Diagnosing Ovarian Cancer Using Perception-based Nanosensors and Machine Learning

Two studies show the accuracy of perception-based systems in detecting disease biomarkers without needing molecular recognition elements, such as antibodies Researchers from multiple academic and research institutions have collaborated to develop a non-conventional machine learning-based technology for identifying and measuring biomarkers to detect ovarian cancer without the need for molecular identification elements, such as antibodies. Traditional clinical laboratory methods for detecting...

Researchers Use Machine Learning to Identify Thousands of New Marine RNA Viruses in Study of Interest to Microbiologists and Clinical Laboratory Scientists

Screening and analysis of ocean samples also identified a possible missing link in how the RNA viruses evolved An international team of scientists has used genetic screening and machine learning techniques to identify more than 5,500 previously unknown species of marine RNA viruses and is proposing five new phyla (biological groups) of viruses. The latter would double the number of RNA virus phyla to 10, one of which may be a missing link in the early evolution of the microbes. Though the...

Proof of Concept Study Demonstrates Machine Learning and AI Can Identify Cancer Cells Based on pH Levels; May Have Applications in Surgical Pathology

The new method employs a pH sensitive dye and AI algorithms to ‘distinguish between cells originating from normal and cancerous tissue, as well as among different types of cancer’ the researchers said Might a pH-sensitive dye in tandem with an image analysis solution soon be used to identify cancerous cells within blood samples as well within tissue? Recent research indicates that could be a possibility. If further studies and clinical trials confirm this capability, then anatomic pathologists...

Florida Hospital Utilizes Machine Learning Artificial Intelligence Platform to Reduce Clinical Variation in Its Healthcare, with Implications for Medical Laboratories

Pathologists and clinical laboratory scientists may find one hospital’s use of a machine-learning platform to help improve utilization of lab tests both an opportunity and a threat Variation in how individual physicians order, interpret, and act upon clinical laboratory test results is regularly shown by studies in peer-reviewed medical journals to be one reason why some patients get great outcomes and other patients get less-than-desirable outcomes. That is why many healthcare providers are...

Machine Learning System Catches Two-Thirds More Prescription Medication Errors than Existing Clinical Decision Support Systems at Two Major Hospitals

Researchers find a savings of more than one million dollars and prevention of hundreds, if not thousands, of adverse drug events could have been had with machine learning system Support for artificial intelligence (AI) and machine learning (ML) in healthcare has been mixed among anatomic pathologists and clinical laboratory leaders. Nevertheless, there’s increasing evidence that diagnostic systems based on AI and ML can be as accurate or more accurate at detecting disease than systems without...
;