News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Medical Laboratories Find Opportunities as Digital Therapeutics Companies Leverage Mobile Applications for Treatment of Chronic Conditions

Digital Therapeutics combined with clinical laboratory oversight testing could help chronic disease patients avoid surgeries and expensive drug therapies

One area of technology that has fundamentally changed the healthcare industry involves mobile devices. But those early “wellness” tools have evolved. Today’s modern mobile health devices feature software applications (apps) designed to remotely treat chronic conditions by helping modify patient behavior, as well as monitoring drug intake and physical condition biomarkers. These devices are dubbed “Digital Therapeutics,” and they present opportunities for anatomic pathology groups and clinical laboratories.

For if mobile apps are going to be used to monitor patients’ adherence to therapy—including prescription drugs—there will be a need for clinical laboratory tests that work in harmony with these apps. Otherwise, how will providers and insurers know for certain patients’ biomarkers have improved or regressed?

Massive Investments in Digital Therapeutics Companies

Today’s digital therapeutics (AKA, software for drugs) can be tailor to specific treatments of chronic conditions, such as:

·       diabetes mellitus;

·       cardiovascular disease;

·       hypertension; and,

·       chronic obstructive pulmonary disease (COPD).

Forbes states that the “future of healthcare will be app based.” That seem likely given the massive influx of capital being directed at the mobile healthcare industry.

The graphic above is taken from a 2015 report by PricewaterhouseCoopers Health Research Institute  (PwC), which sourced the data from the 2014 clinician workforce and consumer surveys. Since then, the demand for mHealth products has increased exponentially. Today’s digital therapeutics market includes clinical laboratory and pathology group treatments and drug therapies. (Graphic copyright: PwC.)

The global digital therapeutics market is projected to grow to about $9 billion by 2025. That’s up from $1.7 billion last year, according to a report by Grand View Research. Driving the popularity of digital therapeutics are the benefits it affords patients, explained the report’s summary. They include:

·       Continuous monitoring of vital signs;

·       Medication management; and,

·       Current healthcare reminders.

This is where pathologists and clinical laboratories come in. The medical laboratory can be the source for baseline blood tests before apps are used. And then, ongoing testing can determine if patients are taking drugs according to treatment guidelines and making the appropriate lifestyle changes.

Start-ups Raise Millions, Define Digital Therapeutics Space

One unique aspect of digital therapeutics is its ability to promote health improvements through behavioral changes alone. And millions are being invested in the concept.

For example, Virta Health Corp. raised $37 million in funding for an app that coaches diabetics on a diet to reverse their condition without drugs or surgery, according to MIT Technology Review.

“[Digital therapeutics] is still a fluid space that everyone is trying to categorize,” Peter Hames, co-founder and Chief Executive Officer of Big Health noted in the MIT Technology Review article. Among other programs, Big Health developed Sleepio, a sleep improvement program or insomnia app. Hames says most apps fall into two categories: “medication augmentation” or “medication replacement.”

Omada Health secured $127 million to conduct a clinical trial with Humana that investigates prediabetes, noted Forbes.

The study findings, which appeared in the Journal of Aging and Health, suggest that Omada Health’s digital behavior change program can help people to reduce chronic disease risk, noted a Humana news release.

The study involved Humana Medicare Advantage insurance members, who were enrolled in Omada Health’s Diabetes Prevention Program. The app enabled them to partake in online courses, use wireless scales, and tap other digital health tools as they worked to improve health and reduce risk of type 2 diabetes. Human coaches also were accessible.

“Few efforts have explored the feasibility and effectiveness of using technology to deliver diabetes prevention programs specifically for older adults,” the study researchers wrote.

According to the researchers:

·       501 people with average weight of 208 pounds participated;

·       Hour-long lessons were made available and expected to be completed by smartphone, laptop, or tablet;

·       Coaches monitored the information participants provided and their requests for counseling;

·       92% of participants completed at least nine of the 16 core online courses, which focused on topics such as changing food habits and increasing physical activities;

·       People lost 7.5% of body weight after 12 months, or 13 to 14 lbs.;

·       A subsample (69 individuals) who had lab tests performed improved glucose control as evidenced by a -0.14% reduction in glycosylated hemoglobin, and a decrease of -7.08 mg/dL in total cholesterol.

“These results support the clinical validity of the program with Medicare-eligible, at risk older adults. They are added evidence that chronic disease risk reduction is achievable through a variety of modalities, including digital-based programs with human coaching,” the researchers noted.

And because digital therapeutics amasses data that can be leveraged, Omada Health’s program acts as a “continuous learning system,” Sean Duffy, Omada Health’s co-founder and Chief Executive Officer, noted in Undark.

App Tracks People After Heart Attack

Johns Hopkins Medicine’s Corrie Health app is aimed at helping patients recover from heart attacks. A study at Johns Hopkins Bayview Medical Center in Baltimore explored the effectiveness of app-enabled information and resources made available to patients early in the heart attack recovery process, according to Corrie Health’s Website.

Results from the clinical study of 50 patients show no one was readmitted to hospital in the first 30 days, Undark reported.

“We can actually enroll patients who are six or seven hours out of having a stent placed in the ICU. We’re giving [the Corrie Health app] to patients when they have the time to spend watching the videos and asking questions about their medications … We’re getting them to buy-in and learn the skills while they care the most,” Francoise Marvel, MD, an internist affiliated with Johns Hopkins Bayview Medical Center, told Undark.

A Role for Medical Laboratories

So, is there a role for medical laboratories where digital therapeutics are being used? We think so. Pathologists and lab leaders may even want to reach out to venture capitalists working on mobile apps that combine adherence to therapies with medical lab tests.

As our population ages and the shortage of physicians becomes more evident, digital therapeutics may be a smart way to address select patient needs in a quality and cost-effective manner.

—Donna Marie Pocius

Related Information:

Digital Therapeutics: The Future of Health Care Will Be App-Based

Digital Therapeutics Market by Application, End User, and Segment Forecasts 2014 – 2025

Can Digital Therapeutics Be as Good as Drugs?

Digital Therapeutics Market 2017: Omada Health, WellDoc, Livongo Health, Noom Inc., 2Morow, Inc., Canary Health

Prevention Program Resulted in 7.5% Weight Loss in Humana Medicare Advantage Population

Outcomes of a Digital Health Program with Human Coaching for Diabetes Risk Reduction in a Medicare Population

Putting Digital Health Monitoring Tools to the Test

Decline in Imaging Utilization Could Be Linked to Changes in Policies and Funding for Diagnostics; Could Something Similar Happen with Anatomic Pathology?

New study analyzes the dramatic decline in the utilization of imaging diagnostics between 2008 and 2014 and suggests that reductions in imaging use could be the result of changes in federal policy, increased deductibles, and cost-cutting focuses

Anatomic pathologists have experienced sustained cuts to reimbursements for both technical component and professional component services during the past eight to 10 years. But what has not happened to pathology is a 33% decline in the volume of biopsies referred to diagnosis. Yet that is what some studies say has happened to imaging reimbursement since 2006.

Using Medicare data for Part B imaging procedures covering the years 2001 to 2014, researchers at a major university identified that, beginning in 2006, the total reimbursement for imaging procedures declined at a steady rate throughout the following eight years covered by the study. It is unclear what implications the finding of this study of imaging utilization might predict for the utilization of advance anatomic pathology services.

Routine Use of Imaging in Diagnostics is Slowing Down

The research into imaging utilization was conducted at Thomas Jefferson University and published in the journal Health Affairs. Led by David C. Levin, MD, Emeritus Professor and former Chair of the Department of Radiology at Thomas Jefferson University Hospital, the researchers examined imaging data from Medicare Part B (2001-2014) to determine the reason and rate of “slowdown” in routine use of imaging in diagnostics.

The researchers calculated utilization rates for “advanced” imaging modalities and component relative value unit (RVU) rates for all imaging modalities. They determined that trends in imaging rates and RVU rates rose between 2000 and 2008, but then sharply declined from 2008 to 2014. The researchers theorized that the reduction might have been due to changes in federal policy, increasing deductibles, and focus on cost-cutting by hospitals and healthcare providers.

Levin, along with Thomas Jefferson University associates Vijay M. Rao, MD, FACR, current Chair of Radiology, and Laurence Parker, PhD, Associate Professor of Radiology; and University of Wisconsin-Madison statistics Professor Charles D. Palit, PhD, argue that the decrease in imaging orders might reduce diagnostic costs, but also could negatively impact surgical pathologists, radiologists, medical researchers, and patients themselves.

In a Modern Healthcare article, Levin states that the reduction in utilization of imaging and radiology could be a slippery slope leading to decreased access to life-saving diagnostic tools that could leave patients “not getting the scans they probably need.”

What’s Fueling the Multi-Year Decline in Utilization of Imaging and Radiology?

In the Journal of American College Radiology, Levin, Rao, and Parker, attempt to “assess the recent trends in Medicare reimbursements to radiologists, cardiologists, and other physicians for non-invasive diagnostic imaging (NDI).”

Using data acquired from Medicare part B databases, the authors reported that total reimbursements for NDI peaked at $11.9 billion in 2006, but saw a steep decline of 33% to just over $8 billion in 2015. They attribute some of this decline as a result of the Deficit Reduction Act of 2005, which went into effect in 2007, as well as other cuts to NDI reimbursement funding. Reimbursement to radiologists, according to Levin et al, dropped by more than 19.5%, and reimbursement to cardiologists dropped nearly 45% between 2006 and 2015.

Surgical pathologists may see parallels in the total reimbursement for imaging during the years 2002-2015 compared to pathology technical component and professional component reimbursement during those same years. Taken from the Thomas Jefferson University study, the graphic above shows “total Part B payments for non-invasive diagnostic imaging to all physicians under the Medicare Physician Fee Schedule, 2002 to 2015. Vertical axis shows billions of dollars. The abrupt decline in 2007 was due to the Deficit Reduction Act. The declines in 2009, 2010, and 2011 were due largely to code bundling in, respectively, transthoracic echocardiography, radionuclide myocardial perfusion imaging, and CT of the abdomen and pelvis.” (Caption and image copyright: Thomas Jefferson University.)

In different Journal of American College Radiology article, Levin and Rao outline their concerns over another suspected cause for the decline in imaging utilization—the American Board of Internal Medicine Foundation (ABIMF) Choosing Wisely initiative.

According to Levin and Rao, the Choosing Wisely initiative was intended “to reduce the use of tests and treatments that were felt to be overused or often unnecessary.” Imaging examinations were included in the list of tests that were deemed to be “of limited value” in many situations. Levin and Rao suggested that there might have been a need to curtail testing pushed by payers, policymakers, and physicians at the time, but that the Choosing Wisely initiative could have added to a decline in imaging testing spurred on by the confusion physicians felt when attempting to access unclear scenarios and recommendations for the 124 imaging tests listed.

Imaging Decline Could Have Unintended Consequences for Providers and Patients 

In a Radiology Business article, Levin outlined some of the unintended consequences facing healthcare due to the reduction in imaging utilization. He states that “private imaging facilities are starting to close down” and “MRI and other advanced imaging exams are beginning to shift into hospital outpatient facilities.” He predicts that the shift from private facilities to hospital facilities could cause imaging costs to increase for customers and healthcare providers.

Levin suggests that Medicare could “raise the fees a little and make the private offices a little more viable.” The profit margins, Levin argues, “are so low right now that you basically can’t run a business.” Medicare as a program might be seeing huge savings, Levin notes in several articles, but physicians, laboratories, and patients are feeling the pinch as a result.

In an interview with Physicians Practice, Rao echoed Levin’s concerns. “Policy makers lack understanding of the value of imaging and spectrum of the services provided by radiologists,” he declared. “On an institutional level, under the new payment models, radiology is transitioning to a cost center and radiologists often don’t have a seat at the table.”

Rao points out that this devaluing of radiologists’ work affects not only healthcare facilities, but patients themselves. Radiologists provide “major contributions to patient care by making accurate diagnoses, and doing minimally invasive treatments given many technological advances leading to appropriate management and improved outcomes,” he argues. How long before Pathology follows a similar track?

Balancing Cost and Quality in Testing Without Sacrificing Patient Needs

The fear seems to be that the push to lower costs by eliminating unnecessary imaging is inhibiting radiologists and diagnosticians from providing necessary imaging for patients. And that delaying diagnoses affects the ability of healthcare providers to provide adequate and timely patient care. Rao suggests, however, that physicians’ use of medical imaging could simply be evolving.

“There were other factors that also helped limit the rapid growth, such as greater attention by physicians to practice guidelines, concerns about radiation exposure to patients, and the Great Recession of 2007 to 2009,” Rao noted in a Thomas Jefferson University news release. “However, we expect that additional changes, such as the advent of lung cancer and other screening programs, and the use of computerized clinical decision support, will continue to promote and support appropriate use of imaging technology.”

The drive to reduce healthcare expenditures should not be dismissed. We may soon see parallels in the rise and fall of imaging utilization for genetic testing, surgical pathology, and other new and expensive clinical laboratory technologies as policymakers attempt to balance increased spending against the clinical value of these diagnostic tools.

Amanda Warren

Related Information:

The Overuse of Imaging Procedures on the Decline Since 2008

After Nearly a Decade of Rapid Growth, Use and Complexity of Imaging Declined, 2008–2014

Reducing Inappropriate Use of Diagnostic Imaging Through the Choosing Wisely Initiative

The Recent Losses in Medicare Imaging Revenues Experienced by Radiologists, Cardiologists, and Other Physicians

Five Minutes with David C. Levin, MD: Outpatient Imaging Cuts and Unintended Consequences

Ten Questions with Vijay M. Rao, MD, FACR

Diagnostic Imaging Transitions from Volume to Value

Imaging Use Plunges as Coding, Reimbursement Tightens Up

Has the Time Come for Integration of Radiology and Pathology?

Reference Pricing and Price Shopping Hold Potential Peril for Both Clinical Laboratories and Consumers

Medicare Officials Back Off a Proposal to Make Hospital Inspection Reports Publicly Available; CLIA Inspections of Medical Laboratories Are Still Not Public

The Joint Commission opposed the Medicare proposal, and patient advocate groups say rescinding it is a setback for hospital  transparency

Powerful interests arrayed against greater transparency in the performance of hospitals, physicians, and medical laboratories have stopped a proposed Medicare program that would have allowed the public to see the results of hospital inspections.

Stopped in its tracks was an effort by the Centers for Medicare and Medicaid Services (CMS) to make hospital accreditation inspection reports available for public viewing. Opposition to this program led CMS to withdraw its plan for heightened transparency.

CMS originally called the proposal “groundbreaking” in a National Public Radio (NPR) article. That’s because it would have enabled consumers to view reports that private accreditation organizations, such as The Joint Commission, complete after each inspection. Inspection reports contain information on errors and problems found during hospital surveys. CMS’ push for more transparency in hospital inspections is consistent with the healthcare industry’s trend toward open sharing of healthcare quality, price, and other data.

“We are proposing changes relating to transparency of accrediting organizations survey reports and plans of correction of providers and suppliers,” CMS officials wrote in a proposed rule published on April 28.

CMS Pulls Back Proposal to Make Hospital Survey Reports Public

But it was not to be. After receiving comments, CMS officials stated in early August that the agency had pulled back the proposal.

“CMS is committed to ensuring that patients have the ability to review the findings used to determine that a facility meets the health and safety standards required for Medicare participation. However, we believe further review, consideration, and refinement of this proposal is necessary to ensure that CMS establishes requirements, consistent with our statutory authority, that will inform patients and continue to support high quality care,” noted a CMS fact sheet.

Agencies Find Problems in Hospitals That Accreditors Do Not, CMS Declares

It’s against federal law for CMS to release data related to hospital inspections, Becker’s Hospital Review reported. And, as part of the Clinical Laboratory Improvement Amendments (CLIA), clinical laboratories must participate in inspections to ensure they qualify for Medicare and Medicaid payments. However, the inspection reports of the nation’s medical laboratories are not made public.

So, what motivated CMS to make healthcare organizations’ inspection information public? CMS noted that private accreditation organizations miss serious provider problems that state inspectors find in follow-up visits to hospitals, ProPublica explained.

In fact, state agency reviews of 103 hospitals in 2014 found 41 serious deficiencies, including 39 missed by the accreditors, noted the NPR article.

The chart above based on Johns Hopkins research was compiled by the National Center for Health Statistics and reported by The Washington Post. It shows that medical errors are now the third leading cause of death in the US. (Photo copyright: The Washington Post.)

“Right now, the public has very little information about the places where they’re putting their life on the line, and that’s just not acceptable. If [they are] a good place, what are they afraid of?” Rosemary Gibson, Senior Advisor at The Hastings Center, stated in the NPR article.

Reaction from Accreditors and Consumer Groups Differs

The Joint Commission opposed the CMS proposal. And, now, patient safety advocacy groups are disappointed about the decision by Medicare officials to rescind the proposed program.

“We believe the proposal will have significant detrimental consequences on our nation’s ability to continually improve the delivery of healthcare services,” stated Mark Chassin, MD, FACP, MPP, MPH, Joint Commission President and Chief Executive Officer, in a June letter to CMS published partially in an HCPro blog post.

HCPro, a firm that aids organizations in accreditation, credentialing, and other needs, noted the following Joint Commission concerns about publicly shared survey reports in the blog post:

  • Providers may be less likely to be open about opportunities for improvement;
  • Accreditors could struggle to create new standards;
  • The number of non-accredited facilities may increase;
  • Accreditation may be devalued; and,
  • Costs to providers and accreditors would likely rise.

The Center for Improvement in Healthcare Quality (CIHQ), another accreditation option for hospitals, also expressed concerns with the CMS proposal, according to the ProPublica report.

“Knowing that survey [inspection] reports are public knowledge will only incentivize hospitals and other healthcare entities to go back to the days of ‘hiding’ quality of care issues from accreditors, rather than working with us to improve the quality and safety of care rendered to patients,” CIHQ advised in the ProPublica article.

The Leapfrog Group, which bills itself as an advocate of hospital transparency, called the reversed proposal “a disappointing setback for healthcare transparency.”

In a statement, Leah Binder, President and Chief Executive Officer of The Leapfrog Group, noted, “We are disappointed to learn that the agency that runs Medicare (CMS) has reversed course on its proposal to require private accrediting organizations, such as the Joint Commission, to publicly release reports of problems they found in hospitals and other healthcare facilities. The public deserves full transparency on how the healthcare industry performs.”

Clearly the public is calling for increased transparency in healthcare. As are many organizations and industry journals, such as the Association of Health Care Journalists (AHCJ), which presented a national award to Ellen Gabler, an investigative reporter for the Milwaukee Journal Sentinel, for her work covering weaknesses in inspections for clinical laboratories. (See Dark Daily, “Journalists Take Home Top National Awards for Their Work Covering Theranos and the Clinical Laboratory Industry,” May 16, 2016.)

Some Accreditation Information Available Online

So, for the time being, it appears that what is found during hospital inspections will stay within the inspection report and will not become available to the general public. However, with consumers expecting greater transparency and higher levels of service in all aspects of healthcare, the interest in public access to the quality performance of hospitals, physicians, clinical laboratories, and anatomic pathology groups will only increase.

Meanwhile, for patients interested in existing resources about provider quality, The Joint Commission has an online “find a gold star healthcare organization” quality check. Also, the American College of Surgeons publishes an online search for accredited facilities. And, the Centers for Disease Control and Prevention (CDC) offers an online search for CLIA accredited labs.

—Donna Marie Pocius

 

Related Information:

Secret Data on Hospital Inspections May Become Public At Last

Proposed Centers for Medicare and Medicaid (CMS) Rule

Changes to the Application and Reapplication Procedures for National Accrediting Organizations

CMS Backs Off Proposal to Make Hospital Accredited Investigations Public; Five Things to Know

Accreditors Can Keep Their Hospital Inspection Reports Secret, Feds Decide

Joint Commission Comments on Proposed CMS Transparency Rule

Disappointing Setback for Healthcare Transparency

Journalists Take Home Top National Awards for Their Work Covering Theranos and the Clinical Laboratory Industry

 

Kaiser Permanente Announces that Virtual Visits with Providers Have Surpassed Face-to-Face Appointments at Meeting of Nashville Health Care Council Members

Should this milestone be an indicator that more patients are willing to use telehealth to interact with providers, then clinical laboratories and pathology groups will need to respond with new ways to collect specimens and report results

Telehealth is gaining momentum at Kaiser Permanente (KP). Public statements by Kaiser administrators indicate that the number of virtual visits (AKA, telemedicine) with providers now is about equal to face-to-face visits with providers. This trend has many implications for clinical laboratories, both in how patient samples are collected from patients using virtual provider visits and how the medical laboratory test results are reported.

That this is happening at KP is not a surprise. The health system is well-known as a successful healthcare innovator. So, when its Chairman and Chief Executive Officer Bernard Tyson publically announced that the organization’s annual number of virtual visits with healthcare providers had surpassed the number of conventional in-person appointments, he got the members’ attention, as well as, the focus of former US Senator Bill Frist, MD, who moderated the event.

Tyson made this statement during a gathering of the Nashville Health Care Council. He informed the attendees that KP members have more than 100 million encounters each year with physicians, and that 52% of those are virtual visits, according to an article in Modern Healthcare.

However, when asked to comment about Tyson’s announcement during a video interview with MedCity News following the 13th Annual World Health Care Congress in Washington, DC, Robert Pearl, MD, Executive Director/CEO of the Permanente Medical Group and President/CEO of the Mid-Atlantic Permanente Medical Group (MAPMG), stated, “Currently we’re doing 13-million virtual visits—that’s a combination of secure e-mail, digital, telephone, and video—and we did 16-million personal visits. But, by 2018, we expect those lines will cross because the virtual visits [are] going up double digits, whereas the in-person visits are relatively flat.”

So, there’s a bit of disagreement on the current numbers. Nevertheless, the announcement that consumer demand for virtual visits was increasing sparked excitement among the meeting attendees and telemedicine evangelists.

“It’s astounding,” declared Senator Frist, “because it represents what we all want to do, which is innovate and push ahead,” noted an article in The Tennessean.

Is this a wake-up call for the healthcare industry? Should clinical laboratories start making plans for virtual patients?

Of virtual office visits, Pearl noted in the interview with MedCity News, “Why wouldn’t you want, if the medical conditions are appropriate, to have your care delivered from the convenience of your home, or wherever you might be, at no cost to you, and to have it done immediately without any delays in care?”

Pearl added that one-third of patients in primary care provider virtual visits are able to connect with specialists during those sessions.

“It’s better quality, greater convenience, and certainly better outcomes as care begins immediately,” he noted.

Kaiser Permanente ‘Reimagines’ Medical Care

The virtual visit milestone is an impactful one at Kaiser Permanente, an Oakland, Calif.-based nonprofit healthcare organization that includes Kaiser Foundation hospitals, Permanente Medical Groups, and the Kaiser Foundation Health Plan. It suggests that the KP has successfully integrated health information technology (HIT) with clinical workflows. And that the growing trend in virtual encounters indicates patients are becoming comfortable accessing physicians and clinicians in this manner.

As Tyson stated during the Nashville meeting, it is about “reimagining medical care.”

Bernard Tyson (right), Chairman and CEO of Kaiser Permanente, speaking with former Senator Bill Frist, MD (left), at the Nashville Health Care Council meeting where he announced that the non-profit provider’s number of virtual visits with patients had surpassed its face-to-face appointments. (Photo Credit: Nashville Health Care Council.)

What does “reimagining” mean to the bottom line? He shared these numbers with the audience, according to the Modern Healthcare report:

  • 25% of the system’s $3.8 billion in capital spending goes to IT;
  • 7-million people are Kaiser Permanente members;
  • 95% of members have a capitated plan, which means they pay Kaiser Permanente a monthly fee for healthcare services, including the virtual visits.

The American Telemedicine Association, which itself interchanges the words “telemedicine” and “telehealth,” noted that large healthcare systems are “reinventing healthcare” by using telemedicine. The worldwide telemedicine market is about $19 billion and expected to grow to more than $48 billion by 2021, noted a report published by Research and Markets.

Consumers Want Virtual Health, but Providers Lag Behind Demand

Most Americans are intrigued with telehealth services. However, not everyone is participating in them. That’s according to an Advisory Board Company Survey that found 77% of 5,000 respondents were interested in seeing a doctor virtually and 19% have already done so.

Healthcare systems such as Kaiser Permanente and Cleveland Clinic are embracing telehealth, which Dark Daily covered in a previous e-briefing. However, the healthcare industry overall has a long way to go “to meet consumer interest in virtual care,” noted an Advisory Board news release about the survey.

“Direct-to-consumer virtual specialty and chronic care are largely untapped frontiers,” noted Emily Zuehlke, a consultant with The Advisory Board Company (NASDAQ:ABCO). “As consumers increasingly shop for convenient affordable healthcare—and as payers’ interest in low-cost access continues to grow—this survey suggests that consumers are likely to reward those who offer virtual visits for specialty and chronic care,” she stated.

Telehealth Could Increase Healthcare Costs

Does telehealth reduce healthcare spending? A study published in Health Affairs suggests that might not be the case. The researchers found that telemedicine could actually increase costs, since it drives more people to use healthcare.

“A key attraction of this type of telehealth for health plans and employers is the potential savings involved in replacing physician office and emergency department visits with less expensive virtual visits. However, increased convenience may tap into unmet demand for healthcare, and new utilization may increase overall healthcare spending,” the study authors wrote in the Health Affairs article.

Clinical Laboratories Can Support Virtual Healthcare  

Clinical laboratories must juggle supporting consumer demand for convenience, while also ensuring health quality expectations and requirements. How can pathologists and medical laboratory leaders integrate their labs with the patient’s virtual healthcare experience, while also aiming for better and more efficient care? One way would be to explore innovative ways to contact patients about the need to collect specimens subsequent to virtual visits. Of course, the procedures themselves must be done in-person. Nevertheless, medical laboratories could find ways to digitally complement—through communications, test results sharing, and education—patients’ use of virtual visits.

—Donna Marie Pocius

 

Related Information:

Kaiser Permanente Chief Says Members are Flocking to Virtual Visits

Kaiser’s Tyson to Nashville: Health Care’s Future Isn’t in a Hospital

More Virtual Care Than Office Visits at Kaiser Permanente by 2018

Telemedicine Market Forecasts: 2016 to 2021

What do Consumers Want from Virtual Visits?

Virtual Visits with Medical Specialists Draw Strong Consumer Demand, Survey Shows

Direct-to-Consumer Telehealth May Increase Access to Care but Does Not Decrease Spending

Cleveland Clinic Gives Patients Statewide 24/7 Access to Physicians Through Smartphones, iPads, Tablets, and Online; Will Telemedicine Also Involve Pathologists?

Harvard Medical School Researchers Use CRISPR Technology to Insert Images into the DNA of Bacteria

Technology allows retrievable information to be recorded directly into the genomes of living bacteria, but will this technology have value in clinical laboratory testing?

Researchers at Harvard Medical School have successfully used CRISPR technology to encode an image and a short film into the Deoxyribonucleic acid (DNA) of bacteria. Their goal is to develop a way to record and store retrievable information in the genomes of living bacteria. A story in the Harvard Gazette described the new technology as a sort of “biological hard drive.”

It remains to be seen how this technology might impact medical laboratories and pathology groups. Nevertheless, their accomplishment is another example of how CRISPR technology is leading to new insights and capabilities that will advance genetic medicine and genetic testing.

The researchers published their study in the journal Science, a publication of the American Association for the Advancement of Science (AAAS).

Recording Complex Biological Events in the Genomes of Bacteria

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are DNA sequences containing short, repetitive base sequences found in the genomes of bacteria and other micro-organisms that can facilitate the modification of genes within organisms. The term CRISPR also can refer to the whole CRISPR-Cas9 system, which can be programmed to pinpoint certain areas of genetic code and to modify DNA at exact locations.

Led by George Church, PhD, faculty member and Professor of Genetics at Harvard Medical School, the team of researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University in Cambridge, Mass., constructed a molecular recorder based on CRISPR that enables cells to obtain DNA information and produce a memory in the genome of bacteria. With it, they inserted a GIF image and a five-frame movie into the bacteria’s DNA.

“As promising as this was, we did not know what would happen when we tried to track about 100 sequences at once, or if it would work at all,” noted Seth Shipman, PhD, Postdoctoral Fellow, and one of the authors of the study in the Harvard Gazette story. “This was critical since we are aiming to use this system to record complex biological events as our ultimate goal.”

Translating Digital Information into DNA Code

The team transferred an image of a human hand and five frames of a movie of a running horse onto nucleotides to imbed data into the genomes of bacteria. This produced a code relating to the pixels of each image. CRISPR was then used to insert genetic code into the DNA of Escherichia coli (E-coli) bacteria. The researchers discovered that CRISPR did have the ability to encode complex information into living cells.

“The information is not contained in a single cell, so each individual cell may only see certain bits or pieces of the movie. So, what we had to do was reconstruct the whole movie from the different pieces,” stated Shipman in a BBC News article. “Maybe a single cell saw a few pixels from frame one and a few pixels from frame four … so we had to look at the relation of all those pieces of information in the genomes of these living cells and say, ‘Can we reconstruct the entire movie over time?’”

The team used an image of a digitized human hand because it embodies the type of intricate data they wish to use in future experiments. A movie also was used because it has a timing component, which could prove to be beneficial in understanding how a cell and its environment may change over time. The researchers chose one of the first motion pictures ever recorded—moving images of a galloping horse by Eadweard Muybridge, a British photographer and inventor from the late 19th century.

“We designed strategies that essentially translate the digital information contained in each pixel of an image or frame, as well as the frame number, into a DNA code that, with additional sequences, is incorporated into spacers. Each frame thus becomes a collection of spacers,” Shipman explained in the Harvard Gazette story. “We then provided spacer collections for consecutive frames chronologically to a population of bacteria which, using Cas1/Cas2 activity, added them to the CRISPR arrays in their genomes. And after retrieving all arrays again from the bacterial population by DNA sequencing, we finally were able to reconstruct all frames of the galloping horse movie and the order they appeared in.”

In the video above, Wyss Institute and Harvard Medical School researchers George Church, PhD, and Seth Shipman, PhD, explain how they engineered a new CRISPR system-based technology that enables the chronological recording of digital information, like that representing still and moving images, in living bacteria. Click on the image above to view the video. It is still too early to determine how this technology may be useful to pathologists and clinical laboratory scientists. (Caption and video copyright: Wyss Institute at Harvard University.)

“In this study, we show that two proteins of the CRISPR system, Cas1 and Cas2, that we have engineered into a molecular recording tool, together with new understanding of the sequence requirements for optimal spacers, enables a significantly scaled-up potential for acquiring memories and depositing them in the genome as information that can be provided by researchers from the outside, or that, in the future, could be formed from the cells natural experiences,” stated Church in the Harvard Gazette story. “Harnessed further, this approach could present a way to cue different types of living cells in their natural tissue environments into recording the formative changes they are undergoing into a synthetically created memory hotspot in their genomes.”

Encoding Information into Cells for Clinical Laboratory Testing and Therapy

The team plans to focus on creating molecular recording devices for other cell types and on enhancing their current CRISPR recorder to memorize biological information.

“One day, we may be able to follow all the developmental decisions that a differentiating neuron is taking from an early stem cell to a highly-specialized type of cell in the brain, leading to a better understanding of how basic biological and developmental processes are choreographed,” stated Shipman in the Harvard Gazette story. Ultimately, the approach could lead to better methods for generating cells for regenerative therapy, disease modeling, drug testing, and clinical laboratory testing.

According to Shipman in the BBC News article, these cells could “encode information about what’s going on in the cell and what’s going on in the cell environment by writing that information into their own genome.”

This field of research is still new and its full potential is not yet understood. However, if this capability can be developed, there could be opportunities for pathologists and molecular chemists to develop methods for in vivo monitoring of a patient’s cell function. These methods could prove to be an unexpected new way for clinical laboratories to add value and become more engaged with the clinical care team.

—JP Schlingman

Related Information:

New CRISPR Technology Takes Cells to the Movies

Molecular Recordings by Directed CRISPR Spacer Acquisition

GIF and Image Written into the DNA of Bacteria

Pro and Con: Should Gene Editing be Performed on Human Embryos?

CRISPR Gene Editing Can Cause Hundreds of Unintended Mutations

Intellia Therapeutics Announces Patent for CRISPR/Cas Genome Editing in China

Everything You Need to Know about CRISPR, the New Tool that Edits DNA

Breakthrough DNA Editor Born of Bacteria

Patent Dispute over CRISPR Gene-Editing Technology May Determine Who Will Be

Top Biologists Call for Moratorium on Use of CRISPR Gene Editing Tool for Clinical Purposes Because of Concerns about Unresolved Ethical Issues

CRISPR-Related Tool Set to Fundamentally Change Clinical Laboratory Diagnostics, Especially in Rural and Remote Locations

SHERLOCK makes accurate, fast diagnoses for about 61-cents per test with no refrigeration needed; could give medical laboratories a new diagnostic tool

Genetics researchers have been riveted by ongoing discoveries related to Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) for some time now and so have anatomic pathology laboratories. The diagnostic possibilities inherent in CRISPR have been established, and now, a new diagnostic tool that works with CRISPR is set to change clinical laboratory diagnostics in a foundational way.

The tool is called SHERLOCK, which stands for (Specific High-sensitivity Enzymatic Reporter unLOCKing). And it is causing excitement in the scientific community for several reasons:

  • It can detect pathogens in extremely small amounts of genetic matter;
  • Tests can be performed using urine and/or saliva rather than blood;
  • The tests are extremely sensitive; and they
  • Cost far less than the diagnostic tests currently in use.

In an article published in Science, researchers described SHERLOCK tests that can distinguish between strains of Zika and Dengue fever, as well as determining the difference between mutations in cell-free tumor DNA.

How SHERLOCK and CRISPR Differ and Why That’s Important

Scientists have long suspected that CRISPR could be used to detect viruses. However, far more attention has been given to the its genome editing capabilities. And, there are significant differences between how CRISPR and SHERLOCK work. According to the Science article, when CRISPR is used to edit genes, a small strip of RNA directs an enzyme capable of cutting DNA to a precise location within a genome. The enzyme that CRISPR uses is called Cas9 (CRISPR associated protein 9). It works like scissors, snipping the strand of DNA, so that it is either damaged or replaced by a healthy, new sequence.

SHERLOCK, however, uses a different enzyme—Cas13a (originally dubbed C2c2 by the researchers who discovered it). Cas13a goes to RNA, rather than DNA, and once it starts cutting, it doesn’t stop. It chops through any RNA it encounters. The researchers who developed SHERLOCK describe these cuts as “collateral cleavage.” According to an article published by STAT, “All that chopping generates a fluorescent signal that can be detected with a $200 device or, sometimes, with the naked eye.”

 

The screenshot above is from a video in which Feng Zhang, PhD (center), a Core Member of the Broad Institute at MIT and one of the lead researchers working on SHERLOCK, and his research team, explain the difference and value SHERLOCK will make in the detection of diseases like Zika. Click on the image above to watch the video. (Video copyright: Broad Institute/MIT.)

Early Stage Detection in Clinical Laboratories

A research paper published in Science states that SHERLOCK can provide “rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity.” Attomolar equates to about one part per quintillion—a billion-billion. According to the article on the topic also published in Science, “The detection sensitivity of the new CRISPR-Cas13a system for specific genetic material is one million times better than the most commonly used diagnostic technique.” Such sensitivity suggests that clinical laboratories could detect pathogens at earlier stages using SHERLOCK.

The Stat article notes that, along with sensitivity, SHERLOCK has specificity. It can detect a difference of a single nucleotide, such as the difference between the African and Asian strains of Zika (for example, the African strain has been shown to cause microcephaly, whereas the Asian strain does not). Thus, the combination of sensitivity and specificity could mean that SHERLOCK would be more accurate and faster than other diagnostic tests.

Clinicians in Remote Locations Could Diagnose and Treat Illness More Quickly

Perhaps one of the most important aspects of SHERLOCK is the portability and durability of the test. It can be performed on glass fiber paper and works even after the components have been freeze dried. “We showed that this system is very stable, so you can really put it on a piece of paper and it will survive. You don’t have to refrigerate it all the times,” stated Feng Zhang, PhD, in an interview with the Washington Post. Zhang is a Core Member of the Broad Institute at MIT and was one of the scientists who developed CRISPR.

The researchers note that SHERLOCK could cost as little as 61-cents per test to perform. For clinicians working in remote locations with little or no power, such a test could improve their ability to diagnose and treatment illness in the field and possibly save lives.

“If you had something that could be used as a screening test, very inexpensively and rapidly, that would be a huge advance, particularly if it could detect an array of agents,” stated William Schaffner, MD, Professor and Chair of the Department of Preventive Medicine at Vanderbilt University Medical Center, in the Post article. Schaffner describes the Broad Institute’s research as being “very, very provocative.”

The test could radically change the delivery of care in more modern settings, as well. “It looks like one significant step on the pathway [that] is the Holy Grail, which is developing point-of-care, or bedside detection, [that] doesn’t require expensive equipment or even reliable power,” noted Scott Weaver, PhD, in an article on Big Think. Weaver is a Professor and Director at the Institute for Human Infections and Immunity University of Texas Medical Branch in Galveston, Texas.

Just the Beginning

Anatomic pathologists and clinical laboratories will want to follow SHERLOCK’s development. It could be on the path to fundamentally transforming the way disease gets diagnosed in their laboratories and in the field.

According to the Post article, “The scientists have filed several US patent applications on SHERLOCK, including for uses in detecting viruses, bacteria, and cancer-causing mutations.” In addition to taking steps to secure patents on the technology, the researchers are exploring ways to commercialize their work, as well as discussing the possibility of launching a startup. However, before this technology can be used in medical laboratory testing, SHERLOCK will have to undergo the regulatory processes with various agencies, including applying for FDA approval.

—Dava Stewart

 

Related Information:

New CRISPR Tool Can Detect Tiny Amounts of Viruses

CRISPR Cousin SHERLOCK May Be Able to Track Down Diseases, Scientists Say

Nucleic Acid Detection with CRISPR-Cas13a/C2c2

A New CRISPR Breakthrough Could Lead to Simpler, Cheaper Disease Diagnosis

Meet CRISPR’s Younger Brother, SHERLOCK

Trends in Genomic Research That Could Impact Clinical Laboratories and Anatomic Pathology Groups Very Soon

Pathologists and Clinical Laboratories May Soon Have a Test for Identifying Cardiac Patients at Risk from Specific Heart Drugs by Studying the Patients’ Own Heart Cells

Patent Dispute over CRISPR Gene-Editing Technology May Determine Who Will Be Paid Licensing Royalties by Medical Laboratories

;