As the cancer registry expands it will increasing become more useful to anatomic pathologists, histopathologists, oncologists, and even clinical laboratories
Oncologists, histopathologists, anatomic pathologists, and other cancer physicians now have a powerful new Wikipedia-style tumor registry to help them with their diagnoses and in educating patients on their specific types of cancer. Clinical laboratory managers may find it useful to understand the value this searchable database, and it can help their staff pathologists as well.
Free to use by both physicians and patients the World Tumor Registry (WTR) is designed “to minimize diagnostic errors by giving doctors a searchable online database of cancers that have been collected and categorized with cellular images collected from around the world,” Pittsburg-Post Gazette reported.
Prompt, accurate cancer diagnoses offer cancer patients the best chance for optimal treatment outcomes. However, many medical professionals around the globe do not have the training and resources to offer superior cancer diagnoses. That deficiency can translate to inferior treatment options and lower survival rates among cancer patients.
To help improve cancer diagnoses, pathologist Yuri E. Nikiforov, MD, PhD, Division Director, Molecular and Genomic Pathology, Vice Chair of the Department of Pathology, and Professor of Pathology, University of Pittsburgh, developed the WTR to provide educational and practical resources for individuals and organizations involved in cancer research.
Officially announced at the United States and Canadian Academy of Pathology (USCAP) annual convention, the WTR is an open-access catalog of digital microscopic images of human cancer types and subtypes.
The lower cost of technology and improved speed of access via the internet are technologies enabling this effort.
“We are creating sort of a Wikipedia for cancer images,” said Alyaksandr V. Nikitski, MD, PhD (above), Research Assistant Professor of Pathology, Division of Molecular and Genomic Pathology at Pittsburg School of Medicine and Administrative Director of the WTR, in an exclusive interview with Dark Daily. “Anyone in the world, if they can access the internet, can look at the well-annotated, diagnostic digital slides of cancer,” said Nikitski. Clinical laboratories may also find this new pathology tool useful. (Photo copyright: Alyaksandr V. Nikitski)
Minimizing Diagnostic Errors
Based in Pittsburgh, the WTR is freely available to anyone for viewing digital pathology slides of known cancer tumors as well as borderline and questionable cases. On the website, individuals can search for pictures of tumors in the registry by diagnosis, specific cohorts, and by microscopic features. Individuals may search further by tumor type and subtype to receive a picture of related tumors.
According to the WTR website, the mission of the nonprofit “is to minimize diagnostic errors, eliminate inequality in cancer recognition, diagnosis, and treatment in diverse populations, and improve outcomes by increasing access to the diagnostic pathology expertise and knowledge of microscopic characteristics of cancers that occur in different geographic, environmental, and socio-economic settings.”
This new comprehensive initiative will eventually encompass cancer images from all over the world.
“Let’s assume that I am a pathologist or a trainee who has little experience, or I don’t have access to collections of atypical tumors,” Nikitski explained. “I can view tumor collections online [in the WTR database] and check how typical and rare tumors look in various geographic regions and environmental settings.”
Once an image of a slide is selected, users will then receive a brief case history of the tumor in addition to such data as the age of the patient, their geographic location, sex, family history of the disease, and the size and stage of the tumor.
Increasing Probability of Correct Diagnosis
Pathologists and clinicians may also predict the probability of a particular diagnosis by searching under the microscopic feature of the database. This feature utilizes an innovative classifier known as PathDxFinder, where users may compare a slide from their lab to slides in the database by certain criteria. This includes:
After completing the questions above, the user presses the “predict diagnosis” button to receive the probability of cancer and most likely diagnosis based on the answers provided in the questionnaire.
WTR Editorial Boards
The WTR represents collections for each type of cancer site, such as lung or breast. A chairperson and editorial board are responsible for reviewing submitted slides before they are placed online. The editorial boards include 20 pathologists who are experts in diagnosing cancer categories, Nikitski explained.
Thousands of identified microscopic whole slide images (WSI) representing various types of cancer are deposited by the editors and other contributors to the project. The editorial board then carefully analyzes and compiles the data before posting the images for public viewing.
The editorial boards are located in five world regions:
Africa and the Middle East
Asia and Oceania
Central and South America
North America and Europe
Northern Asia
Any physicians or pathologists can contribute images to the database, by “simply selecting the editor of their region on the website, writing their name, and asking if they can submit tumor cases,” Nikitski stated.
“We have established a platform that allows pathologists to contact editors who are in the same geographic region,” he added.
Helping Physicians Identify Cancer Types
In a YouTube video, Nikiforov states that the WTR is an “educational nonprofit organization rooted in [the] beliefs that every cancer patient deserves accurate and timely diagnosis as the first and essential step in better treatment and outcomes.”
“We believe this can be achieved only when modern diagnostic tools and technologies are freely available to every physician and pathologist. Only when we understand how microscopic features of cancer vary in different geographic, environmental and ethnic populations, and only by integrating histopathology with clinical immunohistochemical and molecular genetic information for every cancer type,” he stated.
Since patient privacy is important, the database contains only basic data about patients, and all patient information is protected.
Launched in March, there are currently more than 400 thyroid tumor slides available to view in the online database. At the time of the announcement, the WTR platform was planned to be implemented in three phases:
Thyroid cancer (released in March of this year).
Lung cancer and breast cancer (anticipated to be completed by the third quarter of 2026).
Remaining cancers, including brain, soft tissue and bone, colorectal, head and neck, hematolymphoid, female genital, liver, pancreatic, prostate and male genital, skin, urinary system, pediatric, other endocrine cancers, and rare cancers (anticipated to be completed by the end of 2029).
“We believe that this resource will help physicians and pathologists practicing in small or big or remote medical centers to learn how cancer looks under a microscope in their own communities,” Nikiforov said in the video. “We also see WTR as a platform that connects physicians and scientists from different parts of the world who can work together to better understand and treat cancer.”
Catalogs like the World Tumor Registry might potentially create a pool of information that that could be mined by analytical and artificial intelligence (AI) platforms to ferret out new ways to improve the diagnosis of certain types of cancer and even enable earlier diagnoses.
“It is an extremely useful resource,” Nikitski said.
Anatomic pathologists will certainly find it so. And clinical laboratory managers may find the information useful as well when interacting with histopathologists and oncologists.
Though still in trials, early results show tests may be more accurate than traditional clinical laboratory tests for detecting prostate cancer
Within weeks of each other, different research teams in the US and UK published findings of their respective efforts to develop a better, more accurate clinical laboratory prostate cancer test. With cancer being a leading cause of death among men—second only to heart disease according to the Centers for Disease Control and Prevention (CDC)—new diagnostics to identify prostate cancer would be a boon to precision medicine treatments for the deadly disease and could save many lives.
Thus, these are two different pathways toward the goal of achieving earlier, more accurate diagnosis of prostate cancer, the holy grail of prostate cancer diagnosis.
“There is currently no single test for prostate cancer, but PSA blood tests are among the most used, alongside physical examinations, MRI scans, and biopsies,” said Dmitry Pshezhetskiy, PhD (above), Professorial Research Fellow at University of East Anglia and one of the authors of the UEA study. “However, PSA blood tests are not routinely used to screen for prostate cancer, as results can be unreliable. Only about a quarter of people who have a prostate biopsy due to an elevated PSA level are found to have prostate cancer. There has therefore been a drive to create a new blood test with greater accuracy.” With the completion of the US and UK studies, clinical laboratories may soon have a new diagnostic test for prostate cancer. (Photo copyright: University of East Anglia.)
East Anglia’s Research into a More Accurate Blood Test
Scientists at the University of East Anglia (UEA) worked with researchers from Imperial College in London, Imperial College NHS Trust, and Oxford BioDynamics to develop a new precision medicine blood test that can detect prostate cancer with greater accuracy than current methods.
The researchers evaluated their test in a pilot study involving 147 patients. They found their testing method had a 94% accuracy rate, which is higher than that of PSA testing alone. They discovered their test significantly improved the overall detection of prostate cancer in men who are at risk for the disease.
“When tested in the context of screening a population at risk, the PSE test yields a rapid and minimally invasive prostate cancer diagnosis with impressive performance,” Dmitry Pshezhetskiy, PhD, Professorial Research Fellow at UEA and one of the authors of the study told Science Daily. “This suggests a real benefit for both diagnostic and screening purposes.”
The UK scientists hope their test can eventually be used in everyday clinical practice as there is a need for a highly accurate method for prostate cancer screening that does not subject patients to unnecessary, costly, invasive procedures.
Cedars-Sinai’s Research into Nanotechnology Cancer Testing
Researchers from Cedars-Sinai Cancer took a different approach to diagnosing prostate cancer by developing a nanotechnology-based liquid biopsy test that detects the disease even in microscopic amounts.
Their test isolates and identifies extracellular vesicles (EVs) from blood samples. EVs are microscopic non-reproducing protein and genetic material shed by all cells. Cedars-Sinai’s EV Digital Scoring Assay accurately extracts EVs from blood and analyzes them faster than similar currently available tests.
“This research will revolutionize the liquid biopsy in prostate cancer,” said oncologist Edwin Posadas, MD, Medical Director of the Urologic Oncology Program and co-director of the Experimental Therapeutics Program in Cedars-Sinai Cancer in a press release. “The test is fast, minimally invasive and cost-effective, and opens up a new suite of tools that will help us optimize treatment and quality of life for prostate cancer patients.”
The researchers tested blood samples from 40 patients with prostate cancer. They found that their EV test could distinguish between cancer localized to the prostate and cancer that has spread to other parts of the body.
Microscopic cancer deposits, called micrometastases, are not always detectable, even with advanced imaging methods. When these deposits spread outside the prostate area, focused radiation cannot prevent further progression of the disease. Thus, the ability to identify cancer by locale within the body could lead to new precision medicine treatments for the illness.
“[The EV Digital Scoring Assay] would allow many patients to avoid the potential harms of radiation that isn’t targeting their disease, and instead receive systemic therapy that could slow disease progression,” Posadas explained.
Other Clinical Laboratory Tests for Prostate Cancer Under Development
According to the American Cancer Society, the number of prostate cancer cases is increasing. One out of eight men will be diagnosed with the illness during his lifetime. Thus, developers have been working on clinical laboratory tests to accurately detect the disease and save lives for some time.
In “University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test,” Dark Daily reported on a urine test also developed by scientists at the University of East Anglia that clinical laboratories can use to not only accurately diagnose prostate cancer but also determine whether it is an aggressive form of the disease.
And in “UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer ,” we outlined how researchers at the University of Pittsburgh Medical Center (UPMC) working with Ibex Medical Analytics in Israel had developed an artificial intelligence (AI) algorithm for digital pathology that can accurately diagnose prostate cancer. In the initial study, the algorithm—dubbed the Galen Prostate AI platform—accurately detected prostate cancer with 98% sensitivity and 97% specificity.
More research and clinical trials are needed before the new US and UK prostate cancer testing methods will be ready to be used in clinical settings. But it’s clear that ongoing research may soon produce new clinical laboratory tests and diagnostics for prostate cancer that will steer treatment options and allow for better patient outcomes.
Fujifilm acquired Inspirata’s Dynamyx digital pathology technology and business while GE Healthcare announced a partnership with Tribun Health in Europe
Clinical pathology laboratories, especially in the US, have been slow to adopt digital imaging systems. But recent industry deals suggest that the market may soon heat up, at least in the eyes of vendors. These collaborators may hope that, by integrating diagnostic data, the accuracy and productivity of anatomic pathologists will improve while also shortening the time to diagnosis.
In the press release, Fujifilm stated that 85% of US healthcare organizations use analog systems for pathology. That compares with 86% in Europe and 90% in Asia, the company stated.
“Acquiring Inspirata’s digital pathology business allows Fujifilm to be an even stronger healthcare partner—bridging a technological gap between pathology, radiology, and oncology to facilitate a more collaborative approach to care delivery across the enterprise,” said Fujifilm CEO and president Teiichi Goto in the press release.
The press release cited data from Signify Research, a healthcare technology marketing data firm that is predicting the global market for digital pathology systems would double from $320 million in 2021 to $640 million by 2025.
Fujifilm previously had a deal with Inspirata to sell the Dynamyx system exclusively in the UK, Italy, Spain, Portugal, Belgium, the Netherlands, and Luxembourg, an August press release noted.
“A $320 million global industry in 2021 projected to reach $640 million by 2025, the rising number of cancer cases and the demonstrated benefits of digital pathology are fueling significant demand and market growth in the hospital and pharmaceutical industries,” said Henry Izawa (above), president and CEO, Fujifilm Healthcare Americas Corporation, in a press release. “These evolving clinical needs fuel Fujifilm’s investment and innovation in the digital revolution, and we look forward to introducing Dynamyx and its host of unique features and benefits to our Synapse customers and prospects as we strive to enable more efficient medical diagnosis and high-quality care.” (Photo copyright: LinkedIn.)
In announcing their new collaboration, GE Healthcare and Tribun Health said the integration of their systems—Edison Datalogue and the Tribun Health suite—would foster collaboration between pathologists and clinicians by providing a consolidated location for imaging records. This capability is especially important in oncology, they said.
“The oncology care pathway is one of the most complex with multiple steps involving a variety of specialists, complex tools, frequent decisions, and large data sets,” said GE Healthcare CEO of Enterprise Digital Solutions Nalinikanth Gollagunta in a GE press release. “With this digital pathology collaboration, we continue our journey towards simplifying the oncology care pathway with improved data management, the digitization of pathology, and streamlined data access.”
Tribun Health, based in Paris, France, offers a digital pathology platform that incorporates a camera system, artificial intelligence (AI)-based analysis, remote collaboration, and storage management, plus integration with third-party automation apps.
GE Healthcare claims that Edison Datalogue has the largest share of the Vendor Neutral Archive (VNA) market. That term refers to image archiving systems that use standard formats and interfaces instead of proprietary formats. They are an alternative to the more widely used Picture Archiving and Communications Systems (PACS) used in medical imaging.
The collaboration between the companies “is probably a strategic move to position GE as an integrator of imaging data and digital pathology data in oncology,” said Robert Michel Editor-in-Chief of Dark Daily and its sister publication The Dark Report.
GE’s History with Dynamyx
This is not GE Healthcare’s first foray into digital pathology. In fact, the company had a major hand in launching the very Dynamyx system that Fujifilm recently acquired.
In “GE Healthcare Sells Omnyx to Inspirata,” The Dark Report interviewed Inspirata CEO Satish Sanan who at that time said the acquisition would allow his company to offer “a fully integrated, end-to-end digital pathology solution” in Canada and Europe. But GE Healthcare chose to end the partnership in 2016, citing regulatory uncertainty and variable global demand. Two years later, GE sold Omnyx to Inspirata.
GE Healthcare’s new collaboration with Tribun Health shows that the company “still recognizes the value of the pathology data in cancer diagnosis and wants to be in a position to manage that digital pathology data,” Michel said.
Fujifilm’s Plans
Fujifilm said it will incorporate Dynamyx into its Synapse Enterprise Imaging suite, which includes VNA, Radiology PACS, and Cardiology PACS. “Future releases of Dynamyx will also create opportunities for Fujifilm to support pharmaceutical and contract research organizations with toxicity testing data management for drug development,” the company stated in the press release.
With its recent moves into digital pathology, Fujifilm will be taking on major competitors including Philips, Danaher, and Roche, MedTech Dive reported.
Working from tissue slides similar to those used by surgical pathologists, the algorithm accurately detects prostate cancer with an impressive 98% sensitivity
It could be that a new milestone has been reached on the road to using artificial intelligence (AI) to help anatomic pathologists diagnose cancer and other diseases. A research collaboration between a major American university and an Israeli company recently published a study about the ability of an AI algorithm to correctly diagnose prostate cancer.
The scientists trained the Galen Prostate AI to recognize prostate cancer by having it examine images from over a million parts of stained tissue slides taken from patient biopsies. Expert pathologists labeled each image to teach the algorithm how to distinguish between healthy and abnormal tissue. The AI was then tested on 1,600 different tissue slide images that had been collected from 100 patients seen at UPMC who were suspected of having prostate cancer.
“Humans are good at recognizing anomalies, but they have their own biases or past experience,” said Rajiv Dhir, MD, Chief Pathologist and Vice Chair of Pathology at UPMC Shadyside Hospital, Professor of Biomedical Informatics at University of Pittsburgh, and senior author of the study, in a UPMC news release. “Machines are detached from the whole story. There’s definitely an element of standardizing care.”
UPMC Algorithm Goes Beyond Cancer Detection, Exceeds Human Pathologists
The researchers also noted that this is the first algorithm to extend beyond cancer detection. It reported high performance for tumor grading, sizing, and invasion of surrounding nerves—clinically important features of pathology reports.
“Algorithms like this are especially useful in lesions that are atypical,” Dhir said. “A nonspecialized person may not be able to make the correct assessment. That’s a major advantage of this kind of system.”
The algorithm also flagged six slides as potentially containing abnormal tissue that were not flagged by human pathologists. However, the researchers pointed out that this difference does not mean the AI is better than humans at detecting prostate cancer. It is probable, for example, that the pathologists simply saw enough evidence of malignancy elsewhere in the patients’ samples to recommend treatment.
Other Studies Where AI Detected Prostate Cancer
The UPMC researchers are not the first to use AI to detect prostate cancer. In February, The Lancet Oncology published a study from researchers at Radboud University Medical Center (RUMC) in the Netherlands who developed a deep learning AI system that could determine the aggressiveness of prostate cancer in certain patients.
For that research, the RUMC scientists collected 6,000 biopsies from more than 1,200 men. They then showed the biopsy images along with the original pathology reports to their AI system. Using deep learning, the AI was able to detect and grade prostate cancer according to the Gleason Grading System (aka, Gleason Score), which is used to rate prostate cancer and choose appropriate treatment options. The Gleason Score ranges from one to five and most cancers obtain a score of three or higher.
“Systems such as ours can be used in different ways. First, it can be used to screen biopsies and to filter out the easy (benign) cases. This could reduce the workload for pathologists,” said Wouter Bulten, a PhD candidate at Radboud who worked on the study, in an interview with HemOnc Today. “Second, the system can be used as a second opinion after the pathologist’s initial read. The system can flag a case if its opinion differs from that of the pathologist. It also can give feedback during the first read, showing the pathologist where to look. In this case, the pathologist needs only to confirm the opinion of the AI system.”
Can Today’s AI Outperform Human Pathologists?
In their research, the Radboud team discovered that their AI system was able to achieve pathologist-level performance and, in some cases, even performed better than human pathologists. However, they do not foresee AI replacing the need for pathologists, but rather emerging as another method to use in cancer detection and treatment.
“We see our system as an additional tool that the pathologist can use. Although our system performs very well, it still makes mistakes,” stated Bulten. “These mistakes are often different from those a human would make. We believe that when you merge the expertise of the pathologist with the second opinion of an AI system, you get the best of both worlds.”
According to the American Cancer Society, prostate cancer is the second most common cancer among men in the US, after skin cancer. The organization estimates there will be approximately 191,930 new cases of prostate cancer diagnosed and about 33,330 deaths from the disease in the US in 2020.
Though the UPMC study focused only on prostate cancer, the scientists believe their algorithm can be trained to detect other types of cancer as well. AI in clinical diagnostics is clearly progressing, however more studies will be required. Nevertheless, if AI can truly become a useful tool for anatomic pathologists to detect cancer earlier, we may see a welcomed reduction in cancer deaths.
Pathologists and practice administrators should prepare a strategy and a timetable for their group’s acquisition and deployment of a digital pathology system and whole slide imaging
Not in decades have pathologists faced a comparable dual threat. One threat is the use of digital pathology and WSI for primary diagnosis in ways that deliver faster answers to referring physicians, while creating new business models for anatomic pathology groups. At greatest risk from this technology, however, may be sub-specialist pathologists who depend on specialty referrals and second-opinion consults.
Second Threat Is How Digital Pathology Can Erode Pathology Group’s Revenue
The second threat is how failure to adopt digital pathology and WSI at the right time in the market cycle will put a pathology group’s revenue at risk, while causing pathologist compensation to erode. Pathology groups that are quick to adopt digital pathology and whole slide imaging are expected to gain clinical advantage and additional case referrals, while pathology groups that defer adoption will probably lose market share—and the revenue associated with those lost case referrals.
How Fast Will Pathology Groups Act to Implement Digital Pathology?
It was last April when the FDA cleared the first digital pathology system and whole slide imaging for use in the primary diagnosis of biopsied tissue and resection cases. With clearance to market of the Philips IntelliSite Pathology Solution (PIPS), it is expected that other companies will submit their digital pathology systems for FDA review as well. As that happens, the market for digital pathology systems will expand and become more competitive.
“How fast pathologists in the United States adopt digital pathology for primary diagnosis is the big question,” observed Robert L. Michel, Editor-In-Chief of The Dark Report, Dark Daily’s sister publication. “We’ve interviewed pathologists at several community pathology group practices who currently use digital pathology and whole slide images for things like tumor boards, second opinion consults within and without their practice, and teaching purposes. They have strong opinions about how quickly they want their group to begin using a digital pathology system for primary diagnosis.
“For example, Advanced Pathology Associates (APA) in Rockville, Md., is a group with 15 pathologists who cover seven hospitals,” stated Michel. “APA was the community pathology group site for the study data Philips needed to submit with its FDA pre-market application. They had the system for the nine-month trial and used it to evaluate 500 cases and thousands of glass slides and WSIs. APA returned the system at the conclusion of the study, but pathologists at APA are already in the process of acquiring their own digital pathology system to use for primary diagnosis.”
Anatomic Pathology Group Went Hands-on with Digital Pathology System
In a story The Dark Report published about Advanced Pathology Associates, pathologist Nicolas Cacciabeve, MD, APA’s Managing Partner, commented, “Because we had the opportunity to be hands-on with this digital pathology system, we saw how it changes daily workflow, improves the ergonomics of reading cases, and contributes to increased productivity.”
Cacciabeve identified the immediate benefits APA will accrue after it acquires its own digital pathology system and begins to use it for primary diagnosis. “[Having a digital pathology system] … also opens new opportunities for our pathologists to add more value—whether it is handling more complex cases through real-time consultation, or through better data management and image retrieval, or freeing up pathologists to get out of the lab to collaborate with clinicians.”
Pathologist Clive Taylor, MD, Considers DP’s Clearance to Be ‘Huge’
“The FDA’s clearance of this system for primary diagnosis is huge,” stated Taylor. “… I say that because digital slide scanners in many pathology departments around the country are used secondarily. For example, a pathologist will look at a glass biopsy slide today and think, ‘I should scan this to get a score, or an accurate count, or to send it to a colleague in Washington or London or some place.’ In that sense, pathology labs are using whole slide imaging for secondary purposes.
“The FDA clearance of whole slide imaging for primary diagnostics will foster changes in anatomic pathology departments that will improve the accuracy and speed of diagnosis and drastically reduce the time it takes to get second opinions and to reach a primary diagnosis,” Taylor predicted.
Pathologists, Practice Administrators Need a Strategy for Digital Pathology
Because of the potential for digital pathology systems and whole slide imaging to be disruptive to both the clinical practice of pathology and the revenue and income earned by pathologists, it is recommended that pathology practice administrators and pathologist business leaders of their respective groups understand this new technology and how early-adopter pathology labs are using it to add value to their diagnostic services while generating new streams of revenue.
The four expert speakers for this critical Dark Daily webinar are (clockwise from upper left): Keith Kaplan, MD, Chief Medical Officer, Corista, Concord, Mass.; Liron Pantanowitz, MD, Professor of Pathology and Biomedical Informatics at the University of Pittsburgh Medical Center, Pittsburgh; Isaac R. Grindeland, MD, Gastrointestinal Pathology, Incyte Diagnostics, Spokane Valley, Wash.; and Dan Angress, for ClearPath Derm of Dayton, Ohio, and President of Angress Consulting, LLC, Los Angeles, Calif. (Photo copyright: Dark Daily.)
This critical webinar takes place on Thursday, August 17, 2017 at 1:00 PM EDT.
Essential Knowledge about Digital Pathology Systems, Whole Slide Imaging
The webinar is organized to help all pathology groups, academic pathology departments, and pathology laboratories understand:
The current capabilities of the technology for digital pathology and WSI;
How these technologies are evolving in ways that add functionality and improve productivity; and—most importantly,
Two case studies of pathology groups already using digital pathology and WSI imaging to add clinical value and develop new sources of revenue.
Speaking during this webinar will be:
Keith Kaplan, MD, Chief Medical Officer, Corista, Concord, Mass.: For nearly a decade, Kaplan has been one of the leading commentators on the use of digital technologies and Web 2.0 capabilities in pathology. He will provide strategic context about why the FDA’s clearance of a digital pathology system for use in primary diagnosis is a trigger event for all pathology groups.
Liron Pantanowitz, MD, Professor of Pathology and Biomedical Informatics at the University of Pittsburgh Medical Center, Pittsburgh, Pa.: An internationally known expert on the use of digital pathology systems and whole slide imaging, Pantanowitz will give webinar participants a concise understanding of the technology’s current capabilities; how it is being used at UPMC; the lessons learned in the use of digital pathology to support UPMC’s international pathology collaborations; and what technology advances to expect in the near future.
Dan Angress, for ClearPath Derm of Dayton, Ohio, and President of Angress Consulting, LLC, Los Angeles, Calif.: This is a fascinating case study of how ClearPath Derm is using digital pathology capabilities to support added value services for its referring physicians that, most importantly, generate additional revenue for the pathology group.
Isaac R. Grindeland, MD, Gastrointestinal Pathology, Incyte Diagnostics, Spokane Valley, Wash.: This regional pathology super-group has 40 pathologists, four anchor locations, and contracts with multiple hospitals. Grindeland will explain how Incyte leverages its digital pathology capabilities to improve productivity and performance, while better meeting the needs of its hospital and physician clients.
Preparing Pathology Groups for Disruptive Potential of DB, WSI
Because of the potential for digital pathology systems and whole slide imaging to disrupt many long-established clinical practices, while at the same time creating new financial winners and losers among the nation’s pathology groups, it is imperative that pathologists and practice administrators gain the necessary knowledge to prepare their groups. Armed with these insights, they then can develop timely and appropriate strategies to ensure their group’s clinical excellence and financial sustainability moving forward.
For details about the August 17 webinar and to register, use this link (or copy this URL and paste it into your browser: https://ddaily.wpengine.com/webinar/primary-diagnosis-with-digital-pathology-systems-and-whole-slide-images-what-every-pathologist-needs-to-know-why-it-will-be-disruptive-and-how-innovative-pathology-groups-are-already-making-money-w).