent clinical laboratory testing

Nearly 200 individuals in 25 states are facing charges for alleged participation in a variety of healthcare frauds, the US Department of Justice (DOJ) announced in a press release. This major enforcement action involves telemedicine and clinical laboratory testing as well as other healthcare schemes. In total, the DOJ is alleging the defendants are responsible for $2.75 billion in intended losses and $1.6 billion in actual losses.

The charges include:

  • $1.1 billion in alleged telemedicine and clinical laboratory fraud.
  • A $900 million scheme involving fraudulent Medicare billing for amniotic wound grafts.
  • Unlawful distribution of Adderall and other stimulants.
  • A $90 million scheme involving distribution of “adulterated and misbranded HIV medication.”
  • More than $146 million in fraud involving addiction treatment schemes.
  • A variety of schemes involving fraudulent billing for durable medical equipment (DME) products.

This is one of the DOJ’s largest fraud enforcement actions to date. The charges follow investigations by the Department of Health and Human Services Office of Inspector General (OIG), the Federal Bureau of Investigations (FBI), the Drug Enforcement Administration (DEA), and other federal and state law enforcement agencies, the government said. Most defendants are facing charges in federal court, but some cases are being prosecuted in state courts.

As part of the action, the government has seized more than $231 million in assets, including cash, luxury vehicles, and gold.

Monica Cooper, JD (above), a DOJ trial attorney and member of the Texas Strike Force, is one of two attorneys prosecuting the case against Harold Albert “Al” Knowles of Delray Beach, Fla., and Chantal Swart of Boca Raton, Fla., in the DOJ’s latest crackdown on healthcare fraud. Charges against Knowles and Swart include conspiracy to commit healthcare fraud, conspiracy to defraud the United States, and paying/receiving healthcare kickbacks in a $359 million scheme to bill Medicare for medically unnecessary genetic tests at two Houston clinical laboratories. (Photo copyright: US Department of Justice.)

Houston-Area Labs Charged in $359 Million Scheme

In one case, the government charged Florida residents Harold Albert “Al” Knowles and Chantal Swart in a $359 million scheme involving fraudulent Medicare billing for medically unnecessary genetic tests. Knowles owned two Houston-area labs—Bio Choice Laboratories, Inc. and Bios Scientific, LLC—while Swart ran a telemarketing operation. According to DOJ case summaries, the government alleges that Knowles paid kickbacks to Swart to obtain DNA samples and doctors’ orders for tests.

“Knowles, Swart, and others obtained access to tens of thousands of beneficiaries across the United States by targeting them with deceptive telemarketing campaigns,” the indictments allege. “Call center representatives—who were almost never medical professionals—often prompted beneficiaries to disclose their medical conditions and induced them to agree to genetic testing regardless of medical necessity.”

In addition, “Knowles, Swart, and others agreed that Swart and others would pay illegal kickbacks and bribes to purported telemedicine companies to obtain signed doctors’ orders for genetic testing after only a brief telemedicine visit,” the indictment stated. “Knowles and his co-conspirators knew that the purported telemedicine companies’ physicians were rarely, if ever, the beneficiaries’ treating physicians and rarely, if ever, used the genetic testing results in the beneficiaries’ treatment.”

Dallas-Area Labs Charged in $335 Million Scheme

In another case, the federal government charged that the owner of two Dallas-area clinical laboratories engaged in a $335 million Medicare billing scheme.

Keith Gray, owner of Axis Professional Labs, LLC and Kingdom Health Laboratory, LLC, “offered and paid kickbacks to marketers in exchange for their referral to Axis and Kingdom of Medicare beneficiaries’ DNA samples, personally identifiable information (including Medicare numbers), and signed doctors’ orders authorizing medically unnecessary cardio genetic testing,” the government alleged. “As part of the scheme, the marketers engaged other companies to solicit Medicare beneficiaries through telemarketing and to engage in ‘doctor chase,’ i.e., to obtain the identity of beneficiaries’ primary care physicians and pressure them to approve genetic testing orders for patients who purportedly had already been ‘qualified’ for the testing.”

The indictment, filed in the US District Court for the Northern District of Texas, noted that cardio, or cardiovascular tests, are designed to assess a patient’s risk of developing cardiovascular diseases or assist in treatment.

Other Clinical Laboratory and Healthcare Fraud Cases

DOJ attorneys charged the owners of Innovative Genomics, a clinical laboratory in San Antonio, in a $65 million scheme to bill Medicare and the COVID-19 Uninsured Program for “medically unnecessary and otherwise non-reimbursable COVID-19 and genetic testing,” according to the indictment. Also charged were two patient recruiters who allegedly received kickbacks for referring patients.

Richard Abrazi of New York City was charged in a $60 million Medicare billing scheme. Abrazi owned two clinical laboratories: Enigma Management Corp. and Up Services Inc. Both operated as Alliance Laboratories.

“Abrazi and others engaged in a scheme to pay and receive kickbacks and bribes in exchange for laboratory tests, including genetic tests, that Enigma and Up billed to Medicare,” the indictment alleges. “Abrazi and others also allegedly paid and received kickbacks and bribes in exchange for arranging for the ordering of medically unnecessary genetic tests that were ineligible for Medicare reimbursement.”

The DOJ charged Brian Cotugno, of Auburn, Ga., and James Matthew Thorton “Bo” Potter, of Santa Rosa Beach, Fla., in a $20 million Medicare billing scheme. Cotugno, the indictment alleges, sold Medicare Beneficiary Identification Numbers (BINs) to two Alabama laboratories co-owned by Potter.

“The BINs were used to bill Medicare tens of millions of dollars for OTC COVID-19 test kits, many of which had not been requested by the beneficiaries,” the government alleged.

These are only a few of the recent cases the DOJ brought against defendants nationwide for healthcare, telemedicine, and clinical laboratory fraud. Both Dark Daily and our sister publication The Dark Report have covered these ongoing investigations for years. And we will continue to do so because it’s important that lab managers and pathology group leaders are aware of the lengths to which the DOJ is pursuing bad actors in healthcare.

—Stephen Beale

Related Information:

National Health Care Fraud Enforcement Action Results in 193 Defendants Charged and Over $2.75 Billion in False Claims

2024 National Health Care Fraud Enforcement Action Summary of Criminal Charges

2024 National Health Care Fraud Enforcement Action Court Documents

Clinical Laboratory Testing Implicated in National Healthcare Fraud Sting

Almost 200 People Charged in Schemes Totaling $2.7B in False Health Care Claims

DOJ Catches Over $2.7B in Healthcare Fraud Schemes

Multiple Medical Teams Use Apple Vision Pro XR Headset During Surgical Procedures, Signaling Emergence of Extended Reality Applications in Healthcare

Technology like Apple’s VR/AR headsets may prove useful to clinical laboratories in accessioning and in pathology labs during biopsy grossing

In what has been billed as a first, medical teams in the US and UK used Apple’s Extended Reality (XR) Vision Pro headset system to assist in surgical procedures. The surgeons themselves did not wear the $3,500 headset. Instead, surgical nurses used the device for touch-free access to a software application that assisted them in setting up, organizing, and performing the operations. For pathologists and clinical laboratories, in the histology laboratory, such an arrangement involving XR headsets could be used when a biopsy is at the grossing station as well.

The headset software the team used during surgery was developed by eXpanded eXistence, Inc. (eXeX), a Florida-based company whose primary product is an iOS (Apple mobile operating system) application that provides similar functions for mobile devices. eXeX adapted the iOS app to work on Apple’s Extended Reality headset.

Extended Reality is an umbrella term for augmented reality (AR) and virtual reality (VR). Apple refers to the technology as “spatial” computing.

Within the clinical laboratory, XR headsets could be used in the accessioning process as the accessioner works through the steps to confirm all required information accompanies the test requisition and that the patient’s specimen is processed/aliquoted appropriately.

“The eXeX platform, enhanced by artificial intelligence, is designed not as a medical device but as an organizational and logistics tool. It aims to streamline the management of tens of thousands of items, including equipment, tools, technologies, consumables, implants, and surgical products,” said neurosurgeon Robert Masson, MD, eXeX’s founder and CEO, in a February news release.

Masson first deployed the software in his own surgical practice. Then in March, eXeX announced that a surgical team at Cromwell Hospital in London used the system in two microsurgical spine procedures, according to a March new release.

That news garnered media coverage in the UK as well as in US-based publications that follow Apple.

Another early user, eXeX announced, was G. Russell Huffman, MD, MPH, of Rothman Orthopaedic Institute. Huffman’s team used the software to perform a reverse total shoulder arthroplasty procedure at the AdventHealth Surgery Center Innovation Tower in Orlando, according to an April news release.

“We are in a new era of surgery, and for the first time, our surgical teams have the brilliance of visual holographic guidance and maps, improving visuospatial and temporal orientation for each surgical team and for each surgery in all specialties,” said neurosurgeon Robert Masson, MD (above), eXeX’s founder and CEO, in a press release. Clinical laboratories may one day use XR headsets in the histology lab at the grossing station. (Photo copyright: Masson Spine Institute.)

Surgical Process Not Glamorous, But Important

Despite being on a cutting-edge XR platform, the eXeX software addresses “the least glamorous part” of the surgical process, Masson told Gizmodo.

“People assume that surgical healthcare has got to be sophisticated and modern,” he said. “The reality is the way we organize it is probably the most archaic of all the major industries on the planet. It’s all memorization and guesswork with scribbles on pieces of paper.”

The advantage of an XR headset is that it allows use of the eXeX software in a sterile environment, he added. “The ability to interact with digital screens and holograms and lists and maps and products unlocks all kinds of possibilities. Suddenly, you’ve got an interactive digital tool that you can use without violating the sanctity of sterility.”

Does he foresee a future when the surgeons themselves use XR headsets in the operating room? Not necessarily, Masson told Gizmodo.

“There’s always a tendency to say, ‘look at this amazing tech, let’s put a screw in with it,’” he said. “Well, we’re already putting screws in without the headset, so it doesn’t really solve a problem. People tend to think of floating spines, floating heights, you know, an overlay that tells you where to put a catheter in the liver. Honestly, it’s all unnecessary because we already do that pretty well. What we don’t do really well is stay organized.”

Other XR Apps for Healthcare

In a news release, Apple showcased other healthcare apps for its Vision Pro platform.

Epic Systems, an electronic health record (EHR) system developer, has an app called Epic Spatial Computing Concept that allows clinicians “to easily complete charting, review labs, communicate using secure chat, and complete in-basket workflows through intuitive gestures, like simply tapping their fingers to select, flicking their wrist to scroll, or using a virtual keyboard or dictation to type,” Apple stated in the news release.

Stryker, manufacturer of Mako surgical robotic arms for joint-replacement procedures, has an Apple iOS app called myMako that “allows surgeons to visualize and review patients’ Mako surgical plans at any time in a brilliant, immersive visual experience,” Apple said.

Boston Children’s Hospital developed an Apple iOS app called CyranoHealth designed to train nurses and other healthcare professionals in how to use new medical technologies, such as infusion pumps.

Cinematic Reality, from Siemens Healthineers, is an Apple iOS app that “allows surgeons, medical students, and patients to view immersive, interactive holograms of the human body captured through medical scans in their real-world environment,” Apple said.

New Era in Technology

For the past 20 years, manufacturing companies have installed systems at workstations with audio and video that show each step in a work process and with written checklists on the computer screen. This allows workers to check off each required step as proof that each required work element was performed.

This is similar to professional pilots who use checklists at every step in a flight process. One pilot will read the checklist items, the other will perform the step and confirm it was complete.

These procedures are generally completed on computer displays, but with the advent of XR headset technology, these types of procedures are evolving toward mobility.

To prepare for the emergence of XR-based healthcare apps, the US Food and Drug Administration (FDA) has organized a research team to devise best practices for testing these headset devices, CNBC reported.

It will be some time before XR headset technology finds its way into histology laboratories, clinical laboratories, and pathology practices, but since the rate of technology adoption accelerates exponentially, it might not take very long.

—Stephen Beale

Related Information:

eXeX and Neurosurgeon Dr. Robert Masson Achieve World First Using Apple Vision Pro

eXeX and Cromwell Hospital Pioneer the First Use of Apple Vision Pro in UK Surgery

eXeX and AdventHealth Surgery Center Innovation Tower Pioneer Use of Apple Vision Pro in Joint Replacement Surgery

Vision Pro Used in Surgery “To Eliminate Human Error”

This Startup Wants to Use the Apple Vision Pro for the Most Boring Part of Surgery

Doctors Are Using the Apple Vision Pro During Surgery

Apple’s Vision Pro Was Used in Surgery to Help Perform Spinal Operations

Apple Vision Pro Unlocks New Opportunities for Health App Developers

CDC, FDA Warn Providers about Critical Shortage of Becton Dickinson Blood Culture Media Bottles

Shortage could disrupt the ability of clinical laboratories in hospitals and health systems to run certain tests for bloodstream infections

US clinical laboratories may soon experience a “disruption of availability” of BACTEC blood culture media bottles distributed by Becton Dickinson (BD). That’s according to the federal Centers for Disease Control and Prevention (CDC) which issued a Health Alert Network (HAN) Health Advisory to all clinical laboratory professionals, healthcare providers and facility administrators, and other stakeholders warning of the potential shortfall of critical testing supplies.

“This shortage has the potential to disrupt patient care by leading to delays in diagnosis, misdiagnosis, or other challenges in the clinical management of patients with certain infectious diseases,” the CDC stated in the health advisory.

The CDC advises healthcare providers and health departments that use the bottles to “immediately begin to assess their situations and develop plans and options to mitigate the potential impact of the shortage on patient care.”

The advisory notes that the bottles are a key component in continuous-monitoring blood culture systems used to diagnose bloodstream infections and related conditions, such as endocarditis, sepsis, and catheter-related infections. About half of all US laboratories use the BD blood culture system, which is compatible only with the BACTEC bottles, the CDC advisory states.

Infectious disease specialist Krutika Kuppalli, MD (above), Chair of the Infectious Diseases Society of America (IDSA) and a Medical Officer for COVID-19 Health Operations at the World Health Organization, outlined the potential impact of the shortage on healthcare providers and clinical laboratories. “Without the ability to identify pathogens or [their susceptibility to specific antibiotics], patients may remain on broad antibiotics, increasing the risk of antibiotic resistance and Clostridium difficile-associated diarrhea,” she told STAT. “Shortages may also discourage ordering blood cultures, leading to missed infections that need treatment.” (Photo copyright: Loyola University Health System.)

FDA Advises Conservation of Existing BACTEC Supplies

The CDC advisory followed a July 10 notice from the US Food and Drug Administration (FDA) that also warned healthcare providers of “interruptions in the supply” of the bottles. The supply disruption “is expected to impact patient diagnosis, follow up patient management, and antimicrobial stewardship efforts,” the FDA’s letter states. “The FDA recommends laboratories and healthcare providers consider conservation strategies to prioritize the use of blood culture media bottles, preserving the supply for patients at highest risk.”

Hospitals have been warned that the bottle shortage could last until September, STAT reported.

BD issued a press release in which BD Worldwide Diagnostic Solutions President Nikos Pavlidis cast blame for the shortage on an unnamed supplier.

“We understand the critical role that blood culture testing plays in diagnosing and treating infections and are taking all available measures to address this important issue, including providing the supplier our manufacturing expertise, using air shipments, modifying BD manufacturing schedules for rapid production, and collaborating with the US Food and Drug Administration to review all potential options to mitigate delays in supply,” Pavlidis said. “As an additional stopgap measure, our former supplier of glass vials will restart production to help fill the intermittent gap in supply.”

Steps Clinical Laboratories Can Take

The CDC and FDA both suggested steps that clinical laboratories and other providers can take to conserve their supplies of the bottles.

  • Laboratories should strive to prevent contamination of blood cultures, which “can negatively affect patient care and may require the collection of more blood cultures to help determine whether contamination has occurred,” the CDC advised.
  • In addition, providers should “ensure that the appropriate volume is collected when collecting blood for culture,” the advisory states. “Underfilling bottles decreases the sensitivity to detect bacteremia/fungemia and may require additional blood cultures to be drawn to diagnose an infection.”
  • Laboratories should also explore alternative options, such as “sending samples out to a laboratory not affected by the shortage.”
  • The FDA advised providers to collect blood cultures “when medically necessary” in compliance with clinical guidelines, giving priority to patients exhibiting signs of a bloodstream infection.

In an email to STAT, Andrew T. Pavia, MD, Professor of Internal Medicine and Pediatrics at the University of Utah, offered examples of situations where blood culture tests are unnecessary according to clinical guidelines.

“There are conditions like uncomplicated community acquired pneumonia or skin infections where blood cultures are often obtained but add very little,” he told STAT. “It will be critical though that blood cultures are obtained from patients with sepsis, those likely to have bloodstream infections, and very vulnerable patients.”

Hospitals Already Addressing Shortage

STAT reported that some hospitals have already taken measures to reduce the number of tests they run. And some are looking into whether they can safely use bottles past their expiration dates.

Sarah Turbett, MD, Associate Director of Clinical Microbiology Laboratories at Massachusetts General Hospital in Boston, told STAT that her team tested bottles “that were about 100 days past their expiration date to see if they were still able to detect pathogens with the same efficacy as bottles that had not yet expired. They saw no difference in the time to bacterial growth—needed to detect the cause of an infection—in the expired bottles when compared to bottles that had not expired.”

Turbett pointed to a letter in the Journal of Clinical Microbiology and Infection in which European researchers found that bottles from a different brand “were stable for between four and seven months after their expiration dates,” STAT reported.

During a Zoom call hosted by the CDC and the IDSA, hospital representatives asked if the FDA would permit use of expired bottles. However, “a representative of the agency was not able to provide an immediate answer,” STAT reported.

With sepsis being the leading cause of death in hospitals, these specimen bottles for blood culture testing are essential in diagnosing patients with relevant symptoms. This is a new example of how the supply chain for clinical laboratory instruments, tests, and consumables—which was a problem during the SARS-CoV-2 pandemic—continues to be problematic in unexpected ways.

Taking a wider view of supply chain issues that can be disruptive to normal operations of clinical laboratories and anatomic pathology groups, the market concentration of in vitro diagnostics (IVD) manufacturers means fewer vendors offering the same types of products. Consequently, if a lab’s prime vendor has a supply chain issue, there are few options available to swiftly purchase comparable products.

A separate but related issue in the supply chain involves “just in time” (JIT) inventory management—made famous by Taiichi Ohno of Toyota back in the 1980s. This management approach was designed to deliver components and products to the user hourly, daily, and weekly, as appropriate. The goal was to eliminate the cost of carrying large amounts of inventory. This concept evolved into what today is called the “Lean Manufacturing” method.

However, as was demonstrated during the SARS-CoV-2 pandemic, manufacturers and medical laboratories that had adopted JIT found themselves with inadequate numbers of components and finished products.

In the case of the current shortage of BD blood culture media bottles, this is a real-world example of how market concentration limited the number of vendors offering comparable products. At the same time, if this particular manufacturer was operating with the JIT inventory management approach, it found itself with minimal inventories of these media bottles to ship to lab clients while it addressed the manufacturing problems that caused this shortage.

—Stephen Beale

Related Information:

Disruptions in Availability of Becton Dickinson (BD) BACTEC Blood Culture Bottles Blood Culture Bottles

Disruptions in Availability of BD BACTEC Blood Culture Media Bottles – Letter to Health Care Providers

BD Statement on Supplier Issue Impacting BD BACTEC Blood Culture Vials

Hospitals, Labs, and Health Departments Try to Cope with Blood Culture Bottle Shortage

CDC Warns of Shortage of Bottles Needed for Crucial Blood Tests

Shortage of Blood Culture Vials Could Impact Patient Care, CDC and FDA Warn

Mayo Clinic Scientists Use Chemical Analysis of Beethoven’s Hair to Determine Lead Poisoning May Have Contributed to Composer’s Hearing Loss and Other Health Ailments

Results of an earlier study in which locks of Beethoven’s hair underwent genetic analysis showed the composer ‘had a predisposition for liver disease and became infected with hepatitis B’

Here is an example of modern technologies being used with “historical biospecimens” to solve long-standing mysteries or questions about the illnesses of famous historical figures. Clinical laboratory scientists at the Mayo Clinic have used modern-day chemical analysis techniques to answer a 200-year-old question: What caused Ludwig van Beethoven’s deafness and other health problems?

In a letter published in Clinical Chemistry, a journal of the Association for Diagnostics and Laboratory Medicine (ADLM) titled, “High Lead Levels in 2 Independent and Authenticated Locks of Beethoven’s Hair,” researchers with the metals laboratory within Mayo’s Division of Clinical Biochemistry and Immunology revealed analysis performed on authenticated locks of the composer’s hair. The results indicated extremely high concentrations of lead—64 to 95 times the expected level.

“Such lead levels are commonly associated with gastrointestinal and renal ailments and decreased hearing but are not considered high enough to be the sole cause of death,” the authors wrote.

Beethoven’s death at age 56 has been attributed to kidney and liver disease, CNN reported. Even if the lead concentrations were not the sole cause, they would nevertheless be regarded as lead poisoning, lead study author Nader Rifai, PhD, told CNN.

“If you walk into any emergency room in the United States with these levels, you will be admitted immediately and you will undergo chelation therapy,” he said.

Rifai is a professor of pathology at Harvard Medical School and director of clinical chemistry at Boston Children’s Hospital.

“It is believed that Beethoven died from liver and kidney disease at age 56. But the process of understanding what caused his many health problems has been a much more complicated puzzle, one that even Beethoven himself hoped doctors could eventually solve,” CNN reported, adding, “The composer expressed his wish that his ailments be studied and shared so ‘as far as possible at least the world will be reconciled to me after my death.’” Mayo clinical laboratory scientists are using chemical analysis on authenticated locks of Beethoven’s hair to do just that. (Photo copyright: Joseph Karl Stieler/Public Domain.)

Mass Spectrometry Analysis

Mayo Clinic’s metals laboratory, led by chemist Paul Jannetto, PhD, an associate professor in the Department of Laboratory Medicine and Pathology and Laboratory Director at the Mayo Clinic, performed the analysis on two authenticated locks of Beethoven’s hair, using inductively coupled plasma mass spectrometers.

The researchers found that one lock had 258 micrograms of lead/gram and the other had 380 micrograms. Normally they would expect to find less than four micrograms.

“These are the highest values in hair I’ve ever seen,” Jannetto told The New York Times. “We get samples from around the world and these values are an order of magnitude higher.”

The researchers also found that the composer’s hair had four times the normal level of mercury and 13 times the normal amount of arsenic.

Rifai and other researchers noted that Beethoven drank large amounts of plumbed wine, and at the time it was common to sweeten wine with lead acetate, CNN reported.

The composer also could have been exposed to lead in glassware. He likely absorbed high levels of arsenic and mercury by eating fish caught from the Danube River in Vienna.

David Eaton, PhD, a toxicologist, pharmacologist, and Professor Emeritus, Department of Environmental and Occupational Health Sciences at the University of Washington, told The New York Times that high levels of lead could have impaired Beethoven’s hearing through their effect on the nervous system. Additionally, he said the composer’s gastrointestinal ailments “are completely consistent with lead poisoning.”

Rifai told CNN that he’d like to study locks of hair from other 19th century Vienna residents to see how their lead levels compared with Beethoven’s.

Beethoven’s Genome and Genetic Predisposition for Liver Disease

Additional research published in May built on an earlier genomic analysis of Beethoven’s hair, which appeared in March 2023 in the journal Current Biology.

The international team included geneticists, archeologists, and immunologists who analyzed eight locks of hair attributed to the composer. They determined that five were authentic. One, known as the Stumpff Lock, appeared to be the best preserved. They used this lock to sequence Beethoven’s DNA.

“Although we could not identify a genetic explanation for Beethoven’s hearing disorder or gastrointestinal problems, we found that Beethoven had a genetic predisposition for liver disease,” the authors wrote. “Metagenomic analyses revealed furthermore that Beethoven had a hepatitis B infection during at least the months prior to his death. Together with the genetic predisposition and his broadly accepted alcohol consumption, these present plausible explanations for Beethoven’s severe liver disease, which culminated in his death.”

One surprising discovery was the likelihood of an extramarital affair on the composer’s father’s side, CNN reported. The researchers learned this in part by comparing his genetic profile with those of living relatives.

“Through the combination of DNA data and archival documents, we were able to observe a discrepancy between Ludwig van Beethoven’s legal and biological genealogy,” study coauthor Maarten Larmuseau, PhD, told CNN. Larmuseau is assistant professor, Faculty of Medicine, and head of the Laboratory of Human Genetic Genealogy at KU Leuven in Belgium.

The Mayo Clinic team used two locks authenticated in the 2023 study—the Bermann Lock and Halm-Thayer Lock—to perform their chemical analysis, CNN reported.

Beethoven’s Wishes

The earlier study noted that Beethoven wanted his health problems to be made public. In 1802, he wrote a document known as the Heiligenstadt Testament in which he asked that his physician, surgeon/ophthalmologist Johann Adam Schmidt, MD, discuss his disease after he died.

“For almost two years I have ceased to attend any social functions, just because I find it impossible to say to people: I am deaf,” Beethoven wrote at age 30, The New York Times reported. “If I had any other profession, I might be able to cope with my infirmity, but in my profession, it is a terrible handicap. And if my enemies, of whom I have a fair number, were to hear about it, what would they say?”

The authors of the Current Biology paper wrote, “Genomic sequence data from authenticated locks of Beethoven’s hair provide Beethoven studies with a novel primary source, already revealing several significant findings relating to Beethoven’s health and genealogy, including substantial heritable risk for liver disease, infection with HBV [Hepatitis B], and EPP [extra pair paternity]. This dataset additionally permits numerous future lines of scientific inquiry.

“The further development of bioinformatics methods for risk stratification and continued progress in medical genetic research will allow more precise assessments both for Beethoven’s disease risk and for the genetic inference of additional phenotypes of interest.

“This study illustrates the contribution and further potential of genomic data as a novel primary source in historical biography,” the scientists concluded.

The work of the clinical laboratory professionals at Mayo Clinic also demonstrates how advances in various diagnostic technologies can enable pathologists and lab scientists to participate in solving long-standing health questions about historical figures, especially if their hair or other types of specimens survived and can be used in the analysis.  

—Stephen Beale

Related Information:

High Lead Levels in 2 Independent and Authenticated Locks of Beethoven’s Hair

Locks of Beethoven’s Hair Offer New Clues to the Mystery of His Deafness

New Analysis of Beethoven’s Hair Reveals Possible Cause of Mysterious Ailments, Scientists Say

Beethoven May Have Had Lead Poisoning

Paul Jannetto, PhD, Contributes to Landmark Discovery of Beethoven’s Hair Lead Concentration

Beethoven Really Did Have Lead Poisoning, But That Didn’t Cause His Death

Genomic Analyses of Hair from Ludwig Van Beethoven

DNA from Beethoven’s Hair Unlocks Medical and Family Secrets

DNA Analysis of Beethoven’s Hair Reveals Health Issues—and a Family Secret

;