News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Warwick Researchers Identity Blood Protein Biomarkers That Can Predict Dementia Onset Years in Advance

With further study, this research may provide clinical laboratories with a new proteomic biomarker for dementia screenings that identifies risk more than 10 years before symptoms appear

Researchers at the University of Warwick in the UK and Fudan University in Shanghai, China, identified four protein biomarkers in blood that they say can predict dementia up to 15 years before diagnosis. They say these biomarkers may lead to clinical laboratory blood tests that offer alternatives to costly brain scans and lumbar punctures for diagnosis of dementia.

The scientists “used the largest cohort of blood proteomics and dementia to date,” according to a University of Warwick news release. This included taking blood from 52,645 “healthy” people without dementia who participated in the UK Biobank—a population-based study cohort, the new release noted.

“The proteomic biomarkers are [easy] to access and non-invasive, and they can substantially facilitate the application of large-scale population screening,” said neurovegetative disease specialist Jin-tai Yu, MD, PhD, a professor at Fudan University and co-author of the study, in the news release.

The scientists published their findings in the journal Nature Aging titled, “Plasma Proteomic Profiles Predict Future Dementia in Healthy Adults.”

“The advent of proteomics offers an unprecedented opportunity to predict dementia onset,” the researchers wrote.

“This is a well-conducted study that adds to what we know about changes in blood that occur very early in diseases that cause dementia, which will be important for early diagnosis in the future,” said Tara Spires-Jones, PhD, in a post from the Science Media Center in the UK. “However,” she added, “it is important to note that these are still scientific research studies and that there are currently no blood tests available for routine use that can diagnose dementia with certainty.

Jones, who was not involved in the study, is President of the British Neuroscience Association (BNA) and group leader of the UK Dementia Research Institute at the University of Edinburgh.

“Based on this study, it does seem likely that blood tests will be developed that can predict risk for developing dementia over the next 10 years, although individuals at higher risk often have difficulty knowing how to respond,” Suzanne Schindler, MD, PhD (above), told Reuters. Schindler, an Associate Professor of Neurology at Washington University in St. Louis, was not involved in the research. Clinical laboratories may soon have a new blood test for dementia. (Photo copyright: VJDementia.)

Predicting Onset of Dementia with 90% Accuracy

The researchers analyzed 52,645 blood samples from the UK Biobank (UKBB). The samples were collected between 2006 and 2010 from healthy individuals who at that time were without dementia.

By March 2023, 1,417 of the study participants had developed Alzheimer’s disease or some other form of dementia. The researchers looked at 1,463 proteins and identified four that were present in high levels among those people:

“Individuals with higher GFAP levels were 2.32 times more likely to develop dementia,” the researchers wrote in Nature Aging. “Notably, GFAP and LTBP2 were highly specific for dementia prediction. GFAP and NEFL began to change at least 10 years before dementia diagnosis.”

When adding known risk factors such as age, sex, and genetics, the researchers said they could predict onset of dementia with 90% accuracy, according to the University of Warwick news release.

“Our findings strongly highlight GFAP as an optimal biomarker for dementia prediction, even more than 10 years before the diagnosis, with implications for screening people at high risk for dementia and for early intervention,” the researchers wrote.

The news release also noted that smaller studies had already identified some of the proteins as potential biomarkers, “but this new research was much larger and conducted over several years.”

Further Validation Needed

Amanda Heslegrave, PhD, of the UK Dementia Research Institute, University College London described the UKBB as “an excellent resource” in the Science Media Center (SMC) post. However, she noted, it’s “a highly curated biobank and may not capture all populations that we need to know the risk for. The new biomarkers identified will need further validation before being used as screening tools.”

Another expert raised additional questions about the University of Warwick/Fudan University study in the SMC post.

“These results may help researchers understand the biological systems involved in the development of dementia,” said David Curtis, MD, PhD, of the UCL Genetics Institute at University College London. “However in my view the strengths of the reported associations are not really strong enough to say that these would form a useful test for predicting who will get dementia in the future.”

Conversely, Curtis pointed to other studies suggesting that phosphorylated tau (p-tau) proteins are better candidates for developing a simple blood test.

P-tau “provides a very good indicator of whether the pathological processes leading to Alzheimer’s disease are present in the brain,” he said. “When effective treatments for Alzheimer’s disease are developed it will be very helpful indeed to have simple blood tests—such as measuring phosphorylated tau—available in order to identify who could benefit.”

At least two blood tests based on the p-tau217 variant—from ALZpath and C2N—are currently available to US clinicians as laboratory developed tests (LDT).

In “University of Gothenburg Study Findings Affirm Accuracy of Clinical Laboratory Blood Test to Diagnose Alzheimer’s Disease,” Dark Daily reported on a study from the University of Gothenburg in Sweden which found that the ALZpath test was as good or better than lumbar punctures and brain scans as a diagnostic tool for Alzheimer’s.

UK Biobank

The UK Biobank continues to be used by researchers both in the UK and abroad because of the full sets of data on large numbers of patients over many years. There are few other sources of such data elsewhere in the world. The UK Biobank is a large-scale biomedical database and research resource. It contains de-identified genetic, lifestyle and health information, and biological samples from 500,000 UK participants.

On its website, the UK Biobank states, “It is the most comprehensive and widely-used dataset of its kind and is globally accessible to approved researchers who are undertaking health-related research that is in the public interest, whether they are from academic, commercial, government or charitable settings.”

Thus, clinical laboratory managers and pathologists can expect a continuing stream of published studies that identify biomarkers associated with different health conditions and to see where the data used in these analyses came from the UK’s biobank.

—Stephen Beale

Related Information:

Protein Biomarkers Predict Dementia 15 Years Before Diagnosis, According to New Study

Plasma Proteomic Profiles Predict Future Dementia in Healthy Adults

Proteins May Predict Who Will Get Dementia 10 Years Later, Study Finds

Expert Reaction to Study of Potential Protein Biomarkers for Dementia Risk

Two New p-Tau217 Blood Tests Join a Crowded Field

Plasma p-Tau-217 Assays Work Well, But No Home Run for Diagnosis

Dementia Can Be Predicted More than a Decade Before Diagnosis with These Blood Proteins

Dementia Predicted 10 Years Before Diagnosis

Early Blood Test to Predict Dementia Is Step Closer as Biological Markers Identified

Validating Blood Tests as A Possible Routine Diagnostic Assay of Alzheimer’s Disease

Measles Cases in the US, Europe, and Other Countries are Increasing, Slowing Progress on Efforts to Eliminate the Disease

Clinical laboratory managers should prepare for an increase in demand for measles testing, especially for children

Clinical laboratory managers should be on the alert for new cases of measles. The US Centers for Disease Control and Prevention (CDC) has reported a surge in the highly infectious disease. Public health experts pointed to declining vaccination coverage as the primary cause. Officials in other countries have also reported outbreaks.

In 2000, the US declared that measles had been eliminated, meaning it “is no longer constantly present in this country,” the CDC stated on its website. However, the agency noted travelers can still bring the disease into the country and that there have been sporadic outbreaks since then.

In a new study, published April 11, 2024, in the CDC’s Morbidity and Mortality Weekly Report (MMWR), the agency reported that it was notified of 97 confirmed cases in the first quarter of 2024. That compares to an average of five cases during the first quarters of 2020 through 2023, the agency stated. In total, 338 cases were reported to the CDC between Jan. 1, 2020, and March 28, 2024, so the latest outbreaks amount to 29%—nearly a third—of the total.

“While the risk for measles for the majority of the US population still remains low, it’s crucial that we take the necessary steps now to prevent the continued spread of measles and maintain elimination in the US,” Adria D. Mathis, MSPH, lead author of the CDC report, told Healthline. Mathis is affiliated with the CDC’s Division of Viral Diseases at the National Center for Immunization and Respiratory Diseases (NCIRD).

“We have seen, in the region, not only a 30-fold increase in measles cases, but also nearly 21,000 hospitalizations and five measles-related deaths. This is concerning,” Hans Henri P. Kluge, MD (above), WHO Regional Director for Europe, told BBC News. “Vaccination is the only way to protect children from this potentially dangerous disease.” Clinical laboratories in the US that identify a case of measles from a positive test must report that result to public health labs. Thus, wise lab managers will track the rise in measles cases and prepare for increased demand for measles testing. (Photo copyright: World Health Organization.)

Renewed Threat to the US, Other Countries

The recent cases “represent a renewed threat to the US elimination status,” and “underscore the need for additional efforts to increase measles, mumps, and rubella (MMR) vaccination coverage, especially among close-knit and under-vaccinated communities,” Mathis told Healthline.

The MMWR report notes that most of the new cases were in persons under age 20, and that almost all were “in persons who were unvaccinated or whose vaccination status was unknown.” Most of the importations, the report states, were “among persons traveling to and from countries in the Eastern Mediterranean and African WHO [World Health Organization] regions; these regions experienced the highest reported measles incidence among all WHO regions during 2021–2022.”

In the US, vaccination coverage has been below 95% for three consecutive years. That is the “estimated population-level immunity necessary to prevent sustained measles transmission,” according to the federal agency. In 12 states and the District of Columbia, the coverage rate is below 90%. In total, “approximately 250,000 kindergarten children [are] susceptible to measles each year,” the CDC report states.

Measles vaccination coverage has declined globally, “from 86% in 2019 to 83% in 2022.” This left nearly 22 million children under the age of one susceptible to the disease, the report notes.

Earlier Measles Outbreaks in the US

The CDC performed its latest analysis following two larger measles outbreaks in 2019 among under-vaccinated populations in New York state.

The Associated Press (AP) reported that the 2019 epidemic, which totaled 1,274 cases nationwide, “was the worst in almost three decades and threatened the United States’ status as a country that has eliminated measles by stopping the continual spread of the measles virus.”

A vaccine for the disease first became available in 1963. Prior to its availability, “there were some three million to four million cases per year,” AP reported. Most people recover, but “in the decade before the vaccine was available, 48,000 people were hospitalized per year. … About 1,000 people developed dangerous brain inflammation from measles each year, and 400 to 500 died,” AP noted, citing CDC data.

US Not Alone in Fight against Measles

Other countries also are reporting spikes in measles cases. In a recently published rapid risk assessment, the Canadian government reported a total of 29 cases as of March 15, 2024, of which 21 were reported since Feb. 28.

“That’s already the largest annual total since 2019 and more than double the number of cases reported last year, as medical experts fear the number will rise while more Canadians travel in and out of the country this month for March break,” CBC News reported.

“New projections from a team at Simon Fraser University (SFU) in British Columbia show the grim possibilities,” CBC News reported. “The modelling suggests that vaccine coverage of less than 85% can lead to dozens of cases within small communities—or even hundreds if immunization rates are lower.”

Numbers are far worse in parts of Europe. In a February 2024 news release, the World Health Organization reported that in 2023, more than 58,000 people in its European region were infected by the disease, “resulting in thousands of hospitalizations and 10 measles-related deaths.”

According to WHO epidemiological data, countries in Central Asia, which is part of WHO’s European region, reported some of the highest numbers:

  • 15,111 in Kazakhstan,
  • 13,735 in Azerbaijan, and
  • 7,044 in Kyrgyzstan.

The Russian Federation reported 12,723 cases and Turkey reported 4,559.

A WHO European Region Measles and Rubella Monthly Update notes that more than half of the regionwide cases—31,428—were reported in the last three months of 2023. More than 15,000 cases were reported in December. That compares to just 163 cases reported in 2021 and 942 in 2022. Nearly half of the cases were among children under the age of five.

Lack of Vaccinations among Children Blamed for Outbreaks

One factor that has led to the increase in measles cases was the disruption to immunization services caused by the COVID-19 pandemic. “This has resulted in a significant accumulation of susceptible children who have missed their routine vaccinations against measles and other vaccine-preventable diseases,” the WHO reported.

Among the region’s 53 member states, 33 had eliminated measles, WHO reported, but “this achievement remains fragile. To retain this status, a country must ensure that transmission of the virus following any importation is stopped within 12 months from the first reported case.”

In the UK, which reported 231 cases last year, the National Health Service has launched a campaign to improve vaccination rates, the BBC reported, noting that “more than 3.4 million children aged under 16 are unprotected and at risk of becoming ill.”

However, a public health campaign built on vaccination is successful only if a high rate of individuals get vaccinated. The Baby Boomer and Gen X generations had high rates of vaccination for smallpox, polio, etc. because the parents saw individuals in their family and neighborhood who became infected and suffered lifechanging consequences. They recognized that vaccination was a simple thing to provide protection from a potentially deadly infection.

Clinical laboratory managers and pathologists will want to follow the CDC’s ongoing reports of the number of cases of measles in this country. Today, the absolute number of new measles cases is relatively small. At the same time, in communities experiencing an outbreak of even a few measles cases, physicians may want to increase the volume of measles tests they order for their patients.

—Stephen Beale

Related Information:

Canada Heading Toward Major Measles Outbreak without Vaccine Boost, New Modelling Suggests

A Review of the Resurgence of Measles, a Vaccine-Preventable Disease, as Current Concerns Contrast with Past Hopes for Measles Elimination

Alarming 45-Fold Rise in Measles in Europe-WHO

US Declared Measles Gone in 2000—New Outbreaks May Change That

US Measles Cases Are Up in 2024. What’s Driving the Increase?

CDC Warns That Measles Spike Poses A ‘Renewed Threat’ To the Disease’s Elimination

Measles Vaccine Campaign Targets Unprotected Millions

Wiley Launches Paper Mill Detection Tool after Losing Millions Due to Fraudulent Journal Submissions

Groups representing academic publishers are taking steps to combat paper mills that write the papers and then sell authorship spots

Clinical laboratory professionals rely on peer-reviewed research to keep up with the latest findings in pathology, laboratory medicine, and other medical fields. They should thus be interested in new efforts to combat the presence of “research paper mills,” defined as “profit oriented, unofficial, and potentially illegal organizations that produce and sell fraudulent manuscripts that seem to resemble genuine research,” according to the Committee on Publication Ethics (COPE), a non-profit organization representing stakeholders in academic publishing.

“They may also handle the administration of submitting the article to journals for review and sell authorship to researchers once the article is accepted for publication,” the COPE website states.

In a recent example of how paper mills impact scholarly research, multinational publishing company John Wiley and Sons (Wiley) announced in The Scholarly Kitchen last year that it had retracted more than 1,700 papers published in journals from the company’s Hindawi subsidiary, which specializes in open-access academic publishing.

“Often journals will invite contributions to a special issue on a specific topic and this provides an opening for paper mills to submit often many publications to the same issue,” explained a June 2022 research report from the COPE and the International Association of Scientific Technical and Medical Publishers (STM).

“In Hindawi’s case, this is a direct result of sophisticated paper mill activity,” wrote Jay Flynn, Wiley’s Executive Vice President and General Manager, Research, in a Scholarly Kitchen guest post. “The extent to which our processes and systems were breached required an end-to-end review of every step in the peer review and publishing process.”

In addition, journal indexer Clarivate removed 19 Hindawi journals from its Web of Science list in March 2023, due to problems with their editorial quality, Retraction Watch reported.

Hindawi later shut down four of the journals, which had been “heavily compromised by paper mills,” according to a blog post from the publisher.

Wiley also announced at that time that it would temporarily pause Hindawi’s special issues publishing program due to compromised articles, according to a press release.

“We urgently need a collaborative, forward-looking and thoughtful approach to journal security to stop bad actors from further abusing the industry’s systems, journals, and the communities we serve,” wrote Jay Flynn (above), Wiley EVP and General Manager, Research and Learning, in an article he penned for The Scholarly Kitchen. “We’re committed to addressing the challenge presented by paper mills and academic fraud head on, and we invite our publishing peers, and the many organizations that work alongside us, to join us in this endeavor.” Clinical laboratory leaders understand the critical need for accurate medical research papers. (Photo copyright: The Scholarly Kitchen.)

Using AI to Detect Paper Mill Submissions

Wiley acquired Hindawi in 2021 in a deal valued at $298 million, according to a press release, but the subsidiary has since become a financial drain for the company.

The journals earn their revenue by charging fees to authors. But in fiscal year 2024, which began last fall, “Wiley expects $35-40 million in lost revenue from Hindawi as it works to turn around journals with issues and retract articles,” Retraction Watch reported, citing an earnings call.

Wiley also revealed that it would stop using the Hindawi brand name and bring the subsidiary’s remaining journals under its own umbrella by the middle of 2024.

To combat the problem, Wiley announced it would launch an artificial intelligence (AI)-based service called Papermill Detection in partnership with Sage Publishing and the Institute of Electrical and Electronics Engineers (IEEE).

The service will incorporate tools to detect signs that submissions originated from paper mills, including similarities with “known papermill hallmarks” and use of “tortured phrases” indicating that passages were translated by AI-based language models, according to a press release.

These tools include:

  • Papermill Similarity Detection: Checks for known papermill hallmarks and compares content against existing papermills papers.
  • Problematic Phrase Recognition: Flags unusual alternatives to established terms.
  • Unusual Publication Behavior Detection: Identifies irregular publishing patterns by paper authors.
  • Researcher Identity Verification: Helps detect potential bad actors.
  • Gen-AI Generated Content Detection: Identifies potential misuse of generative AI.
  • Journal Scope Checker: Analyzes the article’s relevance to the journal.

The company said that the new service will be available through Research Exchange, Wiley’s manuscript submission platform, as early as next year.

Other Efforts to Spot Paper Mill Submissions

Previously, STM announced the launch of the STM Integrity Hub, with a mission “to equip the scholarly communication community with data, intelligence, and technology to protect research integrity,” Program Director Joris van Rossum, PhD, told The Scholarly Kitchen.

In 2023, the group announced that the hub would integrate Papermill Alarm from Clear Skies, a paper mill detection tool launched in 2022 with a focus on cancer research. It uses a “traffic-light rating system for research papers,” according to a press release.

In an announcement about the launch of Wiley’s Papermill Detection service, Retraction Watch suggested that one key to addressing the problem would be to reduce incentives for authors to use paper mills. Those incentives boil down to the pressure placed on many scientists, clinicians, and students to publish manuscripts, according to the research report from STM and COPE.

In one common scenario, the report noted, a paper mill will submit a staff-written paper to multiple journals. If the paper is accepted, the company will list it on a website and offer authorship spaces for sale.

“If a published paper is challenged, the ‘author’ may sometimes back down and ask for the paper to be retracted because of data problems, or they may try to provide additional supporting information including a supporting letter from their institution which is also a fake,” the report noted.

All of this serves as a warning to pathologists and clinical laboratory professionals to carefully evaluate the sources of medical journals publishing studies that feature results on areas of healthcare and lab medicine research that are of interest.

—Stephen Beale

Related Information:

Potential “Paper Mills” and What to Do about Them: A Publisher’s Perspective

Up to One in Seven Submissions to Hundreds of Wiley Journals Flagged by New Paper Mill Tool

Guest Post: Addressing Paper Mills and a Way Forward for Journal Security

Paper Mills Research Report from COPE and STM

Wiley Paused Hindawi Special Issues amid Quality Problems, Lost $9 Million in Revenue

‘The Situation Has Become Appalling’: Fake Scientific Papers Push Research Credibility to Crisis Point

Publisher Retracts More than a Dozen Papers at Once for Likely Paper Mill Activity

STM Integrity Hub Incorporates Clear Skies’ Papermill Alarm Screening Tool

The New STM Integrity Hub

Upholding Research Integrity in the Age of AI

Preparing for Z-Codes as DEX Genetic Testing Registry Rolls Out to Commercial Health Plans

Palmetto GBA’s Chief Medical Officer will cover how clinical laboratories billing for genetic testing should prepare for Z-Codes at the upcoming Executive War College in New Orleans

After multiple delays, UnitedHealthcare (UHC) commercial plans will soon require clinical laboratories to use Z-Codes when submitting claims for certain molecular diagnostic tests. Several private insurers, including UHC, already require use of Z-Codes in their Medicare Advantage plans, but beginning June 1, UHC will be the first to mandate use of the codes in its commercial plans as well. Molecular, anatomic, and clinical pathologist Gabriel Bien-Willner, MD, PhD, who oversees the coding system and is Chief Medical Officer at Palmetto GBA, expects that other private payers will follow.

“A Z-Code is a random string of characters that’s used, like a barcode, to identify a specific service by a specific lab,” Bien-Willner explained in an interview with Dark Daily. By themselves, he said, the codes don’t have much value. Their utility comes from the DEX Diagnostics Exchange registry, “where the code defines a specific genetic test and everything associated with it: The lab that is performing the test. The test’s intended use. The analytes that are being measured.”

The registry also contains qualitative information, such as, “Is this a good test? Is it reasonable and necessary?” he said.

Bien-Willner will answer those questions and more at the upcoming annual Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management in New Orleans on April 30-May 1. Lab professionals still have time to register and attend this important presentation.

Molecular, anatomic, and clinical pathologist Gabriel Bien-Willner, MD, PhD (above), Palmetto GBA’s Chief Medical Officer, will speak about Z-Codes and the MolDX program during several sessions at the upcoming Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management taking place in New Orleans on April 30-May 1. Clinical laboratories involved in genetic testing will want to attend these critical sessions. (Photo copyright: Bien-Willner Physicians Association.)

Palmetto GBA Takes Control

Palmetto’s involvement with Z-Codes goes back to 2011, when the company established the MolDX program on behalf of the federal Centers for Medicare and Medicaid Services (CMS). The purpose was to handle processing of Medicare claims involving genetic tests. The coding system was originally developed by McKesson, and Palmetto adopted it as a more granular way to track use of the tests.

In 2017, McKesson merged its information technology business with Change Healthcare Holdings LLC to form Change Healthcare. Palmetto GBA acquired the Z-Codes and DEX registry from Change in 2020. Palmetto GBA had already been using the codes in MolDX and “we felt we needed better control of our own operations,” Bien-Willner explained.

In addition to administering MolDX, Palmetto is one of four regional Medicare contractors who require Z-Codes in claims for genetic tests. Collectively, the contractors handle Medicare claims submissions in 28 states.

Benefits of Z-Codes

Why require use of Z-Codes? Bien-Willner explained that the system addresses several fundamental issues with molecular diagnostic testing.

“Payers interact with labs through claims,” he said. “A claim will often have a CPT code [Current Procedural Technology code] that doesn’t really explain what was done or why.”

In addition, “molecular diagnostic testing is mostly done with laboratory developed tests (LDTs), not FDA-approved tests,” he said. “We don’t see LDTs as a problem, but there’s no standardization of the services. Two services could be described similarly, or with the same CPT codes. But they could have different intended uses with different levels of sophistication and different methodologies, quality, and content. So, how does the payer know what they’re paying for and whether it’s any good?”

When the CPT code is accompanied by a Z-Code, he said, “now we know exactly what test was done, who did it, who’s authorized to do it, what analytes are measured, and whether it meets coverage criteria under policy.”

The process to obtain a code begins when the lab registers for the DEX system, he explained. “Then they submit information about the test. They describe the intended use, the analytes that are being measured, and the methodologies. When they’ve submitted all the necessary information, we give the test a Z-Code.”

Then, the test undergoes a technical assessment. Bien-Willner described this as a risk-based process where complex tests, such as those employing next-generation sequencing or gene expression profiling, get more scrutiny than less-complex methodologies such as a polymerase chain reaction (PCR) test.

The assessment could be as simple as a spreadsheet that asks the lab which cancer types were tested in validation, he said. On the other end of the scale, “we might want to see the entire validation summary documentation,” he said.

Commercial Potential

Bien-Willner joined the Palmetto GBA in 2018 primarily to direct the MolDX program. But he soon saw the potential use of Z-Codes and the DEX registry for commercial plans. “It became instantly obvious that this is a problem for all payers, not just Medicare,” he said.

Over time, he said, “we’ve refined these processes to make them more reproducible, scalable, and efficient. Now commercial plans can license the DEX system, which Z-Codes are a part of, to better automate claims processing or pre-authorizations.”

In 2021, the company began offering the coding system for Medicare Advantage plans, with UHC the first to come aboard. “It was much easier to roll this out for Medicare Advantage, because those programs have to follow the same policies that Medicare does,” he explained.

As for UHC’s commercial plans, the insurer originally planned to require Z-Codes in claims beginning Aug. 1, 2023, then pushed that back to Oct. 1, according to Dark Daily’s sister publication The Dark Report.

Then it was pushed back again to April 1 of this year, and now to June 1.

“The implementation will be in a stepwise fashion,” Bien-Willner advised. “It’s difficult to take an entirely different approach to claims processing. There are something like 10 switches that have to be turned on for everything to work, and it’s going to be one switch at a time.”

For Palmetto GBA, the commercial plans represent “a whole different line of business that I think will have a huge impact in this industry,” he said. “They have the same issues that Medicare has. But for Medicare, we had to create automated solutions up front because it’s more of a pay and chase model,” where the claim is paid and CMS later goes after errors or fraudulent claims.

“Commercial plans in general just thought they could manually solve this issue on a claim-by-claim basis,” he said. “That worked well when there was just a handful of genetic tests. Now there are tens of thousands of tests and it’s impossible to keep up.

They instituted programs to try to control these things, but I don’t believe they work very well.”

Bien-Willner is scheduled to speak about Palmetto GBA’s MolDX program, Z-Codes, and related topics during three sessions at the upcoming 29th annual Executive War College conference. Clinical laboratory and pathology group managers would be wise to attend his presentations. Visit here (or paste this URL into your browser: https://www.executivewarcollege.com/registration) to learn more and to secure your seat in New Orleans.

—Stephen Beale

Related Information:

Palmetto Issuing ‘Z-Codes’ to Track Molecular Dx Utilization, Gather Data CPT Codes Can’t Provide

McKesson and Change Healthcare Complete the Creation of New Healthcare Information Technology Company

UnitedHealthcare Commercial: Reimbursement Policy Update Bulletin: January 2024

UnitedHealthcare’s Z-Code Requirement for Genetic Testing Claims Impacts Laboratories and Payers

UHC Delays April 1st Z-Code Commercial Implementation to June 1, 2024

UHC Will Delay Enforcement of Z-Codes for Genetic Test Claims

Former FDA Director to Speak at Executive War College on FDA’s Coming Regulation of Laboratory Developed Tests

Tim Stenzel, MD, PhD, will discuss what clinical laboratories need to know about the draft LDT rule, FDA memo on assay reclassification, and ISO-13485 harmonization

Many clinical laboratories anxiously await a final rule from the US Food and Drug Administration (FDA) that is expected to establish federal policies under which the agency will regulate laboratory developed tests (LDTs). The agency released a proposed rule on Oct. 3, 2023, setting a Dec. 4 deadline for submission of comments. The White House’s Office of Management and Budget received a draft of the final rule less than three months later on March 1, 2024.

“Given how fast it moved through HHS, the final [rule] is likely pretty close” to the draft version, wrote former FDA commissioner Scott Gottlieb, MD, in a post on LinkedIn. Gottlieb and other regulatory experts expect the White House to submit the final rule to Congress no later than May 22, and perhaps as soon as this month.

But what will the final rule look like? Tim Stenzel, MD, PhD, former director of the FDA’s Office of In Vitro Diagnostics, suggests that it is too soon to tell.

Stenzel, who retired from the FDA last year, emphasized that he was not speaking on behalf of the federal agency and that he adheres to all FDA confidentiality requirements. He formed a new company—Grey Haven LLC—through which he is accepting speaking engagements in what he describes as a public service.

“I’m taking a wait and see approach,” said Tim Stenzel, MD, PhD (above), former director of the FDA’s Office of In Vitro Diagnostics, in an interview with Dark Daily. “The rule is not finalized. The FDA received thousands of comments. It’s my impression that the FDA takes those comments seriously. Until the rule is published, we don’t know what it will say, so I don’t think it does any good to make assumptions.” Clinical laboratory leaders will have an opportunity to learn how to prepare for FDA regulation of LDTs directly from Stenzel at the upcoming Executive War College in May. (Photo copyright: LinkedIn.)

FDA’s History of LDT Regulation

Prior to his five-year stint at the agency, Stenzel held high-level positions at diagnostics manufacturers Invivoscribe, Quidel Corporation, Asuragen, and Abbott Laboratories. He also directed the clinical molecular diagnostics laboratory at Duke University Medical Center in North Carolina. In the latter role, during the late 1990s, he oversaw development of numerous LDTs, he said.

The FDA, he observed, has long taken the position that it has authority to regulate LDTs. However, since the 1970s, after Congress passed the Medical Device Amendments to the federal Food, Drug, and Cosmetic Act, the agency has generally exercised “enforcement discretion,” he said, in which it declined to regulate most of these tests.

At the time, “many LDTs were lower risk, small volume, and used for specialized needs of a local patient population,” the agency stated in a press release announcing the proposed rule. “Since then, due to changes in business practices and increasing ability to ship patient specimens across the country quickly, many LDTs are now used more widely, for a larger and more diverse population, with large laboratories accepting specimens from across the country.”

Clinical Labs Need a Plan for Submission of LDTs to FDA

The FDA proposed the new rule after Congress failed to vote on the VALID Act (Verifying Accurate Leading-edge IVCT Development Act of 2021), which would have established a statutory framework for FDA oversight of LDTs. Citing public comments from FDA officials, Stenzel believes the agency would have preferred the legislative approach. But when that failed, “they thought they needed to act, which left them with the rulemaking path,” he said.

The new rule, as proposed, would phase out enforcement discretion in five stages over four years, he noted. Labs would have to begin submitting high-risk tests for premarket review about three-and-a-half years from publication of the final rule, but not before Oct. 1, 2027. Premarket review requirements for moderate- or low-risk tests would follow about six months later.

While he suggested a “wait and see” approach to the final rule, he advises labs that might be affected to develop a plan for dealing with it.

Potential Lawsuits

Stenzel also noted the likelihood of litigation in which labs or other stakeholders will seek to block implementation of the rule. “It’s a fairly widespread belief that there will be a lawsuit or lawsuits that will take this issue through the courts,” he said. “That could take several years. There is no guarantee that the courts will ultimately side with the FDA.”

In “Perfect Storm of Clinical Lab and Pathology Practice Regulatory Changes to Be Featured in Discussions at 29th Annual Executive War College,” Dark Daily covers how the forces in play will directly impact the operations and financial stability of many of the nation’s clinical laboratories.

Stenzel is scheduled to speak about the LDT rule during three sessions at the upcoming Executive War College on Diagnostic, Clinical Laboratory, and Pathology Management conference taking place on April 30-May 1 in New Orleans.

He acknowledged that it is a controversial issue among clinical laboratories. Many labs have voiced opposition to the rule as well as the Valid Act.

Currently in retirement, Stenzel says he is making himself available as a resource through public speaking for laboratory professionals and other test developers who are seeking insights about the agency.

“The potential value that I bring is recent experience with the FDA and with stakeholders both inside and outside the FDA,” he said, adding that during his presentations he likes “to leave plenty of time for open-ended questions.”

In the case of his talks at the Executive War College, Stenzel said he anticipates “a robust conversation.”

He also expects to address other FDA-related issues, including:

  • A recent memo in which the agency said it would begin reclassifying most high-risk In Vitro Diagnostic (IVD) tests—those in class III (high risk)—into class II (moderate to high risk).
  • The emergence of multi-cancer detection (MCD) tests, which he described as a “hot topic in the LDT world.” The FDA has not yet approved any MCD tests, but some are available as LDTs.
  • A new voluntary pilot program in which the FDA will evaluate LDTs in situations where the agency has approved a treatment but has not authorized a corresponding companion diagnostic.
  • An FDA effort to harmonize ISO 13485—a set of international standards governing development of medical devices and diagnostics—with the agency’s own quality system regulations. Compliance with the ISO standards is necessary to market products in many countries outside the US, particularly in Europe, Stenzel noted. Harmonization will simplify product development, he said, because manufacturers won’t have to follow two or more sets of rules.

To learn how to prepare for the FDA’s future regulation of LDTs, clinical laboratory and pathology group managers would be wise to attend Stenzel’s presentations at this year’s Executive War College. Visit here to learn more and to secure your seat in New Orleans.

—Stephen Beale

Related Information:

FDA Proposes Rule Aimed at Helping to Ensure Safety and Effectiveness of Laboratory Developed Tests

Proposed Rule Webinar: Medical Devices; Laboratory Developed Tests (webinar transcript)

Proposed Rule Webinar: Medical Devices; Laboratory Developed Tests (slides)

FDA Proposed Rule on Medical Devices; Laboratory Developed Tests

CDRH Announces Intent to Initiate the Reclassification Process for Most High Risk IVDs

Questions and Answers about Multi-Cancer Detection Tests Oncology Drug Products Used with Certain In Vitro Diagnostics Pilot Program

;