News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Keio University and Broad Institute Researchers Identify 18 Bacterial Strains That Could Help Patients with Gastrointestinal Illnesses

Findings could lead to new therapies and clinical laboratory biomarkers for detecting and defeating antibiotic-resistant bacteria

Once again, new research shows that human gut bacteria (microbiota) may be useful in fighting antibiotic-resistant bacterial infections. The study findings could provide new therapeutics and clinical laboratory biomarkers for diagnosing and treating severe gastrointestinal disorders.

Researchers at Keio University School of Medicine in Tokyo and the Broad Institute of MIT and Harvard have identified a unique combination of 18 bacterial strains that could aid in combatting a particularly nasty bacteria called Enterobacteriaceae, the cause of several intestinal conditions such as inflammatory bowel disease (IBD), according to a news release.

Antibiotic-resistant bacterial infections often appear in patients with chronic intestinal conditions and in those with long-term antibiotic use. Enterobacteriaceae is a large family of gram-negative bacteria that includes more than 30 genera and over 100 species.

“Despite two decades of microbiome research, we are just beginning to understand how to define health-promoting features of the gut microbiome,” said Marie-Madlen Pust, PhD, a computational postdoctoral researcher at the Broad Institute and co-first author of the paper, in the news release.

“Part of the challenge is that each person’s microbiome is unique. This collaborative effort allowed us to functionally characterize the different mechanisms of action these bacteria use to reduce pathogen load and gut inflammation,” she added.

The researchers identified a way to treat patients infected by antibiotic-resistant strains of bacteria that does not involve antibiotics. Should further research validate these early findings, this could be a viable approach to treating patients with this condition.

They published their findings titled, “Commensal Consortia Decolonize Enterobacteriaceae via Ecological Control” in the peer-reviewed, scientific journal Nature.

“Microbiome studies can often consist of analyzing collections of genetic sequences, without understanding what each gene does or why certain microbes are beneficial,” said Ramnik Xavier, MD (above), director of Broad Institute’s immunology program, co-director of the infectious disease and microbiome program, and co-senior author on the study, in a news release. “Trying to uncover that function is the next frontier, and this is a nice first step towards figuring out how microbial metabolites influence health and inflammation.” Clinical laboratories that test for intestinal conditions caused by antibiotic resistance will want to follow the Broad Institute’s research. (Photo copyright: Broad Institute.)

Suppressing Growth of Antibiotic-resistant Bacteria

To perform their research, the scientists isolated about 40 strains of bacteria from the stools of five healthy fecal donors. They then used those stool samples in fecal microbiota transplants to treat mice that had been infected with either Escherichia coli (E. coli) or Klebsiella, both forms of Enterobacteriaceae. The scientists tested different combinations of the 40 strains and identified 18 that suppressed the growth of Enterobacteriaceae.

“Antibiotic-resistant Enterobacteriaceae such as E. coli and Klebsiella bacteria are common in hospitals, where they can proliferate in the gut of patients and cause dangerous systemic infections that are difficult to treat. Some research suggests that Enterobacteriaceae also perpetuates inflammation in the intestine and infection by other microbes,” the Broad Institute news release notes.

The researchers discovered that Klebsiella changed the gene expression in carbohydrate uptake and metabolism in the Klebsiella-infected mice that were treated with the 18 beneficial strains. The gene expression included the downregulating of gluconate kinase and transporter genes, which revealed there is increased competition among gut bacteria for nutrients. 

When combined, these 18 strains alleviated inflammation in the guts of the treated mice by depriving the harmful gut bacteria of carbohydrates. This non-antibiotic approach also prevented harmful bacteria from colonizing in the gut. 

“In partnership with the Broad’s Metabolomics Platform, led by senior director and study co-author Clary Clish, PhD, they analyzed samples from pediatric patients with ulcerative colitis, looking for the presence of alternate gluconate pathway genes of gut microbes and fecal gluconate levels. They found higher levels of gluconate linked to more gluconate-consuming Enterobacteriaceae in samples from pediatric patients with ongoing inflammation, indicated by high levels of the protein calprotectin,” the study authors wrote in Nature.

“Together, the findings suggest that Enterobacteriaceae processes gluconate as a key nutrient and contributes to inflammation in patients. But when a gut microbiome includes the 18 helpful strains, they likely compete with Enterobacteriaceae for gluconate and other nutrient sources, limiting the proliferation of the harmful bacteria,” the scientists concluded.

Promising New Bacterial Therapies

This research could ultimately lead to the development of fecal microbiota transplants for individuals to eradicate antibiotic-resistant bacteria in a more objective and specific manner, with fewer side effects than current treatments. 

“Harnessing these activities in the form of live bacterial therapies may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant Enterobacteriaceae infection,” the scientists wrote in Nature.

According to the news release, they plan to continue research to “uncover the identity and function of unknown metabolites that contribute to gut health and inflammation.” The team hopes to discover how different bacteria compete with each other, and to develop microbial therapeutics that improve gut microbiome and curb bacterial infections.

More studies are needed to prove the efficacy of this type of fecal bacterial treatment. However, this research demonstrates how using nano processes enabled by new technologies to identify the actual work of proteins, RNA, and DNA in the body cheaply, faster, and with greater precision, will open doors to both therapeutic and diagnostic clinical laboratory biomarkers.  

—JP Schlingman

Related Information:

Scientists Identify a Unique Combination of Bacterial Strains That Could Treat Antibiotic-resistant Gut Infections

Commensal Consortia Decolonize Enterobacteriaceae via Ecological Control

Combination of Bacterial Strains Could Potentially Treat Antibiotic-Resistant Gut Infections

Stanford University Scientists Discover New Lifeform Residing in Human Microbiome

Researchers Use Ingestible Device to Non-Invasively Sample Human Gut Bacteria in a Development That Could Enable More Clinical Laboratory Testing of Microbiomes

Woman Performs Do-it-yourself Fecal Transplant to Relieve Symptoms of IBS, Gets Donor’s Acne

Clinical laboratory scientists and microbiologists could play a role in helping doctors explain to patients the potential dangers of do-it-yourself medical treatments

Be careful what you wish for when you perform do-it-yourself (DIY) medical treatments. That’s the lesson learned by a woman who was seeking relief for irritable bowel syndrome (IBS). When college student Daniell Koepke did her own fecal transplant using poop from her brother and her boyfriend as donors her IBS symptoms improved, but she began to experience medical conditions that afflicted both fecal donors.

“It’s possible that the bacteria in the stool can influence inflammation in the recipient’s body, by affecting their metabolism and activating their immune response,” microbial ecologist Jack Gilbert, PhD, Professor and Associate Vice Chancellor at University of California San Diego (UC San Diego) told Business Insider. “This would cause shifts in their hormonal activity, which could promote the bacteria that can cause acne on the skin. We nearly all have this bacterium on skin, but it is often dormant,” he added.

A Fecal Microbiota Transplant (FMT) is a procedure where stool from a healthy donor is transplanted into the microbiome of a patient plagued by a certain medical condition.

Our guts are home to trillions of microorganisms (aka, microbes), known as the gut microbiota, that serve many important functions in the body. The microbiome is a delicate ecosystem which can be pushed out of balance when advantageous microbes are outnumbered by unfavorable ones. An FMT is an uncomplicated and powerful method of repopulating the microbiome with beneficial microbes.   

“With fecal microbiome transplants there is really compelling evidence, but the science is still developing. We’re still working on if it actually has benefits for wider populations and if the benefit is long-lasting,” said Gilbert in a Netflix documentary titled, “Hack Your Health: The Secrets of Your Gut.”

“The microbial community inside our gut can have surprising influences on different parts of our body,” microbial ecologist Jack Gilbert, PhD (above), of the Gilbert Lab at University of California San Diego told Business Insider. “Stools are screened before clinical FMTs, and anything that could cause major problems, such as certain pathogens, would be detected. When you do this at home, you don’t get that kind of screening.” Doctors and clinical laboratories screening patients for IBS understand the dangers of DIY medical treatments. (Photo copyright: University of California San Diego.)

Changing Poop Donors

When Koepke began experiencing symptoms of IBS including indigestion, stabbing pains from trapped gas and severe constipation, she initially turned to physicians for help.

In the Netflix documentary, Koepke stated that she was being prescribed antibiotics “like candy.” Over the course of five years, she completed six rounds of antibiotics per year, but to no avail.

She also changed her diet, removing foods that were making her symptoms worse. This caused her to lose weight and she eventually reached a point where she could only eat 10 to 15 foods. 

“It’s really hard for me to remember what it was like to eat food before it became associated with anxiety and pain and discomfort,” she said.

In an attempt to relieve her IBS symptoms, Koepke made her own homemade fecal transplant pills using donated stool from her brother. After taking them her IBS symptoms subsided and she slowly gained weight. But she developed hormonal acne just like her brother. 

Koepke then changed donors, using her boyfriend’s poop to make new fecal transplant pills. After she took the new pills, her acne dissipated but she developed depression, just like her boyfriend. 

“Over time, I realized my depression was worse than it’s ever been in my life,” Koepke stated in the documentary.

She believes the microbes that were contributing to her boyfriend’s depression were also transplanted into her via the fecal transplant pills. When she reverted to using her brother’s poop, her depression abated within a week.

Gilbert told Business Insider his research illustrates that people who suffer from depression are lacking certain bacteria in their gut microbiome.

“She may have had the ‘anti-depressant’ bacteria in her gut, but when she swapped her microbiome with his, her anti-depressant bacteria got wiped out,” he said.

FDA Approves FMT Therapy for Certain Conditions

Typically, the fecal material for an FMT procedure performed by a doctor comes from fecal donors who have been rigorously screened for infections and diseases. The donations are mixed with a sterile saline solution and filtered which produces a liquid solution. That solution is then administered to a recipient or frozen for later use. 

Fecal transplant methods include:

On November 30, 2022, the US Food and Drug Administration (FDA) approved the first FMT therapy, called Rebyota, for the prevention of Clostridioides difficile (C. diff.) in adults whose symptoms do not respond to antibiotic therapies. Rebyota is a single-dose treatment that is administered rectally into the gut microbiome at a doctor’s office. 

Then, in April of 2023, the FDA approved the use of a medicine called Vowst, which is the first oral FMT approved by the FDA.

According to the Cleveland Clinic, scientists are exploring the possibility that fecal transplants may be used as a possible treatment for many health conditions, including:

Doctors and clinical laboratories know that do-it-yourself medicine is typically not a good idea for obvious reasons. Patients seldom appreciate all the implications of the symptoms of an illness, nor do they fully understand the potentially dangerous consequences of self-treatment. Scientists are still researching the benefits of fecal microbiota transplants and hope to discover more uses for this treatment. 

—JP Schlingman

Related Information:

A Woman Gave Herself Poop Transplants Using Her Brother’s Feces to Treat Debilitating IBS. Then She Started Getting Acne Just Like Him.

FDA Approves First Orally Administered Fecal Microbiota Product for the Prevention of Recurrence of Clostridioides Difficile Infection

FDA Approves First FMT Therapy and Issues Guidance

Everything You Want to Know about Irritable Bowel Syndrome (IBS)

Stanford University Scientists Discover New Lifeform Residing in Human Microbiome

Microbiome Firm Raises $86.5 Million and Inks Deal to Sell Consumer Test Kits in 200 CVS Pharmacies

Researchers Find Health of Human Microbiome Greatly Influenced by Foods We Eat

University of Chicago Study Determines Certain Gut Bacteria Can Help Prevent Food Allergies and Other Gastrointestinal Illnesses

With further research, clinical laboratories may soon be performing macrobiotic testing to measure certain bacterial levels in patients’ gut bacteria

New insights from the University of Chicago (UChicago) into how human microbiota (aka, gut bacteria) play a role in food allergies has the potential to change the way a number of gastrointestinal health conditions are diagnosed and treated. This would give microbiologists and clinical laboratories a greater role in helping physicians diagnose, treat, and monitor patients with these health issues.

Past research has shown that certain gut bacteria can prevent antigens that trigger allergic reactions from entering the bloodstream. For example, Clostridium bacteria in the stomach produce a short-chain fatty acid known as butyrate, a metabolite that promotes the growth of healthy bacteria in the gut. This helps keep the microbiome in balance.

One way butyrate is created in the gut is through the fermentation of fiber. However, a lack of fiber in the diet can deplete the production of butyrate and cause the microbiome to be out of balance. When this happens, a state known as dysbiosis occurs that disrupts the microbiome and can lead to food allergies. 

Without butyrate, the gut lining can become permeable and allow food to leak out of the gastrointestinal tract and into the body’s circulatory system. This reaction can trigger a potentially fatal anaphylactic response in the form of a food allergy. Thus, eating enough fiber is critical to the production of butyrate and to maintaining a balanced microbiome.

But today’s western diet can be dangerously low in soluble fiber. Therefore, the scientists at the University of Chicago have developed “a special type of polymeric molecule to deliver a crucial metabolite produced by these bacteria directly to the gut, where it helps restore the intestinal lining and allows the beneficial bacteria to flourish. … these polymers, called micelles, can be designed to release a payload of butyrate, a molecule that is known to help prevent food allergies, directly in the small and large intestines,” according to a UChicago news release.

This will be of interest to microbiologists, in particular. It’s another example of researchers connecting a specific species of bacteria in the human microbiome to a specific benefit.

The University of Chicago scientists published their findings in the journal Nature Biomedical Engineering titled, “Treatment of Peanut Allergy and Colitis in Mice via the Intestinal Release of Butyrate from Polymeric Micelles.”

Cathryn Nagler, PhD

“It’s very unlikely that butyrate is the only relevant metabolite, but the beauty of this platform is that we can make polymers with other microbial metabolites that could be administered in conjunction with butyrate or other therapies,” said Cathryn Nagler, PhD (above), Bunning Family Professor in the Biological Sciences Division and Pritzker School of Molecular Engineering at UChicago and a senior author of the study. “So, the potential for the polymer platform is pretty much wide open.” As further research validates these findings, clinical labs are likely to be doing microbiomic testing to monitor these therapies. (Photo copyright: University of Chicago.)

Restoring Butyrate in the Gut

One way to treat this anomaly has been through a microbiota transplant—also called a fecal biota transplant—where the administration of a solution of fecal matter is transplanted from a donor into the intestinal tract of the recipient. This transplant alters the recipient’s gut microbial composition to a healthier state, but it has had mixed results. 

So, the UChicago researchers went in another direction (literally). They created an oral solution of butyrate and administered it to mice in the lab. The purpose of the solution was to thwart an allergic reaction when the mice were exposed to peanuts. 

But there was a problem with their oral solution. It was repulsive.

“Butyrate has a very bad smell, like dog poop and rancid butter, and it also tastes bad, so people wouldn’t want to swallow it,” Shijie Cao, PhD, Postdoctoral Scientist at the Pritzker School of Molecular Engineering at UChicago and one of the researchers who worked on the project, told Medical News Today.

The researchers developed a new configuration of polymers that masked the butyrate. They then delivered these polymer micelles directly into the digestive systems of mice that lacked healthy gut bacteria or a proper gut linings.

The treatment restored the microbiome by increasing the production of peptides that obliterate harmful bacteria. This allowed more of the beneficial butyrate-producing bacteria to emerge, which protected the mice from an anaphylactic reaction to peanuts and even reduced the symptom severity in an ulcerative colitis model. 

“We were delighted to see that our drug both replenished the levels of butyrate present in the gut and helped the population of butyrate-producing bacteria to expand,” said Cathryn Nagler, PhD, Bunning Family Professor in the Biological Sciences Division and Pritzker School of Molecular Engineering at the University of Chicago and a senior author of the study, in the press release. “That will likely have implications not only for food allergy and inflammatory bowel disease (IBD), but also for the whole set of non-communicable chronic diseases that have been rising over the last 30 years, in response to lifestyle changes and overuse of antibiotics in our society.”

Future Benefits of UChicago Treatment

According to data from the Asthma and Allergy Foundation of America, about 20 million Americans suffered from food allergies in 2021. This includes approximately 16 million (6.2%) of adults and four million (5.8%) of children. The most common allergens for adults are shellfish, peanuts, and tree nuts, while the most common allergens for children are milk, eggs, and peanuts. 

The best way to prevent an allergic reaction to a trigger food is strict avoidance. But this can be difficult to ensure outside of the home. Therefore, scientists are searching for ways to prevent food allergies from happening in the first place. The micelle technology could be adapted to deliver other metabolites and molecules which may make it a potential platform for treating allergies as well as other inflammatory gastrointestinal diseases

“It’s a very flexible chemistry that allows us to target different parts of the gut,” said Jeffrey Hubbell, PhD, Eugene Bell Professor in Tissue Engineering and Vice Dean and Executive Officer at UChicago’s Pritzker School of Molecular Engineering and one of the project’s principal investigators, in the UChicago news release. “And because we’re delivering a metabolite like butyrate, it’s antigen-agnostic. It’s one agent for many different allergic indications, such as peanut or milk allergies. Once we begin working on clinical trials, that will be a huge benefit.”

Nagler and Hubbell have co-founded a company called ClostraBio to further the development of butyrate micelles into a commercially available treatment for peanut and other food allergies. They hope to begin clinical trials within the next 18 months and expand the technology to other applications as well.  

Further research and clinical trials are needed to prove the validity of using polymer micelles in the treatment of diseases. But it is possible that clinical laboratories will be performing microbiomic testing in the future to help alleviate allergic reactions to food and other substances.

—JP Schlingman

Related Information:

Peanut and Food Allergies May Be Reversed with Compound Produced by Healthy Gut Bacteria

Time Release Polymers Deliver Metabolites to Treat Peanut Allergy and Colitis

Food Allergies: Reversing the Old, Preventing the New with Gut Bacteria

Scientists Reverse Food Allergies by Targeting the Microbiome

Polymers Help Protect Mice from Anaphylactic Reaction to Peanuts, UChicago Research Finds

Treatment of Peanut Allergy and Colitis in Mice via the Intestinal Release of Butyrate from Polymeric Micelles

Clinical Laboratories Could Soon Diagnose 17 Diseases with a Single Breath Analyzer Test from Israel’s Institute of Technology

The Technion breathalyzer would give pathology groups and medical laboratories unprecedented ability to support physicians in diagnosing and treating cancers, chronic diseases, and other illnesses

Readers of Dark Daily know that several pathology research teams in America and the UK are developing breath analyzer tests that can detect everything from lung cancer to early-stage infections. Clinical laboratories will soon have a plethora of breath-related tests from which to choose. Now there’s a new kid on the block. A breathalyzer test that can detect up to 17 distinct cancerous, inflammatory, and neurological diseases!

Assuming the cost per test was at a competitive level to existing technologies, what would give this new diagnostic system appeal to physicians and patients alike is that it would be a non-invasive way to diagnose disease. Only a sample of the patient’s breath would be needed to perform the assays.

Researchers at the Israel Institute of Technology, or Technion, published the results of their study in ACS Nano, a monthly journal of the American Chemical Society devoted to “nanoscience and nanotechnology research at the interfaces of chemistry, biology, materials science, physics, and engineering.” (more…)

;