News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Clarapath Acquires Crosscope, Bridging Histology Automation with Digital Pathology

Clarapath is working to automate manual processes in histology while also capturing data to better inform clinical laboratories

Looking to provide an end-to-end digital pathology solution, medical robotics maker Clarapath has acquired Crosscope, a medical artificial intelligence (AI) software company that develops AI-powered telepathology for medical image information extraction and precision medicine diagnostics.

The deal will enable Crosscope’s digital pathology platform to layer around Clarapath’s histology automation hardware, a combination that could improve quality and efficiencies in diagnostic services for future customers, according to a Clarapath press release.

Clarapath’s goal with its products is to automate certain manual processes in histology laboratories, while at the same time reducing variability in how specimens are processed and produced into glass slides. In an exclusive interview with Dark Daily, Eric Feinstein, CEO and President at Clarapath said he believes the resulting data about these activities can drive further changes.

“A histotechnologist turns a microtome wheel and makes decisions about a piece of tissue in real time,” noted Feinstein, who will speak at the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management on April 25-26 in New Orleans. “All of that real-time data isn’t captured. Imagine if we could take all of that data from thousands of histotechnologists who are cutting every day and aggregate it. Then you could start drawing definitive conclusions about best practices.”

Eric Feinstein

“Clarapath’s foundation is about creating consistency and standardizing steps in histology—and uncovering the data that you need in order to accomplish those goals as a whole system,” Eric Feinstein (above), CEO and President at Clarapath told Dark Daily. “A histology lab’s workflow—from when the tissue comes in to when the glass slide is produced—should all be connected.” Many processes in histology and anatomic pathology continue to be manual. Automated solutions can contribute to improved productivity and reducing variability in how individual specimens are processed. (Photo copyright: Clarapath.)

Details Behind Clarapath’s Deal to Acquire Crosscope

As part of its acquisition, Clarapath of Hawthorne, New York, has retained all of Crosscope’s employees, who are located in Mountain View, California, and Bombay, India. Financial terms of the deal were not disclosed.

Clarapath’s flagship histology automation product is SectionStar, a tissue sectioning and transfer system designed to automate inefficient and manual activities in slide processing. The device offers faster and more efficient sample processing while reducing human involvement. Clarapath expects SectionStar be on the market in 2023. The company is currently taking pre-orders. 

Meanwhile, Crosscope developed Crosscope Dx, a turnkey digital pathology solution that provides workflow tools and slide management as well as AI and machine learning to assist pathologists with their medical decision-making and diagnoses.

Adoption of Digital Pathology and Automation Can Be Challenging

Digital pathology has experienced growing popularity in the post-COVID-19 pandemic world. This is not only because remote pathology case reviews have become increasingly acceptable to physicians but also because of the ongoing shortages in clinical laboratory staffing.

“A pain point today for clinicians and laboratories is labor. That’s across the board,” Feinstein said. “We can help solve that with SectionStar.”

In “Recent Separate Business Transactions by Fujifilm and GE Healthcare Suggest Bullish Outlook for Faster Adoption of Digital Pathology,” Dark Daily reported that vendors have their eyes open for deals and partnerships in digital pathology.

Feinstein does not believe adoption of digital pathology and histology automation is proceeding slowly, but he does acknowledge barriers to healthcare organizations installing the technologies.

“There are lots of little things that—from a workflow perspective—people have outsized expectations about,” he explained. “Clinicians and administrators are not used to innovating in a product sense. They may be innovating on how they deliver care or treatment pathways, but they’re not used to developing an engineering product and going through alpha and beta stages. That makes adopting new technology challenging.”

Medical laboratory managers and pathologists interested in pursuing histology automation and digital pathology should first determine what processes are sub-optimal or would benefit from the standardization hardware and software can offer. Being able to articulate those gains can help build the case for a return on investment to decision-makers.

Another resource to consider: Feinstein will speak about innovations for remote histology laboratory workers at the upcoming Executive War College for Clinical Laboratory, Diagnostics, and Pathology Management on April 25-26 in New Orleans. His session is titled, “Re-engineering the Classic Histology Laboratory: Enabling the Remote Histotechnologist with New Tools That Improve Productivity, Automate Processes, and Protect Quality.”

Scott Wallask

Related Information:

Clarapath Acquires Crosscope and Combines Tissue Processing Robotics with AI Powered Digital Pathology for Building the Lab of the Future

Histopathology is Ripe for Automation

UCLA’s Virtual Histology Could Eliminate Need for Invasive Biopsies for Some Skin Conditions and Cancers

2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management Announced for April 25-26

Recent Separate Business Transactions by Fujifilm and GE Healthcare Suggest Bullish Outlook for Faster Adoption of Digital Pathology

Fujifilm acquired Inspirata’s Dynamyx digital pathology technology and business while GE Healthcare announced a partnership with Tribun Health in Europe

Clinical pathology laboratories, especially in the US, have been slow to adopt digital imaging systems. But recent industry deals suggest that the market may soon heat up, at least in the eyes of vendors. These collaborators may hope that, by integrating diagnostic data, the accuracy and productivity of anatomic pathologists will improve while also shortening the time to diagnosis.

In a December press release, Tokyo-based Fujifilm announced it acquired the global digital pathology business of Inspirata, including its Dynamyx digital pathology system. Inspirata is a Tampa-based cancer informatics company.

In the press release, Fujifilm stated that 85% of US healthcare organizations use analog systems for pathology. That compares with 86% in Europe and 90% in Asia, the company stated.

“Acquiring Inspirata’s digital pathology business allows Fujifilm to be an even stronger healthcare partner—bridging a technological gap between pathology, radiology, and oncology to facilitate a more collaborative approach to care delivery across the enterprise,” said Fujifilm CEO and president Teiichi Goto in the press release.

The press release cited data from Signify Research, a healthcare technology marketing data firm that is predicting the global market for digital pathology systems would double from $320 million in 2021 to $640 million by 2025.

Fujifilm previously had a deal with Inspirata to sell the Dynamyx system exclusively in the UK, Italy, Spain, Portugal, Belgium, the Netherlands, and Luxembourg, an August press release noted.

Henry Izawa

“A $320 million global industry in 2021 projected to reach $640 million by 2025, the rising number of cancer cases and the demonstrated benefits of digital pathology are fueling significant demand and market growth in the hospital and pharmaceutical industries,” said Henry Izawa (above), president and CEO, Fujifilm Healthcare Americas Corporation, in a press release. “These evolving clinical needs fuel Fujifilm’s investment and innovation in the digital revolution, and we look forward to introducing Dynamyx and its host of unique features and benefits to our Synapse customers and prospects as we strive to enable more efficient medical diagnosis and high-quality care.” (Photo copyright: LinkedIn.)

GE Healthcare Partners with Tribun Health

The Fujifilm acquisition followed an October 18 announcement of a collaboration between GE Healthcare and digital pathology company Tribun Health in Europe to provide an interface between the latter’s digital pathology software and GE Healthcare’s Edison Datalogue image-management system.

In announcing their new collaboration, GE Healthcare and Tribun Health said the integration of their systems—Edison Datalogue and the Tribun Health suite—would foster collaboration between pathologists and clinicians by providing a consolidated location for imaging records. This capability is especially important in oncology, they said.

“The oncology care pathway is one of the most complex with multiple steps involving a variety of specialists, complex tools, frequent decisions, and large data sets,” said GE Healthcare CEO of Enterprise Digital Solutions Nalinikanth Gollagunta in a GE press release. “With this digital pathology collaboration, we continue our journey towards simplifying the oncology care pathway with improved data management, the digitization of pathology, and streamlined data access.”

Tribun Health, based in Paris, France, offers a digital pathology platform that incorporates a camera system, artificial intelligence (AI)-based analysis, remote collaboration, and storage management, plus integration with third-party automation apps.

GE Healthcare claims that Edison Datalogue has the largest share of the Vendor Neutral Archive (VNA) market. That term refers to image archiving systems that use standard formats and interfaces instead of proprietary formats. They are an alternative to the more widely used Picture Archiving and Communications Systems (PACS) used in medical imaging.

The collaboration between the companies “is probably a strategic move to position GE as an integrator of imaging data and digital pathology data in oncology,” said Robert Michel Editor-in-Chief of Dark Daily and its sister publication The Dark Report.

GE’s History with Dynamyx

This is not GE Healthcare’s first foray into digital pathology. In fact, the company had a major hand in launching the very Dynamyx system that Fujifilm recently acquired.

Dynamyx was originally developed by digital pathology technology company Omnyx, LLC, which was a joint venture formed in 2008 between GE Healthcare and the University of Pittsburgh Medical Center (UPMC).

In “GE Healthcare Sells Omnyx to Inspirata,” The Dark Report interviewed Inspirata CEO Satish Sanan who at that time said the acquisition would allow his company to offer “a fully integrated, end-to-end digital pathology solution” in Canada and Europe. But GE Healthcare chose to end the partnership in 2016, citing regulatory uncertainty and variable global demand. Two years later, GE sold Omnyx to Inspirata.

GE Healthcare’s new collaboration with Tribun Health shows that the company “still recognizes the value of the pathology data in cancer diagnosis and wants to be in a position to manage that digital pathology data,” Michel said.

Fujifilm’s Plans

Fujifilm said it will incorporate Dynamyx into its Synapse Enterprise Imaging suite, which includes VNA, Radiology PACS, and Cardiology PACS. “Future releases of Dynamyx will also create opportunities for Fujifilm to support pharmaceutical and contract research organizations with toxicity testing data management for drug development,” the company stated in the press release.

US-based subsidiary Fujifilm Healthcare Americas Corporation will handle future development of the Dynamyx system. In the US, the system is currently cleared for the US Food and Drug Administration (FDA) for use with Leica’s Aperio AT2 DX scanner and Philips’ Ultra Fast Scanner.

With its recent moves into digital pathology, Fujifilm will be taking on major competitors including Philips, Danaher, and Roche, MedTech Dive reported.

Stephen Beale

Related Information:

Fujifilm Announces Asset Purchase Agreement with Inspirata, Inc. to Acquire the Company’s Digital Pathology Business

Fujifilm Agrees to Buy Inspirata’s Dynamyx in Challenge to Philips for Digital Pathology Market

GE Healthcare Announces Collaboration to Advance Digital Transformation of Pathology

Leica, Philips Come Out on Top in Digital Pathology Systems Market, KLAS Finds

GE Healthcare Sells Omnyx to Inspirata

Hackensack Meridian Health and Hologic Tap Google Cloud’s New Medical Imaging Suite for Cancer Diagnostics

Google designed the suite to ease radiologists’ workload and enable easy and secure sharing of critical medical imaging; technology may eventually be adapted to pathologists’ workflow

Clinical laboratory and pathology group leaders know that Google is doing extensive research and development in the field of cancer diagnostics. For several years, the Silicon Valley giant has been focused on digital imaging and the use of artificial intelligence (AI) algorithms and machine learning to detect cancer.

Now, Google Cloud has announced it is launching a new medical imaging suite for radiologists that is aimed at making healthcare data for the diagnosis and care of cancer patients more accessible. The new suite “promises to make medical imaging data more interoperable and useful by leveraging artificial intelligence,” according to MedCity News.

In a press release, medical technology company Hologic, and healthcare provider Hackensack Meridian Health in New Jersey, announced they were the first customers to use Google Cloud’s new suite of medical imaging products.

“Hackensack Meridian Health has begun using it to detect metastasis in prostate cancer patients earlier, and Hologic is using it to strengthen its diagnostic platform that screens women for cervical cancer,” MedCity News reported.

Alissa Hsu Lynch

“Google pioneered the use of AI and computer vision in Google Photos, Google Image Search, and Google Lens, and now we’re making our imaging expertise, tools, and technologies available for healthcare and life sciences enterprises,” said Alissa Hsu Lynch (above), Global Lead of Google Cloud’s MedTech Strategy and Solutions, in a press release. “Our Medical Imaging Suite shows what’s possible when tech and healthcare companies come together.” Clinical laboratory companies may find Google’s Medical Imaging Suite worth investigating. (Photo copyright: Influencive.)

.

Easing the Burden on Radiologists

Clinical laboratory leaders and pathologists know that laboratory data drives most healthcare decision-making. And medical images make up 90% of all healthcare data, noted an article in Proceedings of the IEEE (Institute of Electrical and Electronics Engineers).

More importantly, medical images are growing in size and complexity. So, radiologists and medical researchers need a way to quickly interpret them and keep up with the increased workload, Google Cloud noted.

“The size and complexity of these images is huge, and, often, images stay sitting in data siloes across an organization,” said Alissa Hsu Lynch, Global Lead, MedTech Strategy and Solutions at Google, told MedCity News. “In order to make imaging data useful for AI, we have to address interoperability and standardization. This suite is designed to help healthcare organizations accelerate the development of AI so that they can enable faster, more accurate diagnosis and ease the burden for radiologists,” she added.

According to the press release, Google Cloud’s Medical Imaging Suite features include:

  • Imaging Storage: Easy and secure data exchange using the international DICOM (digital imaging and communications in medicine) standard for imaging. A fully managed, highly scalable, enterprise-grade development environment that includes automated DICOM de-identification. Seamless cloud data management via a cloud-native enterprise imaging PACS (picture archiving and communication system) in clinical use by radiologists.
  • Imaging Lab: AI-assisted annotation tools that help automate the highly manual and repetitive task of labeling medical images, and Google Cloud native integration with any DICOMweb viewer.
  • Imaging Datasets and Dashboards: Ability to view and search petabytes of imaging data to perform advanced analytics and create training datasets with zero operational overhead.
  • Imaging AI Pipelines: Accelerated development of AI pipelines to build scalable machine learning models, with 80% fewer lines of code required for custom modeling.
  • Imaging Deployment: Flexible options for cloud, on-prem (on-premises software), or edge deployment to allow organizations to meet diverse sovereignty, data security, and privacy requirements—while providing centralized management and policy enforcement with Google Distributed Cloud.

First Customers Deploy Suite

Hackensack Meridian Health hopes Google’s imaging suite will, eventually, enable the healthcare provider to predict factors affecting variance in prostate cancer outcomes.

“We are working toward building AI capabilities that will support image-based clinical diagnosis across a range of imaging and be an integral part of our clinical workflow,” said Sameer Sethi, Senior Vice President and Chief Data and Analytics Officer at Hackensack, in a news release.

The New Jersey healthcare network said in a statement that its work with Google Cloud includes use of AI and machine learning to enable notification of newborn congenital disorders and to predict sepsis risk in real-time.

Hologic, a medical technology company focused on women’s health, said its collaboration integrates Google Cloud AI with the company’s Genius Digital Diagnostics System.

“By complementing our expertise in diagnostics and AI with Google Cloud’s expertise in AI, we’re evolving our market-leading technologies to improve laboratory performance, healthcare provider decision making, and patient care,” said Michael Quick, Vice President of Research and Development and Innovation at Hologic, in the press release.

Hologic says its Genius Digital Diagnostics System combines AI with volumetric medical imaging to find pre-cancerous lesions and cancer cells. From a Pap test digital image, the system narrows “tens of thousands of cells down to an AI-generated gallery of the most diagnostically relevant,” according to the company website.

Hologic plans to work with Google Cloud on storage and “to improve diagnostic accuracy for those cancer images,” Hsu Lynch told MedCity News.

Medical image storage and sharing technologies like Google Cloud’s Medical Imaging Suite provide an opportunity for radiologists, researchers, and others to share critical image studies with anatomic pathologists and physicians providing care to cancer patients.   

One key observation is that the primary function of this service that Google has begun to deploy is to aid in radiology workflow and productivity, and to improve the accuracy of cancer diagnoses by radiologists. Meanwhile, Google continues to employ pathologists within its medical imaging research and development teams.

Assuming that the first radiologists find the Google suite of tools effective in support of patient care, it may not be too long before Google moves to introduce an imaging suite of tools designed to aid the workflow of surgical pathologists as well.

Donna Marie Pocius

Related Information:

Google Cloud Delivers on the Promise of AI and Data Interoperability with New Medical Imaging Suite

Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies with Progress Highlights, and Future Promises

Google Cloud Unveils Medical Imaging Suite with Hologic, Hackensack Meridian as First Customers

Google Cloud Medical Imaging Suite and its Deep Insights

Hackensack Meridian Health and Google Expand Relationship to Improve Patient Care

Google Cloud Introduces New AI-Powered Medical Imaging Suite

Clinical Laboratory and Pathology Leaders in Canada Gather to Assess New Diagnostic Technologies and Respond to the Acute Shortage of Medical Technologists

There was cautious optimism about the ability of Canada’s medical laboratories to innovate in ways that advance patient care, while recognizing the ongoing challenge of adequate lab staffing and budget constraints

TORONTO, ONTARIO, CANADA—This week, more than 150 leaders representing clinical laboratories, anatomic pathology labs, in vitro diagnostics (IVD) companies, and provincial health officials gathered for the first “Canadian Diagnostic Executive Forum” (CDEF) since 2019. It would be apt to say that the speakers objectively addressed all the good, the bad, and the ugly of Canada’s healthcare system and its utilization of medical laboratory testing services.

Over the two days of the conference, speakers and attendees alike concurred that the two biggest issues confronting clinical laboratories in Canada were inadequate staffing and an unpredictable supply chain. There also was agreement that the steady increase in prices, fueled by inflation, is exacerbating continuing cost increases in both lab salaries and lab supplies.

Canada’s Health System Has Several Unique Attributes

Canada’s healthcare system has two unique attributes that differentiate it from those of other nations. First, healthcare is mandated by a federal law, but generally each of Canada’s 13 provinces and territories operates its own health plan. Thus, the health system in each province and territory may cover a different mix of clinical services, therapeutic drugs, and medical procedures. The federal government typically pays 40% of a province’s health costs and the province funds the balance.

Second, it is a fact that 90% of the Canadian population lives within 150 miles of the United States border. Yet there are provinces with large populations that have geography that ranges from the US border to north of the Arctic Circle. These provinces have a major challenge to ensure equal access to healthcare regardless of where their citizens live.

During day one of the conference, several presentations addressed innovations that supported those labs’ efforts to deliver value and timely insights during the COVID-19 pandemic. For example, a lab team in Alberta launched a research study involving SARS-CoV-2 virus surveillance from the earliest days of the outbreak. This study was presented by Mathew Diggle, PhD, FRCPath, Associate Professor and Program Lead for the Public Health Laboratory (ProvLab) Medical-Scientific Staff at Alberta Precision Laboratories in Edmonton, Alberta. 

Study Designed to Identify Coinfections with COVID-19

While performing tens of thousands of COVID-19 tests from the onset of the pandemic, and identifying the emergence of variants, the ProvLab team also tracked co-infection involving other respiratory viruses.

“This is one of the largest eCoV [endemic coronavirus] studies performed during the COVID-19 pandemic,” Diggle said. “This broad testing approach helped to address a pivotal diagnostic gap amidst the emergence of a novel pathogen: cross-reactivity with other human coronaviruses that can cause similar clinical presentations. This broad surveillance enabled an investigation of cross-reactivity of a novel pathogen with other respiratory pathogens that can cause similar clinical presentations.

“Fewer than 0.01% of specimens tested positive for both SARS-CoV-2 and an eCoV,” he explained. “This suggested no significant cross-reactivity between SARS-CoV-2 and eCoVs on either test and provided a SARS-CoV-2 negative predictive value over 99% from an eCoV-positive specimen … The data we collected was highly compelling and the conclusion was that there was no coinfection.”

Kevin D. Orr

Chairing the two days of presentations at this weeks’ Canadian Diagnostic Executive Forum was Kevin D. Orr (above), Senior Director of Hospital Business at In-Common Laboratories. He also served on the program for this national conference serving clinical laboratories, anatomic pathology labs, and in vitro diagnostics (IVD) companies throughout Canada. This was the first gathering of this conference since 2019. Attendees were enthusiastic about the future of medical laboratory services in Canada, despite lab staffing shortages and rising costs due to inflation. (Photo copyright The Dark Report.)

Clinical Laboratory Regionalization in Quebec

One of Canada’s largest projects to regionalize and harmonize clinical laboratory services is proceeding in Quebec. Leading this effort is Ralph Dadoun, PhD, Project Director for OPTILAB Montreal, which is part of the Ministry of Health and Social Services in Quebec. The ambitious goal for this project is to move the 123 clinical laboratories within the province into 12 clusters. Initial planning was begun in 2013, so this project is in its ninth year of implementation.

During his presentation, Dadoun explained that the work underway in the 12 clusters involves creating common factors in these categories:

  • Uniform test names.
  • Common test codes, labels, test reporting format.
  • Common abbreviations.
  • Uniform quality indicators (e.g., nonconformities, specimen acceptability, etc.).
  • Implementation consistent with and respecting ISO-15189 criteria.

Another notable achievement in Quebec is the progress made to implement a common laboratory information system (LIS) within all 12 clusters. The first three laboratory clusters are undergoing their LIS conversions to the same platform during the next 180 days. The expectation is that use of a common LIS across all clinical laboratory sites in Quebec will unlock benefits in a wide spectrum of lab activities and work processes.

The 2022 CDEF featured speakers from most of the provinces. The common themes in these presentations were the shortage of lab personnel across all technical positions, disruptions in lab supplies, and the need to support the usual spectrum of lab testing services even as lab budgets are getting squeezed.

At the same time, there was plenty of optimism. Presentations involving adoption of digital pathology, advances in early disease detection made possible by new diagnostic technologies, and the expansion of precision medicine showed that clinical laboratories in Canada are gaining tools that will allow them to contribute to better patient care while helping reduce the downstream costs of care.

The Canadian Diagnostics Executive Forum is organized by a team from In-Common Laboratories in North York, Toronto, Ontario. Founded in 1967, it is a private, not-for-profit company that works with public hospitals and laboratory medicine providers. Information about CDEF can be found at its website, where several of this year’s presentations will be available for viewing.

Robert L. Michel 

Related Information:

Canadian Diagnostic Executive Forum 2022

Broad Respiratory Testing to Identify SARS-Cov-2 Viral Co-Circulation and Inform Diagnostic Stewardship in the COVID-19 Pandemic

Canadian Diagnostics Executive Forum Will Provide Firsthand Insights into How Clinical Laboratories Can Leverage Technology and Innovation to ‘Do More with Less’

Artificial Intelligence in Digital Pathology Developments Lean Toward Practical Tools

Patient care gaps can be addressed by machine learning algorithms, Labcorp vice president explains

Is there hype for artificial intelligence (AI)? As it turns out, yes, there is. Keynote speakers acknowledged as much at the 2022 Executive War College Conference on Laboratory and Pathology Management. Nevertheless, leading clinical laboratory companies are taking real steps with the technology that showcase AI developments in digital pathology and patient care.

Labcorp, the commercial laboratory giant headquartered in Burlington, N.C., has billions of diagnostic test results archived. It takes samplings of those results and runs them through a machine learning algorithm that compares the data against a condition of interest, such as chronic kidney disease (CKD). Machine learning is a subdiscipline of AI.

Based on patterns it identifies, the machine learning algorithm can predict future test results for CKD based on patients’ testing histories, explained Stan Letovsky, PhD, Vice President for AI, Data Sciences, and Bioinformatics at Labcorp. Labcorp has found the accuracy of those predictions to be better than 90%, he added.

In “Keynote Speakers at the Executive War College Describe the Divergent Paths of Clinical Laboratory Testing as New Players Offer Point-of-Care Tests and More Consumers Want Access to Home Tests,” Robert Michel, Editor-in-Chief of Dark Daily, reported on how AI in digital pathology was one of several “powerful economic forces [that] are about to be unleashed on the traditional market for clinical laboratory testing.”

Labcorp also has created an AI-powered dashboard that—once layered over an electronic health record (EHR) system—allows physicians to configure views of an individual patient’s existing health data and add a predictive view based on the machine learning results.

For anatomic pathologists, this type of setup can quickly bring a trove of data into their hands, allowing them to be more efficient with patient diagnoses. The long-term implications of using this technology are significant for pathology groups’ bottom line.

Stan Letovsky, PhD
Stan Letovsky, PhD (above), Vice President for AI, Data Sciences, and Bioinformatics at Labcorp, discussed AI developments in digital pathology during his keynote address at the 2022 Executive War College in New Orleans. “The best thing as a community that we can do for patients and their physicians with AI is to identify care gaps early on,” he said, adding, “If pathologists want to grow and improve their revenue, they have to be more productive.” (Photo copyright: Dark Intelligence Group). 

Mayo Clinic Plans to Digitize 25 Million Glass Slides

In other AI developments, Mayo Clinic in Rochester, Minn., has started a project to digitally scan 25 million tissue samples on glass slides—some more than 100 years old. As part of the initiative, Mayo wants to digitize five million of those slides within three years and put them on the cloud, said pathologist and physician scientist Jason Hipp, MD, PhD, Chair of Computational Pathology and AI at Mayo Clinic.

“We want to be a hub within Mayo Clinic for digital pathology,” Hipp told Executive War College attendees during his keynote address.

Hipp views his team as the bridge between pathologists and the data science engineers who develop AI algorithms. Both sides must collaborate to move AI forward, he commented, yet most clinical laboratories and pathology groups have not yet developed those relationships.

“We want to embed both sides,” Hipp added. “We need the data scientists working with the pathologists side by side. That practical part is missing today.”

The future medical laboratory at Mayo Clinic will feature an intersection of pathology, computer technology, and patient data. Cloud storage is a big part of that vision.

“AI requires storage and lots of data to be practical,” Hipp said. 

Scott Wallask

Related Information:

Keynote Speakers at the Executive War College Describe the Divergent Paths of Clinical Laboratory Testing

COVID-19 Testing Reimbursement Scrutiny is Coming for Clinical Laboratories, Attorneys Predict at Executive War College

What is Machine Learning?

Data Scientist Overview

;