Dettwyler is set to retire at age 92 after a long career helping clinical laboratories with their coding and billing systems
When William Dettwyler, MT, began working in a clinical laboratory, Harry Truman was president of the United States and scientists had not yet discovered the structure of DNA. Now, as he approaches his 92nd birthday in March, he is finally ready to retire from a career that has spanned more than seven decades, from bench work as a medical laboratory technician (MLT) to assisting labs with their medical coding and medical billing challenges.
Along the way, one of his coding innovations helped the State of Oregon save substantial sums in its Medicaid program. He also helped many medical laboratories increase reimbursement by correcting their coding mistakes. This from someone who left school after eighth grade to help on his family’s farm in rural Oregon.
In an exclusive interview with Dark Daily, Dettwyler discusses his long career and offered pointers for labs on improving their coding and reimbursement procedures.
Back in the 1980s, when he began his consulting work for labs, “they were very poor at billing,” he recalled. “Hospital billing staff didn’t understand lab coding. Reference laboratories didn’t do a good job of picking the right codes or even billing all the codes. Up until around the 1970s, hospitals didn’t even have to bill individual lab procedures with CPT codes. They billed with a revenue center code for all their lab services.”
These days “people are much more sophisticated,” he notes. “There are fewer coding problems compared to what it was in the 1980s and 1990s up to the 2010s.” However, he says he still has a handful of clients who call on his expertise.
“It was not unusual to go to a large university medical center and in three days tell the CFO on my exit review that the following year their lab would bring in about a half million more in revenue, just from my coding review. But I did not reveal to them that I had only gone to the eighth grade in a little one room school and was the lone graduate in my eighth-grade class,” wrote William Dettwyler, MT (above), owner of Codus Medicus in Salem, Ore., in an article he penned for Medical Laboratory Observer. For 75 years Dettwyler worked in the clinical laboratory industry. For much of that time he helped labs all over America improve their coding and reimbursement systems. (Photo copyright: LinkedIn.)
How It All Began
Dettwyler got his first taste of lab work in the early 1950s as a teenager washing glassware for a medical laboratory technician at a local medical practice. A few years later he completed an MLT program at Oregon Institute of Technology in Klamath Falls and landed his first lab tech job at a clinic in Portland.
His entry to consulting came in the early 1970s while he was working for a medical group in Salem. “I was helping the accounting personnel with their billing and noticed that Medicaid was not paying for a common test for syphilis that I was performing,” he recalled. “I contacted Medicaid, and they told me they didn’t understand laboratory procedures.”
After that, “they started to call me frequently with laboratory questions,” he said. “It wasn’t long before they asked me to help them on a part-time basis.” He also assisted with questions related to radiology.
By 1976, Dettwyler was devoting 35 hours a week to assisting the state Medicaid agency while still working as a lab tech.
Simple Hack Ends Overpayments
One of his career highlights came around 1981, when he discovered that the agency was overpaying for some pathology and radiology procedures by as much as 200%.
“Pathologists and radiologists are paid based on whether they are performing the complete procedure—the technical component and the professional component—or just the professional component, where they interpret the results,” he explained.
When billing for just the professional component, the physicians would add two digits to the standard code, so it might come in as 88305-26. However, the state’s computer system could only accommodate a five-digit code, so the state was paying as if the providers had done everything.
“The computer techs said the software couldn’t handle a seven-digit number in a five-digit box, so I devised a way for the computer to read the equivalent of seven digits,” he recalled.
His solution was to modify the codes so that the last digit was an alphabetic character. Instead of billing for code 88305-26, the physicians would bill for 8830F, and the state would pay them correctly.
Around that time, Dettwyler also began assisting a Medicare office in Portland. This forced him to cut back on his work as a lab tech. But he still worked around 60 hours a week.
“For most of my life, I’ve worked three jobs,” he said. “Work is my hobby.” He also had a large family to support—by 1976, he and his wife had 10 kids.
Transition to Lab Consulting
In 1986, the state was facing a budget shortfall and cut its Medicaid consultants, so Dettwyler decided to seek consulting work with labs while continuing to work at the bench.
“I really liked the coding because I had very little competition,” he said. “But I wanted to keep working in the laboratory mainly to understand the problems.”
While working for the state, Dettwyler attended coding seminars and workshops. He noticed that labs were losing revenue due to poor billing practices. “They didn’t understand all the coding complexities, so they really hungered for this kind of assistance.”
But first, he had to find clients. So he partnered with another lab tech who was offering similar consulting services.
Business picked up after Dettwyler contributed an article to the trade publication Medical Laboratory Observer about his process, which he calls “procedure code verification and post payment analysis.”
“That went like gangbusters,” he said. “We started getting calls from all over the country.”
Dettwyler later split from his partner and went to work on his own.
“I would sit down with the person who was responsible for coding, usually the lab or radiology manager,” he explained. “We would go over the chargemaster and cover every procedure to make sure the code and units were correct. When I was done, I would give them a report of what codes we changed and why we changed them.”
Beginning in 1989, he signed on as a contractor for another consultancy, Health Systems Concepts on the East Coast, where he remained until 2019.
Advice to the Current Generation
What is Dettwyler’s advice for someone who wants to follow in his footsteps and assist labs with their coding? “I wouldn’t recommend it now,” he said. “There’s less need for that kind of assistance than in the past.”
However, he does find that labs still run into problems. The greatest need, he says, is in molecular diagnostics, due to the complexity of the procedures.
In addition, labs are sometimes confused by coding for therapeutic drug monitoring, in which a doctor is gauging a patient’s reaction to a therapy versus screening for substance abuse. “Those issues are often misunderstood,” he said.
Microbiology also poses coding challenges, he noted, because of the steps required to identify the pathogen and determine antibiotic susceptibility. “It requires quite a bit of additional coding,” he said. “Some labs don’t understand that they can’t just bill a code for culture and sensitivity. They have to bill for the individual portions.”
Labs that work with reference labs also have to be careful to verify codes for specific procedures. “I’ll review the codes used by reference labs and, surprisingly, they’re not always correct. Reference labs sometimes get it wrong.”
If someone does want to become a coding expert, Dettwyler suggests that “they should first have experience as a lab tech, especially in microbiology, because of the additional coding. And they should try to work with somebody who is already doing it. Then, they should work with the billing department to learn how it operates.”
He also advises clinical laboratory managers to follow the latest developments in the field by reading lab publications such as The Dark Report. “You have to do that to keep current,” he said.
Despite never completing high school, Dettwyler eventually received his GED and an associate degree. “But the degrees didn’t really help me,” he said. “Much of it was on-the-job training and keeping my eyes open and listening.”
The CDC suggests that hospitals treating patients for flu symptoms perform clinical laboratory tests for avian influenza A within 24 hours. This additional testing will pinpoint the specific type of flu infecting an individual patient and help prevent further spread of the bird flu virus.
“It’s the subtyping that takes us from knowing that a virus is in the general bucket of ‘influenza A’ to knowing more specifically whether it’s a garden-variety seasonal version of influenza A or, more rarely, a novel version of influenza A like H5N1,” CDC Principal Deputy Director Nirav Shah, MD, JD, told CNN.
According to the CDC, a panzootic of pathogenic avian H5N1 flu virus is currently affecting wild birds, poultry, dairy cows, and other animals throughout the country. There have been 67 total cases of bird flu identified in humans in the US since 2022, with 66 of those cases occurring in 2024.
The risk of humans contracting bird flu are low but is elevated among those who work closely with wild birds, poultry, and dairy cattle. The incidences of the flu virus in animals continues to increase, so CDC says it is important to identify potential bird flu cases in humans in a timely manner.
This demonstrates recognition by the CDC and the clinical laboratory profession that advances in molecular diagnostics and genetic testing now make it feasible for many hospital labs to perform these tests in-house on relevant patients. Such molecular testing is less expensive and produces a faster answer today, compared to just a few years ago.
This call for more lab tests in hospitals is also recognition of the value near-patient testing has from a public health perspective. Historically, it was regional and local public health labs that were sent specimens for testing from patients identified as having an infection that were a public health concern.
The good news is that this expands the role of hospital laboratories for all the right reasons. The downside is that hospital labs will probably see many test claims for these assays not be paid promptly by payers—or paid after unnecessary delays.
“The system right now tells us what has already happened. What we need is to shift to a system that tells us what’s happening in the moment. That is what we are doing today,” Nirav Shah, MD, JD (above), CDC principal deputy told CNN. Hospital and clinical laboratories will likely see an increase in orders for molecular and genetic testing for influenza A. (Photo copyright: Centers for Disease Control and Prevention.)
CDC Recommendations to Clinical Laboratories
The CDC alert also acknowledges that most individuals infected with avian flu were exposed to the virus via the handling of infected dairy cows or poultry in unprotected workplaces. There are no known cases of human-to-human transmission of the disease.
Most cases of avian flu in humans have been clinically mild and the patients quickly recover. However, on January 6, the CDC announced that an elderly patient with underlying health conditions in Louisiana who was previously hospitalized with severe avian influenza A illness had passed away. This case was the first confirmed death in the US attributed to the illness.
The CDC’s Health Advisory makes the following recommendations to clinical laboratories:
Subtype respiratory specimens that are positive for influenza A, but negative for seasonal influenza A virus subtypes, and forward those specimens to a public health laboratory within 24 hours.
Refrain from batching specimens for consolidated or bulk shipment to public health laboratories if that process could result in shipping delays.
Notify public health officials if a hospital or clinical lab does not have access to influenza A virus subtyping and arrange for a public health or commercial lab with this testing capability to perform the analysis.
Clearly link specimens to clinical information from the patient to ensure the prioritization of severely ill and ICU patients.
Immediately contact local public health authority if a positive result for influenza A (H5) virus is obtained using a laboratory developed test (LDT) or another A (H5) subtyping test to initiate time-critical actions.
The CDC’s Health Advisory also states public health laboratories should complete influenza A subtyping assays within 24 hours of receipt and report those results to the CDC, as required.
“One of the motivators of accelerating testing [is] so that we are, again, able to faster see difference between signal and noise, given that the volume of hospitalizations is going up as expected in a rather routine flu season,” Demetre Daskalakis, MD, MPH, director of the CDC’s National Center for Immunization and Respiratory Diseases (NCIRD), told CNN.
Preparing for more Bird Flu in Humans
According to the CDC, approximately 100,000 Americans have been hospitalized with type-A flu this season. The agency expects another 100,000 hospitalizations due to the virus before the end of this year. CDC is tracking flu infections on a weekly basis. Data can be reviewed on its website.
Other government organizations also are developing methods intended to curb the spread of the influenza virus. The federal Department of Agriculture recently launched a national program to test for bird flu in untreated milk. And the US Department of Health and Human Services (HHS) allocated $211 million in new funding to address emerging infectious diseases.
On January 17, the HHS announced it would give $590 million to Moderna to “accelerate the development of mRNA-based pandemic influenza vaccines and enhance mRNA platform capabilities so that the US is better prepared to respond to other emerging infectious diseases.”
“The funding will allow us to bring the benefits of mRNA vaccine technology to bear against a wider array of emerging threats,” said HHS Assistant Secretary for Preparedness and Response Dawn O’Connell, JD, in the announcement. “mRNA technology can be faster to develop and easier to update than other vaccines making it a helpful tool to have against viruses that move fast and mutate quickly.
Hospital laboratories and public health labs should prepare for a spike in test orders for avian influenza A as this year’s flu season progresses. As bird flu increases in animals, it increases the possibility that the disease might infect humans.
Another report finds nearly half of all healthcare systems planning to opt out of Medicare Advantage plans because of issues caused by prior authorization requirements
Prior-authorization is common and neither healthcare providers (including clinical laboratories) nor Medicare Advantage (MA) health plans are happy with the basic process. Thus, labs—which often must get prior-authorization for molecular diagnostics and genetic tests—may learn from a recent KFF study of denial rates and successful appeals.
“While prior authorization has long been used to contain spending and prevent people from receiving unnecessary or low-value services, it also has been [the] subject of criticism that it may create barriers to receiving necessary care,” KFF, a health policy research organization, stated in a news release.
Nearly all MA plan enrollees have to get prior authorization for high cost services such as inpatient stays, skilled nursing care, and chemotherapy. However, “some lawmakers and others have raised concerns that prior authorization requirements and processes, including the use of artificial intelligence to review requests, impose barriers and delays to receiving necessary care,” KFF reported.
“Insurers argue the process helps to manage unnecessary utilization and lower healthcare costs. But providers say prior authorization is time-consuming and delays care for patients,” Healthcare Dive reported.
“There are a ton of barriers with prior authorizations and referrals. And there’s been a really big delay in care—then we spend a lot of hours and dollars to get paid what our contracts say,” said Katie Kucera (above),Vice President and CFO, Carson Tahoe Health, Carson City, Nev., in a Becker’s Hospital CFO Report which shared the health system’s plan to end participation in UnitedHealthcare commercial and Medicare Advantage plans effective May 2025. Clinical laboratories may want to review how test denials by Medicare Advantage plans, and the time cost of the appeals process, affect the services they provide to their provider clients. (Photo copyright: Carson Tahoe Health.)
Key Findings of KFF Study
To complete its study, KFF analyzed “data submitted by Medicare Advantage insurers to CMS to examine the number of prior authorization requests, denials, and appeals for 2019 through 2022, as well as differences across Medicare Advantage insurers in 2022,” according to a KFF issue brief.
Here are key findings:
Requests for prior authorization jumped 24.3% to 46 million in 2022 from 37 million in 2019.
More than 90%, or 42.7 million requests, were approved in full.
About 7.4%, or 3.4 million, prior authorization requests were fully or partially denied by insurers in 2022, up from 5.8% in 2021, 5.6% in 2020, and 5.7% in 2019.
About 9.9% of denials were appealed in 2022, up from 7.5% in 2019, but less than 10.2% in 2020 and 10.6% in 2021.
More than 80% of appeals resulted in partial or full overturning of denials in the years studied. Still, “negative effects on a person’s health may have resulted from delay,” KFF pointed out.
KFF also found that requests for prior authorization differed among insurers. For example:
Humana experienced the most requests for prior authorization.
Among all MA plans, the share of patients who appealed denied requests was small. The low rate of appeals may reflect Medicare Advantage plan members’ uncertainty that they can question insurers’ decisions, KFF noted.
It’s a big market. Nevertheless, “between onerous authorization requirements and high denial rates, healthcare systems are frustrated with Medicare Advantage,” according to a Healthcare Financial Management Association (HFMA) survey of 135 health system Chief Financial Officers.
According to the CFOs surveyed, 19% of healthcare systems stopped accepting one or more Medicare Advantage plans in 2023, and 61% are planning or considering ending participation in one or more plans within two years.
“Nearly half of health systems are considering dropping Medicare Advantage plans,” Becker’s reported.
Federal lawmakers acted, introducing three bills to help improve timeliness, transparency, and criteria used in prior authorization decision making. Starting in 2023, KFF reported, the federal Centers for Medicare and Medicaid Services (CMS) published final rules on the bills:
Rule One (effective June 5, 2023), “clarifies the criteria that may be used by Medicare Advantage plans in establishing prior authorization policies and the duration for which a prior authorization is valid. Specifically, the rule states that prior authorization may only be used to confirm a diagnosis and/or ensure that the requested service is medically necessary and that private insurers must follow the same criteria used by traditional Medicare. That is, Medicare Advantage prior authorization requirements cannot result in coverage that is more restrictive than traditional Medicare.”
Rule Two (effective April 8, 2024), is “intended to improve the use of electronic prior authorization processes, as well as the timeliness and transparency of decisions, and applies to Medicare Advantage and certain other insurers. Specifically, it shortens the standard time frame for insurers to respond to prior authorization requests from 14 to seven calendar days starting in January 2026 and standardizes the electronic exchange of information by specifying the prior authorization information that must be included in application programming interfaces starting in January 2027.”
Rule Three (effective June 3, 2024), requires “Medicare Advantage plans to evaluate the effect of prior authorization policies on people with certain social risk factors starting with plan year 2025.”
KFF’s report details how prior authorization affects patient care and how healthcare providers struggle to get paid for services rendered by Medicare Advantage plans amid the rise of value-based reimbursements.
Clinical laboratory leaders may want to analyze their test denials and appeals rates as well and, in partnership with finance colleagues, consider whether to continue contracts with Medicare Advantage health plans.
Palmetto GBA’s Chief Medical Officer will cover how clinical laboratories billing for genetic testing should prepare for Z-Codes at the upcoming Executive War College in New Orleans
After multiple delays, UnitedHealthcare (UHC) commercial plans will soon require clinical laboratories to use Z-Codes when submitting claims for certain molecular diagnostic tests. Several private insurers, including UHC, already require use of Z-Codes in their Medicare Advantage plans, but beginning June 1, UHC will be the first to mandate use of the codes in its commercial plans as well. Molecular, anatomic, and clinical pathologist Gabriel Bien-Willner, MD, PhD, who oversees the coding system and is Chief Medical Officer at Palmetto GBA, expects that other private payers will follow.
“A Z-Code is a random string of characters that’s used, like a barcode, to identify a specific service by a specific lab,” Bien-Willner explained in an interview with Dark Daily. By themselves, he said, the codes don’t have much value. Their utility comes from the DEX Diagnostics Exchange registry, “where the code defines a specific genetic test and everything associated with it: The lab that is performing the test. The test’s intended use. The analytes that are being measured.”
The registry also contains qualitative information, such as, “Is this a good test? Is it reasonable and necessary?” he said.
Molecular, anatomic, and clinical pathologist Gabriel Bien-Willner, MD, PhD (above), Palmetto GBA’s Chief Medical Officer, will speak about Z-Codes and the MolDX program during several sessions at the upcoming Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management taking place in New Orleans on April 30-May 1. Clinical laboratories involved in genetic testing will want to attend these critical sessions. (Photo copyright: Bien-Willner Physicians Association.)
Palmetto GBA Takes Control
Palmetto’s involvement with Z-Codes goes back to 2011, when the company established the MolDX program on behalf of the federal Centers for Medicare and Medicaid Services (CMS). The purpose was to handle processing of Medicare claims involving genetic tests. The coding system was originally developed by McKesson, and Palmetto adopted it as a more granular way to track use of the tests.
In 2017, McKesson merged its information technology business with Change Healthcare Holdings LLC to form Change Healthcare. Palmetto GBA acquired the Z-Codes and DEX registry from Change in 2020. Palmetto GBA had already been using the codes in MolDX and “we felt we needed better control of our own operations,” Bien-Willner explained.
In addition to administering MolDX, Palmetto is one of four regional Medicare contractors who require Z-Codes in claims for genetic tests. Collectively, the contractors handle Medicare claims submissions in 28 states.
Benefits of Z-Codes
Why require use of Z-Codes? Bien-Willner explained that the system addresses several fundamental issues with molecular diagnostic testing.
“Payers interact with labs through claims,” he said. “A claim will often have a CPT code [Current Procedural Technology code] that doesn’t really explain what was done or why.”
In addition, “molecular diagnostic testing is mostly done with laboratory developed tests (LDTs), not FDA-approved tests,” he said. “We don’t see LDTs as a problem, but there’s no standardization of the services. Two services could be described similarly, or with the same CPT codes. But they could have different intended uses with different levels of sophistication and different methodologies, quality, and content. So, how does the payer know what they’re paying for and whether it’s any good?”
When the CPT code is accompanied by a Z-Code, he said, “now we know exactly what test was done, who did it, who’s authorized to do it, what analytes are measured, and whether it meets coverage criteria under policy.”
The process to obtain a code begins when the lab registers for the DEX system, he explained. “Then they submit information about the test. They describe the intended use, the analytes that are being measured, and the methodologies. When they’ve submitted all the necessary information, we give the test a Z-Code.”
The assessment could be as simple as a spreadsheet that asks the lab which cancer types were tested in validation, he said. On the other end of the scale, “we might want to see the entire validation summary documentation,” he said.
Commercial Potential
Bien-Willner joined the Palmetto GBA in 2018 primarily to direct the MolDX program. But he soon saw the potential use of Z-Codes and the DEX registry for commercial plans. “It became instantly obvious that this is a problem for all payers, not just Medicare,” he said.
Over time, he said, “we’ve refined these processes to make them more reproducible, scalable, and efficient. Now commercial plans can license the DEX system, which Z-Codes are a part of, to better automate claims processing or pre-authorizations.”
In 2021, the company began offering the coding system for Medicare Advantage plans, with UHC the first to come aboard. “It was much easier to roll this out for Medicare Advantage, because those programs have to follow the same policies that Medicare does,” he explained.
As for UHC’s commercial plans, the insurer originally planned to require Z-Codes in claims beginning Aug. 1, 2023, then pushed that back to Oct. 1, according to Dark Daily’s sister publication The Dark Report.
Then it was pushed back again to April 1 of this year, and now to June 1.
“The implementation will be in a stepwise fashion,” Bien-Willner advised. “It’s difficult to take an entirely different approach to claims processing. There are something like 10 switches that have to be turned on for everything to work, and it’s going to be one switch at a time.”
For Palmetto GBA, the commercial plans represent “a whole different line of business that I think will have a huge impact in this industry,” he said. “They have the same issues that Medicare has. But for Medicare, we had to create automated solutions up front because it’s more of a pay and chase model,” where the claim is paid and CMS later goes after errors or fraudulent claims.
“Commercial plans in general just thought they could manually solve this issue on a claim-by-claim basis,” he said. “That worked well when there was just a handful of genetic tests. Now there are tens of thousands of tests and it’s impossible to keep up.
They instituted programs to try to control these things, but I don’t believe they work very well.”
Bien-Willner is scheduled to speak about Palmetto GBA’s MolDX program, Z-Codes, and related topics during three sessions at the upcoming 29th annual Executive War College conference. Clinical laboratory and pathology group managers would be wise to attend his presentations. Visit here (or paste this URL into your browser: https://www.executivewarcollege.com/registration) to learn more and to secure your seat in New Orleans.
Use of such precision diagnostics offer ‘early detection, localization, and the opportunity to monitor response to therapy,’ say the MIT scientists
Oncologists and medical laboratory scientists know that most clinical laboratory tests currently used to diagnose cancer are either based on medical imaging technologies—such as CT scans and mammography—or on molecular diagnostics that detect cancer molecules in the body’s urine or blood.
Now, in a study being conducted at the Massachusetts Institute of Technology (MIT), researchers have developed diagnostic nanoparticles that can not only detect cancer cells in bodily fluids but also image the cancer’s location. This is the latest example of how scientists are combining technologies in new ways in their efforts to develop more sensitive diagnostic tests that clinical laboratories and other providers can use to detect cancer and other health conditions.
Precision diagnostics such as molecular, imaging, and analytics technologies are key tools in the pursuit of precision medicine.
“Therapeutic outcomes in oncology may be aided by precision diagnostics that offer early detection, localization, and the opportunity to monitor response to therapy,” the authors wrote, adding, “Through tailored target specificities, this modular platform has the capacity to be engineered as a pan-cancer test that may guide treatment decisions for numerous tumor type.”
Development of Multimodal Diagnostics
The MIT scientists are developing a “multimodal” diagnostic that uses molecular screening combined with imaging techniques to locate where a cancer began in the body and any metastases that are present.
“In principle, this diagnostic could be used to detect cancer anywhere in the body, including tumors that have metastasized from their original locations,” an MIT new release noted.
“This is a really broad sensor intended to respond to both primary tumors and their metastases,” said biological engineer Sangeeta Bhatia, MD, PhD (above), in the news release. Bhatia is the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT and senior author of the study.
“It can trigger a urinary signal and also allow us to visualize where the tumors are,” she added. Bhatia previously worked on the development of cancer diagnostics that can produce synthetic biomarkers which are detectable in urine samples.
“The vision is that you could use this in a screening paradigm—alone or in conjunction with other tests—and we could collectively reach patients that do not have access to costly screening infrastructure today,” said Sangeeta Bhatia, MD, PhD (above), in the MIT news release. “Every year you could get a urine test as part of a general check-up. You would do an imaging study only if the urine test turns positive to then find out where the signal is coming from. We have a lot more work to do on the science to get there, but that’s where we would like to go in the long run.” (Photo copyright: NBC News.)
Precision Diagnostic Assists Assessment of Response to Cancer Therapy
For their research, the scientists added a radioactive tracer known as copper-64 to the nanoparticles. This enabled the particles to be used for positron emission tomography (PET) imaging. The particles were coated with a peptide that induced them to accumulate at tumor sites and insert themselves into cell membranes, producing a strong imaging signal for tumor detection.
The researchers tested their diagnostic nanoparticles in mouse models of metastatic colon cancer where tumor cells had traversed to the liver or the lungs. After treating the cancer cells with a chemotherapy regimen, the team successfully used both urine and imaging to determine how the tumors were responding to the treatment.
Bhatia is hopeful that this type of diagnostic could be utilized in assessing how patients are responding to treatment therapies and the monitoring of tumor recurrence or metastasis, especially for colon cancer.
What is unique about the approach used by Bhatia’s team is that one application of the copper-64 tracer can be used in vivo, in combination with imaging technology. The other application of the copper-64 tracer is in vitro in a urine specimen that can be tested by clinical laboratories.
“Those patients could be monitored with the urinary version of the test every six months, for instance. If the urine test is positive, they could follow up with a radioactive version of the same agent for an imaging study that could indicate where the disease had spread,” Bhatia said in the news release. “We also believe the regulatory path may be accelerated with both modes of testing leveraging a single formulation.”
The graphic above, taken from the MIT news release, shows how “multimodal nanosensors (1) are engineered to target and respond to hallmarks in the tumor microenvironment. The nanosensors provide both a noninvasive urinary monitoring tool (2) and an on-demand medical imaging agent (3) to localize tumor metastasis and assess response to therapy,” the news release states. (Photo and caption copyright: Massachusetts Institute of Technology.)
Precision Medicine Cancer Screening Using Nano Technologies
Bhatia hopes that the nanoparticle technology may be used as a screening tool in the future to detect any type of cancer.
Her previous research with nanoparticle technology determined that a simple urine test could diagnose bacterial pneumonia and indicate if antibiotics could successfully treat that illness, the news release noted.
Nanoparticle-based technology might be adapted in the future to be part of a screening assay that determines if cancer cells are present in a patient. In such a scenario, clinical laboratories would be performing tests on urine samples while imaging techniques are simultaneously being used to diagnose and monitor cancers.
Surgical pathologists may also want to monitor the progress of this research, as it has the potential to be an effective tool for monitoring cancer patients following surgery, chemotherapy, or radiation therapy.