News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

UCLA Spinoff Develops AI Tool That Improves Accuracy of Prostate Cancer Assessments

Software analyzes imaging scans and clinical laboratory data to help oncologists and anatomic pathologists visualize a tumor’s extent

Anatomic pathologists understand that, along with breast cancer, diagnostic testing for prostate cancer accounts for a high volume of clinical laboratory tests. Thus, a recent study indicating that a new artificial intelligence (AI)-based software tool can dramatically improve physicians’ ability to identify the extent of these cancers will be of interest.

The software, known as Unfold AI, was developed by Avenda Health, a University of California Los Angeles (UCLA) spinoff company. Unfold AI, according to Avenda, predicts focal therapy success by an increase of 77% over standard methods.

“The study found that Unfold AI’s patient-specific encapsulation confidence score (ECS), which is generated based on multiple patient data points, including MRI scans, biopsy results, PSA [prostate-specific antigen] data, and Gleason scores, is critical for predicting treatment success,” an Avenda press release states. “These findings emphasize the importance of Unfold AI’s assessment of tumor margins in predicting treatment outcomes, surpassing the predictive capability of conventional parameters.”

“Unfold AI’s ability to identify tumor margins and provide the ECS will improve treatment recommendations and allow for less-invasive interventions,” said study co-author Wayne Brisbane, MD, a urologic oncologist and UCLA medical professor, in another press release. “This more comprehensive approach enhances our ability to predict treatment outcomes and tailor interventions effectively to individual patient needs.”

The UCLA researchers published their findings titled, “Artificial Intelligence Improves the Ability of Physicians to Identify Prostate Cancer Extent,” in The Journal of Urology. Results were also presented at the 2024 American Urological Association annual meeting.

“This study is important because it shows the ability of AI to not only replicate expert physicians, but to go beyond human ability,” said study co-author Wayne Brisbane, MD (above), a urologic oncologist and UCLA medical professor, in a press release. “By increasing the accuracy of cancer identification in the prostate, more precise and effective treatment methods can be prescribed for patients.” Clinical laboratories that work with anatomic pathologists to diagnose prostate and other cancers may soon have a new AI testing tool. (Photo copyright: UCLA.)

How Unfold AI Works

To gauge the extent of prostate tumors, surgeons typically evaluate results from multiple diagnostic methods such as PSA tests and imaging scans such as MRIs, according to a UCLA press release. However some portions of a tumor may be invisible to an MRI, causing doctors to underestimate the size.

Unfold AI, originally known as iQuest, was designed to analyze data from PSA, MRI, fusion biopsy, and pathology testing, according to a company brochure. From there, it generates a 3D map of the cancer. Avenda’s website says the technology provides a more accurate representation of the tumor’s extent than conventional methods.

“Accurately determining the extent of prostate cancer is crucial for treatment planning, as different stages may require different approaches such as active surveillance, surgery, focal therapy, radiation therapy, hormone therapy, chemotherapy, or a combination of these treatments,” Brisbane said in the UCLA press release.

Putting AI to the Test

In the new study, the UCLA researchers enlisted seven urologists and three radiologists to review 50 prostate cancer cases. Each patient had undergone prostatectomy—surgical removal of all or part of the prostate—but might have been eligible for focal therapy, a less-aggressive approach that uses heat, cryotherapy, or electric shocks to attack cancer cells more selectively.

The physicians came from five hospitals and had a wide range of clinical experience from two to 23 years, the researchers noted in The Journal of Urology.

They reviewed clinical data and examined MRI scans of each patient, then “manually drew outlines around the suspected cancerous areas, aiming to encapsulate all significant disease,” the press release states. “Then, after waiting for at least four weeks, they reexamined the same cases, this time using AI software to assist them in identifying the cancerous areas.”

The researchers analyzed the physicians’ work, evaluating the accuracy of the cancer margins and the “negative margin rate,” indicating whether the clinicians had identified all of the cancerous tissue. Using conventional approaches, “doctors only achieved a negative margin 1.6% of the time,” the press release states. “When assisted by AI the number increased to 72.8%.”

The clinicians’ accuracy was 84.7% when assisted by AI versus 67.2% to 75.9% for conventional techniques.

They also found that clinicians who used the AI software were more likely to recommend focal therapy over more aggressive forms of treatment.

“We saw the use of AI assistance made doctors both more accurate and more consistent, meaning doctors tended to agree more when using AI assistance,” said Avenda Health co-founder and CEO Shyam Natarajan, PhD, who was senior author of the study.

“These results demonstrate a marked change in how physicians will be able to diagnose and recommend treatment for prostate cancer patients,” said Natarajan in a company press release. “By increasing the confidence in which we can predict a tumor’s margins, patients and their doctors will have increased certainty that their entire tumor is treated and with the appropriate intervention in correlation to the severity of their case.”

Already Cleared by FDA

Avenda received FDA 510(k) clearance for Unfold AI in November 2022. On July 1, 2024, the American Medical Association (AMA) implemented a CPT [Current Procedural Terminology] Category III code for the software, enabling insurance reimbursement for services that employ the technology, the company said in a press release.

The AMA describes CPT Category III as “a temporary set of codes for emerging technologies, services, procedures, and service paradigms.”

In the same press release, Avenda revealed that the federal Centers for Medicare and Medicaid Services (CMS) had assigned a national payment rate for Unfold AI.

UCLA’s study found that AI can outperform doctors both in sensitivity (a higher detection rate of positive cancers) and specificity (correctly detecting the sample as negative). That’s relevant and worth watching for further developments.

Pathologists and clinical laboratory managers should consider this use of AI as one more example of how artificial intelligence can be incorporated into diagnostic tests in ways that allow medical laboratory professionals to diagnose disease earlier and more accurately. This will improve patient care because early intervention for most diseases leads to better outcomes.

—Stephen Beale

Related Information:

New Study Proves AI Enhances Physicians’ Ability to Identify Prostate Cancer Extent with 84 Percent Accuracy

New Study Demonstrates Avenda Health’s Unfold AI to Better Predict Focal Therapy Success by 77% as Compared to Standard Methods

AI Model May Yield Better Outcomes for Prostate Cancer

Artificial Intelligence Improves the Ability of Physicians to Identify Prostate Cancer Extent

Artificial Intelligence Detects Cancer with 25% Greater Accuracy than Doctors in UCLA Study

Study Finds Unfold AI Better Predicts Focal Therapy Success in Prostate Cancer Patients

First AI-Powered Precision Oncology Platform for Prostate Cancer Care, iQuest Receives FDA Clearance

University of Michigan National Study Finds Nearly Half of Seniors Surveyed Purchased At-Home Medical Tests and Most Plan to Buy More

Clinical laboratory executives and pathology leaders may want to develop strategies for supporting the growing numbers of at-home screening and diagnostic test users

Findings of a national poll conducted by the University of Michigan (U-M) exploring consumers’ purchases suggests seniors are becoming more comfortable with ordering and using at-home medical testing. Their choice of tests and opinions may be of interest to clinical laboratory executives, pathologists, and primary care physicians considering programs to support self-test purchasers.

Conducted through U-M’s Institute for Healthcare Policy and Innovation, the National Poll on Healthy Aging study involved 2,163 adults over age 50, who responded to questions online or by phone in January 2022.

The researchers found that 48% of adults, ages 50 to 80, purchased at least one at-home medical test, and that 91% of the buyers indicated intentions to purchase another test in the future, according to a U-M news release.

The researchers published their study, “Use of At-Home Medical Tests among Older US Adults: A Nationally Representative Survey,” in The Journal of Health Care.

In their paper, they note that “validity, reliability, and utility of at-home tests is often uncertain.” Further, understanding and responding to test results—especially since caregivers may not have ordered them—could lead to “a range of unintended consequences,” they wrote.

“As a primary care doctor, I would want to know why my patient chose to take an at-home test that I didn’t order for them. We also need to understand in greater detail why folks use at-home tests instead of traditional means, beyond convenience,” said the U-M study’s lead author Joshua Rager, MD, a research scientist at William M. Tierney Center for Health Services Research at Regenstrief Institute, who is now an assistant professor of medicine, Indiana University, in a news release. The findings of the U-M study will be of interest to clinical laboratory executives and pathology leaders. (Photo copyright: Regenstrief Institute.)

Free COVID-19 Tests Ignite At-Home Testing

In their Journal of Health Care paper, the U-M researchers speculate that curiosity in at-home testing may have been propelled by the offer of free COVID-19 tests by the US government starting in 2021 during the pandemic.

They also noted the different ways at-home test kits are performed by healthcare consumers. Some, such as COVID-19 rapid antigen tests, return results to users in a few moments similar to pregnancy tests. Others involve self-collecting specimens, such as a stool sample, then sending the specimen to a clinical laboratory for analysis and results reporting to physicians.

Abbott’s BinaxNOW COVID-19 Ag Card (SARS-CoV-2 test) and Exact Sciences’ Cologuard (colorectal cancer screening test) are examples of two different styles of testing.

Of those older adults who participated in U-M’s National Poll on Healthy Aging study, the following bought at-home medical tests online or from pharmacies and supermarkets, according to U-M’s paper:

Opinions, Sharing of At-Home Test Results Vary

As to perceptions of at-home medical testing by users, when polled on their test experience, the surveyed seniors reported the following:

  • 75.1% perceived at-home medical tests to be more convenient than conventional medical tests.
  • 59.9% believe the tests “can be trusted to give reliable results.”
  • 54.8% believe the tests “are regulated by government.”
  • 66% called them a “good value.”
  • 93.6% indicated results “should be discussed with my doctor.”

Inconsistency in how people shared test results with their healthcare providers was a concern voiced by the researchers.

“While nearly all patients who had bought an at-home cancer screening test shared the results with their primary care provider, only about half of those who tested for an infection other than COVID-19 had. This could have important clinical implications,” the researchers wrote in their paper.

Confusion over Government Regulation

The U-M study also revealed consumer misunderstanding about government regulation of at-home clinical laboratory tests purchased over-the-counter.

The US Food and Drug Administration (FDA) cleared “some diagnostic at-home tests for over-the counter use. But many tests on the market are unregulated or under-regulated,” the authors wrote, adding, “Our results suggest, however, that patients generally believe at-home tests are regulated by government, but a substantial minority did not, which may reflect public confusion in how at-home testing is regulated.”

Women, College-Educated Buy More At-Home Tests

Purchase of at-home tests varies among groups, as follows, the news release noted:

  • 56% and 61% of older adults with a college degree or household income above $100,000, respectively, were “much more likely” to buy at-home tests than people in other income and education brackets.
  • 87% of women would buy at-home tests again compared with 76% of men.
  • 89% of college-educated people would purchase the tests again, compared with 78% of people with high school educations or less.

Future U-M research may explore consumers’ awareness/understanding concerning federal regulations of at-home testing, Rager noted.

“At-home tests could be used to address disparities in access to care. We hope these findings will inform regulators and policymakers and spark future research on this topic,” he said in the news release.

The U-M Institute for Healthcare Policy and Innovation survey results confirm that the country’s senior generations are becoming comfortable with at-home and self-testing options. As Dark Daily has previously suggested, clinical laboratories may want to develop service offerings and a strategy for supporting patients who want to perform their own lab tests at home.

—Donna Marie Pocius

Related Information:

Big Gaps Seen in Home Medical Test Use by Older Adults

Use of At-Home Medical Tests among Older US Adults: A Nationally Representative Survey

In Vitro Diagnostics Companies Race to Develop Blood-based Tests for Alzheimer’s Disease, Data Suggest a Worldwide Growing Market

As new diagnostic assays are cleared by regulators, clinical laboratories will play a key role in identifying appropriate patients for new less-invasive Alzheimer’s tests

With multiple companies racing to develop a blood-based test for Alzheimer’s disease (AD), clinical laboratories may soon have new less-invasive diagnostic assays for AD on their menus.

Why a race? Because a less-invasive clinical laboratory test that uses a venous blood draw (as opposed to a spinal tap)—and which has increased sensitivity/specificity—has a potentially large market given the substantial numbers of elderly predicted to develop Alzheimer’s over the next decade. It has the potential to be a high volume, high dollar diagnostic test.

In fact, Mordor Intelligence estimates that the market for Alzheimer’s disease therapeutics will grow from $7.7 billion in 2024 to $10.10 billion by 2029.

Alzheimers.gov, an official website of the US government, says, “Researchers have made significant progress in developing, testing, and validating biomarkers that detect signs of the disease process. For example, in addition to PET scans that detect abnormal beta-amyloid plaques and tau tangles [abnormal forms of tau protein] in the brain, NIH-supported scientists have developed the first commercial blood test for Alzheimer’s. This test and others in development can not only help support diagnosis but also be used to screen volunteers for research studies.”

Several test developers presented their research at a recent Alzheimer’s Association   International Conference. They shared data about blood-based assay accuracy in diagnosis of Alzheimer’s as compared to current practices that involve a lumbar puncture (spinal tap) to collect cerebrospinal fluid (CSF).

Additionally, the US Food and Drug Administration (FDA) is clearing new Alzheimer’s drugs for clinical use. The pharma companies behind these drugs need clinical laboratory tests that accurately diagnosis the disease and confirm that it would be appropriate for the patient to receive the new therapeutic drugs, a key element of precision medicine.

“The big promise for blood tests is that they will eventually be accessible, hopefully, cost-effective, and noninvasive,” Rebecca Edelmayer, PhD (above), Vice President, Scientific Engagement, Alzheimer’s Association, told USA Today. “The field is really moving forward with use of these types of tests,” she added. Clinical laboratories may soon have these new assays on their test menus. (Photo copyright: Alzheimer’s Association.)

Companies in the Race to Develop Blood-based Alzheimer’s Tests

One advancing test is the PrecivityAD2 from in vitro test developer C2N Diagnostics, St. Louis, Mo., which Dark Daily reported on in “C2N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease.”

Researchers found that C2N’s blood test can detect brain amyloid status with “sensitivity, specificity, positive and negative predictive values that approximate those of amyloid positron emission tomography (PET) imaging,” according to a news release.

“The PrecivityAD2 blood test is intended for use in patients aged 55 and older with signs or symptoms of mild cognitive impairment or dementia who are undergoing evaluation of Alzheimer’s disease or dementia. Only a healthcare provider can order the PrecivityAD2 test,” the news release noted.

A study published in Alzheimer’s and Dementia, a journal of the Alzheimer’s Association, used “mass spectrometry-based assays to measure %p-tau217 and amyloid beta 42/40 ratio in blood samples from 583 individuals with suspected AD.”

“The PrecivityAD2 blood test showed strong clinical validity with excellent agreement with brain amyloidosis by PET,” the researchers wrote.

The PrecivityAD2 test, which is mailed directly by C2N to doctors and researchers, is performed at the company’s CLIA-certified lab, according to USA Today, which added that the cost of $1,450 is generally not covered by insurance plans.

Expanding Test Access with IVD Companies

ALZpath, Inc. has a different approach to the Alzheimer’s disease test market. The Carlsbad, Calif.-based company, set up an agreement with in vitro diagnostics (IVD) company Roche Diagnostics for use of its phosphorylated tau (pTau)217 antibody “to develop and commercialize an Alzheimer’s disease diagnostic blood test that will be offered on the Roche Elecsys platform,” according to a news release.

Roche received FDA breakthrough device designation on the Elecsys pTau217 test earlier this year and will work with pharmaceutical company Eli Lilly to commercialize the test.

Estimates show 75% of dementia cases go undetected—a number which could grow to 140 million by 2050, according to data shared by Roche with Fierce Biotech.

“We plan to leverage our installed base of diagnostic systems, which is the largest in the world, to ensure we are able to create access to this test for those who need it the most,” Matt Sause, CEO, Roche Diagnostics, told Fierce Biotech.

Another IVD company, Beckman Coulter, recently signed an agreement to use ALZpath’s pTau217 antibody test in its DxI 9000 Immunoassay Analyzer. In a news release, Kathleen Orland, SVP and General Manager of the Clinical Chemistry Immunoassay Business Unit at Beckman Coulter, said that the test had “high performance in detecting amyloid pathology” and could “integrate into our advanced DxI 9000 platform to support broad-based testing.”

Clinical Laboratory Participation

The FDA is drafting new guidance titled, “Early Alzheimer’s Disease: Developing Drugs for Treatment” that is “intended to assist sponsors in the clinical development of drugs for the treatment of the stages of sporadic Alzheimer’s disease (AD) that occur before the onset of overt dementia.” 

Pharma companies intent on launching new drugs for Alzheimer’s will need medical laboratory tests that accurately diagnosis the disease to confirm the medications would be appropriate for specific patients.

Given development of the aforementioned pTau217 antibody tests, and others featuring different diagnostic technologies, it’s likely clinical laboratories will soon be performing new assays for diagnosing Alzheimer’s disease.

—Donna Marie Pocius

Related Information:

Alzheimer’s Diagnosis and Drugs Market

How New Blood Testing Technology Could Change Alzheimer’s Treatment Forever

New Research Shows the PrecivityAD2 Blood Test Has High Accuracy Compared to Amyloid PET Scans in Individuals with Cognitive Impairment

Clinical Validation of the PrecivityAD2 Blood Test: A Mass Spectrometry-Based Test with Algorithm Combing %p-tau217 and Aβ42/40 Ratio to Identify Presence of Brain Amyloid

ALZpath Announces Licensing Agreement with Roche for Use of ALZpath’s Proprietary

Alzheimer’s Blood Test from Roche, Eli Lilly Nabs FDA Breakthrough Tag

ALZpath Signs Licensing Agreement with Beckman Coulter Diagnostics to Provide Proprietary pTau217 Antibody to Develop a Diagnostic Test for Alzheimer’s Disease

Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology

Groundbreaking Alzheimer’s Blood Test Proves Highly Effective in Primary Healthcare

Blood Biomarkers to Detect Alzheimer Disease in Primary Care and Secondary Care

C2N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease

Woman Performs Do-it-yourself Fecal Transplant to Relieve Symptoms of IBS, Gets Donor’s Acne

Clinical laboratory scientists and microbiologists could play a role in helping doctors explain to patients the potential dangers of do-it-yourself medical treatments

Be careful what you wish for when you perform do-it-yourself (DIY) medical treatments. That’s the lesson learned by a woman who was seeking relief for irritable bowel syndrome (IBS). When college student Daniell Koepke did her own fecal transplant using poop from her brother and her boyfriend as donors her IBS symptoms improved, but she began to experience medical conditions that afflicted both fecal donors.

“It’s possible that the bacteria in the stool can influence inflammation in the recipient’s body, by affecting their metabolism and activating their immune response,” microbial ecologist Jack Gilbert, PhD, Professor and Associate Vice Chancellor at University of California San Diego (UC San Diego) told Business Insider. “This would cause shifts in their hormonal activity, which could promote the bacteria that can cause acne on the skin. We nearly all have this bacterium on skin, but it is often dormant,” he added.

A Fecal Microbiota Transplant (FMT) is a procedure where stool from a healthy donor is transplanted into the microbiome of a patient plagued by a certain medical condition.

Our guts are home to trillions of microorganisms (aka, microbes), known as the gut microbiota, that serve many important functions in the body. The microbiome is a delicate ecosystem which can be pushed out of balance when advantageous microbes are outnumbered by unfavorable ones. An FMT is an uncomplicated and powerful method of repopulating the microbiome with beneficial microbes.   

“With fecal microbiome transplants there is really compelling evidence, but the science is still developing. We’re still working on if it actually has benefits for wider populations and if the benefit is long-lasting,” said Gilbert in a Netflix documentary titled, “Hack Your Health: The Secrets of Your Gut.”

“The microbial community inside our gut can have surprising influences on different parts of our body,” microbial ecologist Jack Gilbert, PhD (above), of the Gilbert Lab at University of California San Diego told Business Insider. “Stools are screened before clinical FMTs, and anything that could cause major problems, such as certain pathogens, would be detected. When you do this at home, you don’t get that kind of screening.” Doctors and clinical laboratories screening patients for IBS understand the dangers of DIY medical treatments. (Photo copyright: University of California San Diego.)

Changing Poop Donors

When Koepke began experiencing symptoms of IBS including indigestion, stabbing pains from trapped gas and severe constipation, she initially turned to physicians for help.

In the Netflix documentary, Koepke stated that she was being prescribed antibiotics “like candy.” Over the course of five years, she completed six rounds of antibiotics per year, but to no avail.

She also changed her diet, removing foods that were making her symptoms worse. This caused her to lose weight and she eventually reached a point where she could only eat 10 to 15 foods. 

“It’s really hard for me to remember what it was like to eat food before it became associated with anxiety and pain and discomfort,” she said.

In an attempt to relieve her IBS symptoms, Koepke made her own homemade fecal transplant pills using donated stool from her brother. After taking them her IBS symptoms subsided and she slowly gained weight. But she developed hormonal acne just like her brother. 

Koepke then changed donors, using her boyfriend’s poop to make new fecal transplant pills. After she took the new pills, her acne dissipated but she developed depression, just like her boyfriend. 

“Over time, I realized my depression was worse than it’s ever been in my life,” Koepke stated in the documentary.

She believes the microbes that were contributing to her boyfriend’s depression were also transplanted into her via the fecal transplant pills. When she reverted to using her brother’s poop, her depression abated within a week.

Gilbert told Business Insider his research illustrates that people who suffer from depression are lacking certain bacteria in their gut microbiome.

“She may have had the ‘anti-depressant’ bacteria in her gut, but when she swapped her microbiome with his, her anti-depressant bacteria got wiped out,” he said.

FDA Approves FMT Therapy for Certain Conditions

Typically, the fecal material for an FMT procedure performed by a doctor comes from fecal donors who have been rigorously screened for infections and diseases. The donations are mixed with a sterile saline solution and filtered which produces a liquid solution. That solution is then administered to a recipient or frozen for later use. 

Fecal transplant methods include:

On November 30, 2022, the US Food and Drug Administration (FDA) approved the first FMT therapy, called Rebyota, for the prevention of Clostridioides difficile (C. diff.) in adults whose symptoms do not respond to antibiotic therapies. Rebyota is a single-dose treatment that is administered rectally into the gut microbiome at a doctor’s office. 

Then, in April of 2023, the FDA approved the use of a medicine called Vowst, which is the first oral FMT approved by the FDA.

According to the Cleveland Clinic, scientists are exploring the possibility that fecal transplants may be used as a possible treatment for many health conditions, including:

Doctors and clinical laboratories know that do-it-yourself medicine is typically not a good idea for obvious reasons. Patients seldom appreciate all the implications of the symptoms of an illness, nor do they fully understand the potentially dangerous consequences of self-treatment. Scientists are still researching the benefits of fecal microbiota transplants and hope to discover more uses for this treatment. 

—JP Schlingman

Related Information:

A Woman Gave Herself Poop Transplants Using Her Brother’s Feces to Treat Debilitating IBS. Then She Started Getting Acne Just Like Him.

FDA Approves First Orally Administered Fecal Microbiota Product for the Prevention of Recurrence of Clostridioides Difficile Infection

FDA Approves First FMT Therapy and Issues Guidance

Everything You Want to Know about Irritable Bowel Syndrome (IBS)

Stanford University Scientists Discover New Lifeform Residing in Human Microbiome

Microbiome Firm Raises $86.5 Million and Inks Deal to Sell Consumer Test Kits in 200 CVS Pharmacies

Researchers Find Health of Human Microbiome Greatly Influenced by Foods We Eat

Yale University’s Mobile Clinical Laboratory Provides Free Medical Tests to Underserved Communities in Connecticut

Clinical laboratories nationwide could follow Yale’s example and enact programs to bring much needed lab services to traditionally underserved communities

Ever since the COVID-19 pandemic drove up demand for telehealth medical services, mobile clinical laboratories have grown in popularity as well, especially among residents of remote and traditionally underserved communities. Now, several divisions of Yale University are getting in on the trend.

In April, Yale Pathology Labs (YPL), the Yale Department of Pathology at Yale School of Medicine (YSM), and Yale School of Public Health (YSPH) unveiled their new Laboratory-in-a-Van program with plans to bring free clinical laboratory services to the public in the communities where they live, a YSPH news release announced. 

“Using a van retrofitted with laboratory-grade diagnostic equipment, the mobile clinic will employ SalivaDirect—a saliva-based COVID-19 PCR test developed at YSPH—to facilitate on-site testing with a turnaround time of two to three hours,” Yale Daily News reported.

Funded by a federal grant, the initial goal was to provide 400 free COVID-19 tests, but the program has exceeded that number. By April 10, the mobile lab had been deployed more than 60 times, appearing at events and pop-up sites throughout various communities in Connecticut, including regular stops at the WHEAT Food Pantry of West Haven.

“[The clinical laboratory-in-a-van] is a brilliant way to reduce the barriers to testing, instead taking the lab to communities who may be less likely—or unable—to access the necessary clinic or labs,” microbiologist Anne Wyllie, PhD, a research scientist who helped develop the PCR test deployed by the mobile lab told Yale Daily News. Wyllie works in the Department of Epidemiology of Microbial Diseases at Yale School of Public Health. “We are actively working with our community partners to identify how we can best serve their communities,” she added. (Photo copyright: Yale School of Medicine.)

Mobile Lab’s Capabilities

Collecting samples, processing, and delivering same-day COVID-19 results was the initial goal but that plan has expanded, Yale School of Medicine noted in a news release

“Same-day onsite delivery of test results is an added benefit for communities and individuals without access to Wi-Fi or the ability to receive private health information electronically,” Yale added. 

The mobile van is staffed with trained clinical laboratory technicians as well as community health navigators who provide both healthcare information and proper follow-up connections as needed for patients who receive positive COVID-19 results. The van runs off power from outdoor electrical outlets at each location and currently serves historically underserved populations in Hartford, Middlesex, Fairfield, New Haven, and New London counties, Yale noted.

“The van allows us to bring our services, as well as healthcare information, directly to communities where they are needed,” said Angelique Levi, MD, Associate Professor, Vice Chair and Director of Pathology Reference Services, and CLIA Laboratory Medical Director in the Department of Pathology at Yale University School of Medicine in a news release.

Launch of a High Complexity Molecular Lab on Wheels

YPL and YSPH collaborated to make the mobile lab a reality. YSPH created the saliva-based COVID-19 test and YPL “provided clinical validation necessary to get the testing method ready for emergency use authorization by the US Food and Drug Administration,” Yale noted.

“YPL recognized the need to be closer to the front lines of patient care and that retrofitting a fully licensed, high complexity molecular laboratory into a consumer-sized van was the right next step,” Chen Liu, MD, PhD, Chair of the Department of Pathology at Yale School of Medicine, noted in a Yale news release. This “gives us options to efficiently deliver accurate diagnostic information when and where it’s needed,” he added.

Throughout the COVID-19 pandemic, the Connecticut Department of Public Health, the City of New Haven, and various community organizations partnered with YPL, YSPH, and the SalivaDirect team to offer free SARS-CoV-2 testing to the public at two different sites in New Haven.

Principal investigators Levi and microbiologist Anne Wyllie, PhD, who helped develop the PCR test deployed by the mobile, lab led the Yale lab-in-a-van research project.

Flambeau Diagnostics, a biomedical company that specializing in mobile lab testing, worked with the Yale team to design and implement the mobile lab van.

“According to Wyllie, the new YSPH and YPL initiative utilizes one of the former Flambeau vans that had been retrofitted for clinical testing,” a Yale news release noted.

Kat Fajardo, Laboratory Manager at Yale University, added custom pieces of equipment to ensure seamless PCR testing. One was a Magnetic Induction Cycler (Mic) measuring only six by six inches. The Mic allowed for measurement of 46 biological specimens, while it’s diminutive size freed up space on the van’s countertop. This allowed lab techs to process specimens concurrently while also providing COVID-19 testing, according to a Yale news release.

Additionally, the van has a Myra portable robotic liquid handler which is “designed to automate the process of moving clinical specimens between vials,” the news release notes.

“What we wanted to do is run high complexity testing in the van, with a reduced timeframe, and then be able to get the results out to the patients as soon as we possibly could,” Fajardo stated.

Exploring the Mobile Laboratory’s Potential

According to a news release, YPL and YSPH consult with community partners to select locations for the mobile lab to visit. These partners include:

Although the van was initially used to provide SalivaDirect COVID-19 testing to vulnerable populations, YPL is working with its partners in those communities to identify other testing needs beyond COVID.

The Yale team is considering additional offerings and support such as the addition of a social worker as well as expanding lung health awareness beyond COVID-19 to other respiratory diseases. Also under consideration:

  • Health screenings such as for glucose levels,
  • Blood pressure checks,
  • Vaccinations including for COVID-19 and Hepatitis B, and
  • Health education and materials for harm reduction and STI prevention, a Yale news release noted. 

Yale’s Laboratory-in-a-Van program is a consumer-facing effort that is bringing much needed clinical lab services to traditionally underserved communities in Connecticut. Clinical laboratories throughout the nation could do the same with remote or homebound patients who cannot reach critical care.

—Kristin Althea O’Connor

Related Information:

High-Tech Mobile Lab-in-a-Van Will Bring Needed Testing to Underserved Communities

Yale Pathology Labs Mobile Lab Provides over 400 Free Tests to Community

Yale Pathology Labs to Serve Vulnerable Populations with New Mobile Testing Van

YSPH and YPL launch Laboratory-in-a-Van program

;