The self-cleaning material has been proven to repel even the deadliest forms of antibiotic resistant (ABR) superbugs and viruses. This ultimate non-stick coating is a chemically treated form of transparent plastic wrap which can be adhered to surfaces prone to gathering germs, such as door handles, railings, and intravenous therapy (IV) stands.
“We developed the wrap to address the major threat that is posed by multi-drug resistant bacteria,” Leyla Soleymani, PhD, Associate Professor at McMaster University and one of the leaders of the study, told CNN. “Given the limited treatment options for these bugs, it is key to reduce their spread from one person to another.”
According to research published in the peer-reviewed Southern Medical Journal, “KPC-producing bacteria are a group of emerging highly drug-resistant Gram-negative bacilli causing infections associated with significant morbidity and mortality.”
Were those surfaces covered in this new bacterial-resistant
coating, life-threatening infections in hospital ICUs could be prevented.
Taking Inspiration from Nature
In designing their new anti-microbial wrap, McMaster researchers took their inspiration from natural lotus leaves, which are effectively water-resistant and self-cleaning thanks to microscopic wrinkles that repel external molecules. Substances that come in contact with surfaces covered in the new non-stick coating—such as a water, blood, or germs—simply bounce off. They do not adhere to the material.
The “shrink-wrap” is flexible, durable, and inexpensive to
manufacture. And, the researchers hope to locate a commercial partner to
develop useful applications for their discovery.
“We’re structurally tuning that plastic,” Soleymani told SciTechDaily. “This material gives us something that can be applied to all kinds of things.”
In the video above, Leyla Soleymani, PhD, Associate Professor at McMaster University, explains how “The new plastic surface—a treated form of conventional transparent wrap—can be shrink-wrapped onto door handles, railings, IV stands, and other surfaces that can be magnets for bacteria such as MRSA and C. difficile. This may be technology that has great value to clinical laboratories and microbiology laboratories. Click here to watch the video. (Image and video copyright: McMaster University/YouTube.)
Industries Outside of Healthcare Also Would Benefit
According to the US Centers for Disease Control and Prevention (CDC), at least 2.8 million people get an antibiotic-resistant infection in the US each year. More than 35,000 people die from these infections, making it one of the biggest health challenges of our time and a threat that needs to be eradicated. This innovative plastic coating could help alleviate these types of infections.
And it’s not just for healthcare. The researchers said the coating could be beneficial to the food industry as well. The plastic surface could help curtail the accidental transfer of bacteria, such as E. coli, Salmonella, and Listeria in food preparation and packaging, according to the published study.
“We can see this technology being used in all kinds of institutional and domestic settings,” Tohid Didar, PhD, Assistant Professor at McMaster University and co-author of the study, told SciTechDaily. “As the world confronts the crisis of anti-microbial resistance, we hope it will become an important part of the anti-bacterial toolbox.”
Clinical laboratories also are tasked with preventing the
transference of dangerous bacteria to patients and lab personnel. Constant
diligence in application of cleaning protocols is key. If this new anti-bacterial
shrink wrap becomes widely available, medical laboratory managers and
microbiologists will have a new tool to fight bacterial contamination.
Thorough hand-washing protocols aren’t just for healthcare professionals anymore. Patients also need to be educated to prevent hospital-acquired infections
Microbiologists and clinical laboratory managers will be particularly interested to learn that patients are bringing deadly organisms into hospitals on their hands. That’s the conclusion of a University of Michigan (UM) study which found that as patients enter and move throughout hospitals, they deposit and spread multi-drug resistant organisms, or MDROs on clinical surfaces. When those surfaces are not properly decontaminated, the bacterial contamination spreads on contact.
This finding has implications for the nosocomial infection teams in hospitals that include microbiologists and clinical laboratories. After all, every day there is a large flow of walk-in patients and visitors who come in contact with dozens of surfaces. The potential for contamination with multi-drug resistant organisms is high.
Antibiotic-resistant bacteria have been the root cause of a marked increase in hospital-acquired infections (HAIs), which Dark Daily has covered extensively. That’s why healthcare professionals practice proper hand-washing protocols to help reduce the transmission of pathogens and curtail possible infections.
The UM study, however, suggests that patients also should be
educated on proper hand hygiene to diminish the potential spread of bacteria,
especially before making trips to the emergency room.
Between February and July of 2017, UM researchers at two
hospitals in Southeast Michigan tested 399 general medicine hospital patients
for the presence of MDROs, also known as superbugs. They swabbed the palms,
fingers, and around the nails of the patients’ dominant hands and the interior
of both nostrils.
The researchers found that 14% of the patients tested
positive for MDROs. In addition, nearly one third of high-touch objects and
surfaces in the hospital rooms tested positive for superbugs as well.
The hospital room surfaces that were swabbed for the
presence of MDROs were:
Due to the overuse of antibiotics, these types of bacteria
are often resistant to the drugs that were once used to kill them.
“Hand hygiene narrative has largely focused on physicians, nurses, and other frontline staff, and all the policies and performance measurements have centered on them, and rightfully so,” said Lona Mody, MD (above) in a press release. Mody is Professor of Internal Medicine at UM and one of the lead researchers for the study. “But our findings make an argument for addressing transmission of MDROs in a way that involves patients, too.”
Anatomy of a Hospital-Acquired Infection
The scientists tested patients and surfaces at different
stages of their hospital stays. The samples were taken on the day of admission,
days three and seven of the stays, and weekly thereafter until the patients
were discharged.
The team found that 6% of the patients who did not have
MDROs present at the beginning of their hospital stays tested positive for
superbugs at later stages of their stays. Additionally, 20% of the tested
objects and surfaces in the patients’ rooms had superbugs on them at later test
stages that were not present earlier in the hospital stays.
“This study highlights the importance of hand washing and environmental cleaning, especially within a healthcare setting where patients’ immune systems are compromised,” noted Katherine Reyes, MD, Department of Infectious Diseases, Henry Ford Hospital, in the press release. “This step is crucial not only for healthcare providers, but also for patients and their families. Germs are on our hands; you do not need to see to believe it. And they travel. When these germs are not washed off, they pass easily from person to person and objects to person and make people sick.”
Patients included in the study had to be new admissions, on
general medicine floors, and at least 18 years of age. Criteria that excluded
individuals from participation in the research included:
Being in observation status, typically after a
medical procedure;
Transfers from other hospitals;
Transfers from intensive care units;
Having cystic fibrosis (these patients have a
higher likelihood of MDRO colonization);
Receiving end-of-life care; and
Non-English speaking.
Patients who were transferred to a room on a
nonparticipating floor within the hospitals were immediately discharged from
the study.
Patients Travel Throughout Hospitals Spreading Germs
The presence of superbugs on patients or surfaces does not
automatically translate to a patient getting sick with antibiotic-resistant
bacteria. Only six of the patients in this study developed MRSA. However, all
six of those individuals tested positive for the superbug either on their hands
or on surfaces within their room.
The researchers noted that hospital patients typically do
not stay in their rooms. They are encouraged to walk throughout the hospital to
speed up the recovery process, and often are transported to other areas of
hospitals for medical tests and procedures. Patients also may be picking up
superbugs from other patients and staff members, other hospital areas, and
commonly-touched surfaces.
The UM researchers concluded in their study that “while the
burden of preventing infections has largely been borne by [healthcare
personnel], our study shows that patient hands are an important reservoir and
play a crucial role in the transmission of pathogens in acute care hospitals.
Thus, patient hand hygiene protocols should be implemented and tested for their
ability to reduce environmental contamination, pathogen transmission, and
healthcare-associated infections, as well as to increase meaningful patient
engagement in infection prevention.”
“Infection prevention is everybody’s business,” stated Mody
in the press release. “We are all in this together. No matter where you are, in
a healthcare environment or not, this study is a good reminder to clean your
hands often, using good techniques—especially before and after preparing food,
before eating food, after using a toilet, and before and after caring for
someone who is sick—to protect yourself and others.”
These
research findings should prove to be valuable for infection control teams and
microbiology laboratories in the nation’s hospitals and health systems, as well
as independent clinical laboratories, urgent care centers, and retail
healthcare clinics.
Learning
more about the transmission of infectious agents from patient to patient and
from surfaces to patients could aid in the development of new techniques and
strategies to prevent superbugs from manifesting in medical environments.
Contrary to CMS and Joint Commission programs implemented in 2017 to reduce them, incidents of hospital-acquired infections have risen for the past few years
Nevertheless, a recent Leapfrog Group report indicates hospitals are finding it increasingly difficult to remove infections all together. This has many healthcare leaders concerned.
The report, which was analyzed by Castlight Health, states that the number of hospitals reporting zero infections has declined significantly since 2015, according to a news release. According to the Leapfrog Group’s report:
Two million people acquire HAIs every year;
90,000 people die annually from HAIs;
HAI costs range from $1,000 to $50,000 depending on the infection.
Hospitals spend $28 to $45 billion annually on HAI costs, Healthcare Finance reported.
“I think it’s far too easy to let something slip, so it’s clear that there really needs to be a renewed focus on getting back to zero. We do still see some hospitals that are getting to zero, so it’s clearly possible,” Erica Mobley (above), Leapfrog Group’s Director of Operations, told Fierce Healthcare. (Photo copyright: LinkedIn.)
Regressing Instead of Progressing Toward Total HAI Elimination
Leapfrog Group’s report is based on 2017 hospital survey data submitted by 2,000 providers. The data indicates that in just two years the number of hospitals reporting zero HAIs dropped by up to 50%. The reported HAIs include:
Central line-associated bloodstream infections (CLABSI) occurring in Intensive Care and other units: 12.7% of hospitals reporting zero CLABSI infections in 2017, down from 25% in 2015;
The remaining infection measures studied by Leapfrog Group had less dramatic decreases over the same time period, according to Fierce Healthcare. Nevertheless, they are significant. They include:
Surgical site infections (SSI) following colon surgery: 19% zero infections compared to 23% previously;
Clostridium difficile (C. difficile) inpatient infections: 3% zero inpatient infections in 2017, compared to 5% in 2015.
Joint Commission Studies Antimicrobial Program Progress
Hospitals have revised their antimicrobial programs, which originally operated on a “top-down” structure, to programs that include clinicians from throughout entire provider organizations;
Health information technology (HIT) can enable real-time opportunities to launch antimicrobial therapy and treat patients; and,
Some barriers exist in getting resources to integrate technology and analyze data.
“These programs used expansion of personnel to amplify the antimicrobial stewardship programs’ impact and integrated IT resources into daily workflow to improve efficiency,” the researchers wrote. “Hospital antimicrobial stewardship programs can reduce inappropriate antimicrobial use, length of stay, C. difficile infection, rates of resistant infections, and cost.”
What Do CMS and Joint Commission Expect?
According to Contagion, while the Joint Commission program is part of medication management, CMS places its requirements for the antimicrobial stewardship program under “infection prevention.”
CMS requirements for an antimicrobial stewardship program include:
Developing antimicrobial stewardship program policies and procedures;
Implementing hospital-wide efforts;
Involving antimicrobial stakeholders for focus on antimicrobial use and bacterial resistance;
Setting evidence-based antimicrobial use goals; and,
Reducing effects of antimicrobial use in areas of C. difficile infections and antibiotic resistance.
Leapfrog Group’s data about fewer hospitals reporting zero infections offers opportunities for hospital laboratory microbiology professionals to get involved with hospital-wide antimicrobial program teams and processes and help their hospitals progress back to zero HAIs. Clinical laboratories, both hospital-based and independent, also have opportunities to contribute to improving the antimicrobial stewardship efforts of the physicians who refer them specimens.
Use of these new technologies creates opportunities for clinical laboratories and pathologists to add more value when collaborating with physicians to advance patient care
Ongoing improvements in point-of-care testing are encouraging one major academic medical center to apply this mode of testing to the diagnosis of hospital-acquired infections (HAIs). This development should be of interest to clinical laboratory professionals and pathologists, since it has the potential to create a different way to identify patients with HAIs than medical lab tests done in the central laboratory.
Massachusetts General Hospital (MGH), Harvard Medical School’s (HMS’) largest teaching hospital, has developed a prototype diagnostic system that works with doctors’ smartphones or mobile computers. The hand-held system can identify pathogens responsible for specific healthcare-acquired infections (HAIs) at the point of care within two hours, according to an MGH statement.
The researchers noted that 600,000 patients develop HAIs each year, 10% of which die, and that costs related to HAIs can reach $100 to $150 billion per year. However, as Dark Daily reported, the Centers for Medicare and Medicaid Services (CMS) does not reimburse hospitals for certain HAIs. (See Dark Daily, “Consumer Reports Ranks Smaller and Non-Teaching Hospitals Highest in Infection Prevention,” October, 30, 2015.) Thus, the critical need to identify from where the infection originated, which generates a significant proportion of samples tested at the clinical laboratories of the nation’s hospitals and health systems.
Therefore, pathologists and medical laboratory scientists will understand that shifting some of that specimen volume to point-of-care testing will change the overall economics of hospital laboratories.
Optical test cubes are placed on an electronic base station that transmits data to a smartphone or computer, where results are displayed. “In a pilot clinical test, PAD accuracy was comparable to that of bacterial culture. In contrast to the culture, the PAD assay was fast (under two hours), multiplexed, and cost effective (under $2 per assay), wrote the MGH researchers in the journal Science Advances. (more…)
Clinical laboratory professionals and pathologists are part of multi-disciplinary efforts to curb healthcare-associated infections
One interesting fact about a national list of hospitals that rank highest in infection prevention is that they are mostly smaller and non-teaching hospitals. This was one finding from a recent survey conducted by Consumer Reports.