The CDC suggests that hospitals treating patients for flu symptoms perform clinical laboratory tests for avian influenza A within 24 hours. This additional testing will pinpoint the specific type of flu infecting an individual patient and help prevent further spread of the bird flu virus.
“It’s the subtyping that takes us from knowing that a virus is in the general bucket of ‘influenza A’ to knowing more specifically whether it’s a garden-variety seasonal version of influenza A or, more rarely, a novel version of influenza A like H5N1,” CDC Principal Deputy Director Nirav Shah, MD, JD, told CNN.
According to the CDC, a panzootic of pathogenic avian H5N1 flu virus is currently affecting wild birds, poultry, dairy cows, and other animals throughout the country. There have been 67 total cases of bird flu identified in humans in the US since 2022, with 66 of those cases occurring in 2024.
The risk of humans contracting bird flu are low but is elevated among those who work closely with wild birds, poultry, and dairy cattle. The incidences of the flu virus in animals continues to increase, so CDC says it is important to identify potential bird flu cases in humans in a timely manner.
This demonstrates recognition by the CDC and the clinical laboratory profession that advances in molecular diagnostics and genetic testing now make it feasible for many hospital labs to perform these tests in-house on relevant patients. Such molecular testing is less expensive and produces a faster answer today, compared to just a few years ago.
This call for more lab tests in hospitals is also recognition of the value near-patient testing has from a public health perspective. Historically, it was regional and local public health labs that were sent specimens for testing from patients identified as having an infection that were a public health concern.
The good news is that this expands the role of hospital laboratories for all the right reasons. The downside is that hospital labs will probably see many test claims for these assays not be paid promptly by payers—or paid after unnecessary delays.
“The system right now tells us what has already happened. What we need is to shift to a system that tells us what’s happening in the moment. That is what we are doing today,” Nirav Shah, MD, JD (above), CDC principal deputy told CNN. Hospital and clinical laboratories will likely see an increase in orders for molecular and genetic testing for influenza A. (Photo copyright: Centers for Disease Control and Prevention.)
CDC Recommendations to Clinical Laboratories
The CDC alert also acknowledges that most individuals infected with avian flu were exposed to the virus via the handling of infected dairy cows or poultry in unprotected workplaces. There are no known cases of human-to-human transmission of the disease.
Most cases of avian flu in humans have been clinically mild and the patients quickly recover. However, on January 6, the CDC announced that an elderly patient with underlying health conditions in Louisiana who was previously hospitalized with severe avian influenza A illness had passed away. This case was the first confirmed death in the US attributed to the illness.
The CDC’s Health Advisory makes the following recommendations to clinical laboratories:
Subtype respiratory specimens that are positive for influenza A, but negative for seasonal influenza A virus subtypes, and forward those specimens to a public health laboratory within 24 hours.
Refrain from batching specimens for consolidated or bulk shipment to public health laboratories if that process could result in shipping delays.
Notify public health officials if a hospital or clinical lab does not have access to influenza A virus subtyping and arrange for a public health or commercial lab with this testing capability to perform the analysis.
Clearly link specimens to clinical information from the patient to ensure the prioritization of severely ill and ICU patients.
Immediately contact local public health authority if a positive result for influenza A (H5) virus is obtained using a laboratory developed test (LDT) or another A (H5) subtyping test to initiate time-critical actions.
The CDC’s Health Advisory also states public health laboratories should complete influenza A subtyping assays within 24 hours of receipt and report those results to the CDC, as required.
“One of the motivators of accelerating testing [is] so that we are, again, able to faster see difference between signal and noise, given that the volume of hospitalizations is going up as expected in a rather routine flu season,” Demetre Daskalakis, MD, MPH, director of the CDC’s National Center for Immunization and Respiratory Diseases (NCIRD), told CNN.
Preparing for more Bird Flu in Humans
According to the CDC, approximately 100,000 Americans have been hospitalized with type-A flu this season. The agency expects another 100,000 hospitalizations due to the virus before the end of this year. CDC is tracking flu infections on a weekly basis. Data can be reviewed on its website.
Other government organizations also are developing methods intended to curb the spread of the influenza virus. The federal Department of Agriculture recently launched a national program to test for bird flu in untreated milk. And the US Department of Health and Human Services (HHS) allocated $211 million in new funding to address emerging infectious diseases.
On January 17, the HHS announced it would give $590 million to Moderna to “accelerate the development of mRNA-based pandemic influenza vaccines and enhance mRNA platform capabilities so that the US is better prepared to respond to other emerging infectious diseases.”
“The funding will allow us to bring the benefits of mRNA vaccine technology to bear against a wider array of emerging threats,” said HHS Assistant Secretary for Preparedness and Response Dawn O’Connell, JD, in the announcement. “mRNA technology can be faster to develop and easier to update than other vaccines making it a helpful tool to have against viruses that move fast and mutate quickly.
Hospital laboratories and public health labs should prepare for a spike in test orders for avian influenza A as this year’s flu season progresses. As bird flu increases in animals, it increases the possibility that the disease might infect humans.
“Previously … CDC developed tests for emerging pathogens and then shared those tests with others, and then after that, commercial labs would develop their own tests,” Shah told CNN. “That process took time. Now with these new arrangements, commercial labs will be developing new tests for public health responses alongside CDC, not after CDC.”
In a news release announcing the contract, ARUP Laboratories also characterized the move as a shift for the agency.
“The new contract formalizes ARUP’s relationship with the CDC,” said Benjamin Bradley, MD, PhD, medical director of the ARUP Institute for Research and Innovation in Infectious Disease Genomic Technologies, High Consequence Pathogen Response, Virology, and Molecular Infectious Diseases. “We continue to expand our capabilities to address public health crises and are prepared to scale up testing for H5N1, or develop other tests quickly, should the need arise.”
“To be clear, we have no evidence so far that this [bird flu] virus can easily infect human beings or that it can spread between human beings easily in a sustained fashion,” Jennifer Nuzzo, DrPH (above), Director of the Pandemic Center and Professor of Epidemiology at Brown University School of Public Health, told CNN. “If it did have those abilities, we would be in a pandemic.” Clinical laboratory leaders will recall the challenges at the CDC as it developed its SARS-CoV-2 test early in the COVID-19 pandemic. (Photo copyright: Brown University.)
Missouri Case Raises Concerns
The first human infection of HPAI was reported in late March following a farmer’s “exposure to dairy cows presumably infected with bird flu,” the CDC stated in its June 3, 2024, bird flu Situation Summary. That followed confirmation by the USDA’s Animal and Plant Health Inspection Service (APHIS) of an HPAI outbreak in commercial poultry flocks in February 2022, and the CDC’s confirmation of the first known infections in dairy herds reported on March 25, 2024.
Concerns about the outbreak were heightened in September following news that a person in Missouri had been infected with the virus despite having no known contact with infected animals. CNN reported that it was the 14th human case in the US this year, but all previous cases were in farm workers known to be exposed to infected dairy cattle or poultry.
In a news release, the Missouri Department of Health and Senior Services (DHSS) revealed that the patient, who was not identified, was hospitalized on Aug. 22. This person had “underlying medical conditions,” DHSS reported, and has since recovered and was sent home. Both DHSS and the CDC conducted tests to determine that the virus was the H5 subtype, the news release states.
At present, the CDC states that the public health risk from the virus is low. However, public health experts are concerned that risks could rise as the weather gets cooler, creating opportunities for the virus to mutate “since both cows and other flu viruses will be on the move,” CNN reported.
Concerns over CDC Testing and FDA Oversight
In the months immediately following the first human case of the bird flu virus, Nuzzo was among several public health experts sounding an alarm about the country’s ability to ramp up testing in the face of new pathogens.
“We’re flying blind,” she told KFF Health News in June, due to an inability to track infections in farmworkers. At that time, tests had been distributed to approximately 100 public health labs, but Nuzzo and other experts noted that doctors typically order tests from commercial laboratories and universities.
KFF reported that one diagnostics company, Neelyx Labs, ran into obstacles as it tried to license the CDC’s bird flu test. Founder, CEO, and lead scientist Shyam Saladi, PhD, told KFF that the federal agency had promised to cooperate by facilitating a license and a “right to reference” CDC data when applying for FDA authorization but was slow to come through.
While acknowledging the need for testing accuracy, Greninger contended that the CDC was prioritizing caution over speed, as it did in the early days of the COVID-19 pandemic. “The CDC should be trying to open this up to labs with national reach and a good reputation,” he told KFF.
Another problem, KFF reported, related to the FDA’s new oversight of laboratory developed tests (LDTs), which is causing labs to move cautiously in developing their own tests.
Jennifer Nuzzo, DrPH (above), Director of the Pandemic Center and Professor of Epidemiology at the Brown University School of Public Health co-authored a June 2024 analysis in Health Affairs that called on the CDC to develop “a better testing playbook for biological emergencies.” The authors’ analysis cited earlier problems with the responses to the COVID-19 and mpox (formerly known as monkeypox) outbreaks.
If global surveillance networks have detected a novel pathogen, the authors advise, the US should gather information and “begin examining the existing testing landscape” within the first 48 hours.
Once the pathogen is detected in the US, they continued, FDA-authorized tests should be distributed to public health laboratories and the CDC’s Laboratory Response Network (LRN) laboratories within 48 hours.
Advocates of this approach suggest that within the first week diagnostics manufacturers should begin developing their own tests and the federal government should begin working with commercial labs. Then, within the first month, commercial laboratories should be using FDA-authorized tests to provide “high throughput capacity.”
This may be good advice. Experts in the clinical laboratory and healthcare professions believe there needs to be improvement in how novel tests are developed and made available as novel infectious agents are identified.
Encouraging patients—even children—to be more directly involved in their own medical care may reduce the burden on healthcare workers and might even help those clinical laboratories struggling to hire enough phlebotomists to collect specimens
Researchers at Emory University School of Medicine have concluded a study which found that school-aged children can successfully use a nasal swab to obtain their own SARS-CoV-2 test specimens. This may come as a surprise to hospital and clinical laboratory personnel who have performed nasal swabbing for COVID-19 tests. Some people, adults included, find the procedure so uncomfortable it brings tears.
And yet, after being shown a 90-second how-to video and given a handout with written instructions and pictures, 197 Atlanta children who had COVID-19 symptoms between July and August of 2021 performed their own self-swabbing. A healthcare worker then collected a second swabbed sample. All samples were submitted to a clinical laboratory for PCR analysis.
The Emory study provides another example of how the healthcare system is engaging patients to be directly involved in their own medical care. Results of the study could positively impact clinical laboratories facing a shortage of personnel, as well as schools where children have to take repeated COVID-19 tests with the assistance of trained professionals.
In a study with 197 school-age children, researchers at Emory University School of Medicine found that children could self-swab themselves for COVID-19 testing after watching a 90-second instructional video. Clinical laboratory leaders who are short on personnel may find these results intriguing. (Photo copyright: Emory University.)
How Did the Children Do?
The self-collected swabs and those collected by a healthcare worker agreed 97.8% of the time for a positive result and 98.1% of the time for a negative result. The analysis showed that both collection methods identified the 44% of symptomatic kids who were positive for COVID-19.
“Seeing how closely the results line up between the children and trained healthcare workers is a strong indicator that these age groups are fully capable of swabbing themselves if given proper instruction,” said Jesse Waggoner, MD, an Assistant Professor of Infectious Diseases with the Emory University School of Medicine and one of the lead authors on the study, in an Emory University press release.
A higher percentage of children age eight and under needed assistance, such as more instruction before correctly completing self-collection—21.8% compared to 6.1% for children older—but SARS-CoV-2 detection among the two age groups did not differ.
Does FDA Approve of Self-Swabbing?
The US Food and Drug Administration (FDA) has not authorized COVID-19 tests that include self-swabbing by children under age 14. However, data from the Emory study, published in JAMA, is now available to test manufacturers seeking authorization for pediatric self-collection.
“Pediatric self-swabbing will support expanded testing access and should make it even easier to test school age populations with fewer resources,” said Tim Stenzel, MD, PhD, Director of the Office of In Vitro Diagnostics at the FDA, in the Emory statement. “This study furthers our knowledge of test accuracy with these types of samples and provides test manufacturers with data to support their EUA (Emergency Use Authorization) requests to the FDA.”
Self-swabbing versus Clinical Laboratory Worker
While it has been longstanding medical practice to have healthcare workers collect samples for respiratory tract infection testing, the Emory researchers suggest that allowing children to collect their own COVID-19 samples could be one way to reduce the burden of a shortage of healthcare workers.
The researchers also believe pediatric self-swabbing would expand access to diagnostic tests and make it easier to test school-age populations.
“Every minute of a healthcare worker’s time is at a premium,” said senior study author Wilbur Lam, MD, Professor of Pediatrics and Biomedical Engineering, Emory University and Georgia Tech, in a National Institutes of Health (NIH) press release. “Why not allow a kid to self-swab? It’s a win-win! They would rather do it themselves and it frees up the healthcare worker to do other things,” he added.
In 2020, a Stanford University School of Medicine study published in JAMA showed test samples collected by adults who swabbed their own nasal passages were as accurate as those collected by healthcare workers. This study involved 30 participants who had previously tested positive for COVID-19.
Though the Emory University and Stamford University studies were small, they agreed in their findings which is significant. Clinical laboratory executives and pathologists should expect this trend toward direct-to-consumer and other forms of self-testing to continue, even among young patients.
Clinical labs should proactively investigate how a vendor will respond to a data security incident and how quickly, says expert
Clinical laboratory managers in New York and surrounding areas should be aware that almost one million protected health information (PHI) records from as many as 28 healthcare providers appear to have been stolen from a medical records company that services these providers.
Practice Resources LLC (PRL), a company that provides billing services for dozens of hospitals and medical providers in Central New York, announced in August they were the target of a ransomware attack that occurred on April 12 of this year. The Syracuse-based organization stated that hackers may have captured personally identifiable information (PII) such as names, home addresses, treatment dates, health plan numbers, and internal account numbers of 934,138 patients.
The data breach affected the patient records of dozens of medical providers and the clinical laboratories that service them, as well as physical therapists, pediatricians, gynecologists, orthopedic surgeons, and more.
“When a lab’s vendor has some type of breach, the lab entity that provided the compromised information could have some liability related to the breach,” explained Jim Giszczak, JD (above), McDonald Hopkins, in an interview with The Dark Report over a similar data breach in 2019. “That’s why every lab should be proactive and do a review to understand each vendor’s policies, procedures, training, and response in the event of a breach. Because your lab needs to know how a vendor will respond to a data security incident, and importantly, how quickly it will respond, it’s critical for lab officials to review the contracts they have with vendors that acquire, or have access to, PHI.” (Photo copyright: McDonald Hopkins.)
Not a Scam
“Unfortunately, it’s not a scam,” stated David Barletta, President and CEO of PRL, in an interview with local Syracuse news WSYR. “This really did happen in April—there was a ransomware attack on our system. We brought in forensic accountants and forensic information teams to come and look at what happened.”
PRL sent out more than 940,000 letters to potential victims of the cyberattack in August, noting that some patients may receive more than one letter.
The complete list of “healthcare entities on whose behalf Practice Resources LLC is providing notice of data incident,” according to PRL, includes:
Although their investigation did not uncover any evidence that personal data was misused, PRL has arranged credit monitoring services free of charge for one year from the date of enrollment. The company is also offering proactive fraud assistance to help people with any questions or in case they become a victim of fraud.
“There were no patient social security numbers that were taken. No medical record information was taken,” Barletta told WSYR. “We really, just out of an abundance of caution, felt that it was necessary that we provide them with credit monitoring for a year—just in case.”
Hundreds of Thousands of Patients Affected by Breach
When PRL discovered the data breach, the company took immediate steps to secure its systems and scrutinize the nature and extent of the incident. They then hired a forensic team to investigate what patient data may have been accessed by the hackers, a process that took several months.
“It does take a long time because each client has hundreds of thousands of patients maybe,” Barletta explained. “We have several large clients that really bore the brunt of this.”
According to Barletta, PRL bills about $450 million annually for its clients, which include some major institutions in Central New York. The New York state Attorney General’s office is investigating the hacking incident and delving into whether PRL’s data security was adequate.
As a result of the breach, FamilyCare Medical Group, which serves more than 80 physicians and thousands of patients, lost all of its laboratory data, according to the group’s CEO, Mitchell Brodey, MD. They had to close their lab for several months while their computer system was rebuilt. During this time, all their lab work was sent to another laboratory for analysis, MSN reported.
The PRL ransomware attack was what is commonly known as a third-party data breach. This type of breach occurs when sensitive data is stolen from a third-party vendor, or when their systems are used to access and steal sensitive information stored on other systems.
In the United States, the Federal Trade Commission (FTC) is responsible for enforcing federal privacy and data protection regulations. If a breach affects 500 or more individuals, the company must issue a press release and notify the FTC and all affected consumers within 60 days of the discovery of the breach.
Clinical Labs Should Proactively Review Member Agreements
In 2019, our sister publication The Dark Report covered a major data breach affecting more than 20 million patients. That breach occurred when hackers gained access to the data systems of a third-party bill collector and impacted four of the nation’s largest clinical laboratories:
At that time, The Dark Report asked James Giszczak, JD, Chair of the Litigation Department and Co-Chair of the Data Privacy and Cybersecurity Practice Group at McDonald Hopkins, to provide insight on what steps clinical laboratory leaders should take to avoid and handle data breaches.
“One important lesson from this data breach is how critical it is for clinical labs and pathology groups to be proactive in making sure they review their vendor agreements,” Giszczak stated. “In that review, labs need to know the specific measures each vendor is taking to protect the information the lab is providing to their vendors.”
Giszczak suggested that clinical laboratory leaders make sure they understand each vendor’s policies, procedures, training, and response in the event of a data breach. He reiterated that labs could have some liability related to the breach.
The federal agency shipped tests to five commercial clinical laboratory companies, augmenting efforts by public health labs
Medical laboratories in the US are ramping up their efforts to respond to an outbreak of monkeypox that has been spreading around the globe. Microbiologists and clinical laboratory scientists will be interested to learn that this infectious agent—which is new to the US—may be establishing itself in the wild rodent population in this country. If proved to be true, it means Americans would be at risk of infection from contact with rodents as well as other people.
The Centers for Disease Control and Prevention (CDC) announced on May 18 that it had identified the infection in a Massachusetts resident who had recently traveled to Canada. As of August 3, the federal agency was reporting 6,617 confirmed cases in the US.
“Because there are no other non-variola orthopoxviruses circulating in the US, a positive test result is presumed to be monkeypox,” states the APHL press release.
“As we focus on the US response, we keep a close watch on the global outbreak. Infectious diseases don’t respect borders, as we know,” said Chris Mangal (above), director of public health preparedness and response, APHL, in a press release. “I am proud of how LRN member laboratories have rapidly and effectively responded to this emergency. This is precisely what the LRN was intended to do. Should this outbreak continue to grow, preparing for expanded testing and increasing capacity beyond LRN laboratories is important to ensuring we are ready for a surge in testing.” (Photo copyright: Association of Public Health Laboratories.)
Commercial Labs Get Involved
Seeking to bolster testing capacity, the federal Department of Health and Human Services (HHS) announced on June 22 that the CDC had begun shipping OrthopoxvirusPCR tests to five commercial lab companies. They include:
“By dramatically expanding the number of testing locations throughout the country, we are making it possible for anyone who needs to be tested to do so,” said HHS Secretary Xavier Becerra in an HHS press release.
Labcorp was first out of the gate, announcing on July 6 that it was offering the CDC-developed test for its customers, as well as accepting overflow from public labs. “We will initially perform all monkeypox testing in our main North Carolina lab and have the capacity to expand to other locations nationwide should the need arise,” said Labcorp chief medical officer and president Brian Caveney, MD, in a press release.
Mayo Clinic Laboratories followed suit on July 11, announcing that the clinic’s Department of Laboratory Medicine and Pathology would perform the testing at its main facility in Rochester, Minnesota.
“Patients can access testing through Mayo Clinic healthcare professionals and will soon be able to access testing through healthcare professionals who use Mayo Clinic Laboratories as their reference laboratory,” Mayo stated in a press release.
Then, Quest Diagnostics announced on July 13 that it was testing for the virus with an internally developed PCR test, with plans to offer the CDC test in the first half of August.
The lab-developed test “was validated under CLIA federal regulations and is now performed at the company’s advanced laboratory in San Juan Capistrano, Calif.,” Quest stated in a press release.
Public Health Emergency?
Meanwhile, the CDC announced on June 28 that it had established an Emergency Operations Center to respond to the outbreak. A few weeks later, on July 23, World Health Organization (WHO) Secretary-General Tedros Adhanom Ghebreyesus, PhD, declared that the outbreak represented “a public health emergency of international concern.”
He noted that international health regulations required him to consider five elements to make such a declaration.
“WHO’s assessment is that the risk of monkeypox is moderate globally and in all regions, except in the European region where we assess the risk as high,” he said in a WHO news release. “There is also a clear risk of further international spread, although the risk of interference with international traffic remains low for the moment. So, in short, we have an outbreak that has spread around the world rapidly, through new modes of transmission, about which we understand too little, and which meets the criteria in the International Health Regulations.”
Still, public health authorities have made it clear that this is not a repeat of the COVID-19 outbreak.
“Monkeypox virus is a completely different virus than the viruses that cause COVID-19 or measles,” the CDC stated in a June 9 advisory. “It is not known to linger in the air and is not transmitted during short periods of shared airspace. Monkeypox spreads through direct contact with body fluids or sores on the body of someone who has monkeypox, or with direct contact with materials that have touched body fluids or sores, such as clothing or linens. It may also spread through respiratory secretions when people have close, face-to-face contact.”
The New York Times reported that some experts disagreed with the CDC’s assessment that the virus “is not known to linger in the air.” But Professor of Environmental Health Donald Milton, MD, DrPH, of the University of Maryland, told The Times it is still “not nearly as contagious as the coronavirus.”
The Massachusetts resident who tested positive in May was not the first known case of monkeypox in the US, however, previous cases involved travel from countries where the disease is more common. Two cases in 2021—one in Texas and one in Maryland—involved US residents who had recently returned from Nigeria, the CDC reported. And a 2003 outbreak in the Midwest was linked to rodents and other small mammals imported to Texas from Ghana in West Africa.
“Labcorp and Quest don’t dispute that in many cases, their phlebotomists are not taking blood from possible monkeypox patients,” according to CNN. “What remains unclear, after company statements and follow-ups from CNN, is whether the phlebotomists are refusing on their own to take blood or if it is the company policy that prevents them. The two testing giants say they’re reviewing their safety policies and procedures for their employees.”
One symptom of monkeypox, the CDC states, is a rash resembling pimples or blisters. Clinicians are advised that two swabs should be collected from each skin lesion, though “procedures and materials used for collecting specimens may vary depending on the phase of the rash.”
“Effective communication and precautionary measures between specimen collection teams and laboratory staff are essential to maximizing safety when manipulating specimens suspected to contain monkeypox virus,” the CDC notes. “This is especially relevant in hospital settings, where laboratories routinely process specimens from patients with a variety of infectious and/or noninfectious conditions.”
Perhaps the negative reaction to the CDC’s initial response to the COVID-19 outbreak in the US is driving the federal agency’s swift response to this new viral threat. Regardless, clinical laboratories and pathology groups will play a key role in the government’s plan to combat monkeypox in America.