News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Washington University Researchers Uses Medical Laboratory Test Results and Big Data to Find Accelerated Aging and Risk of Early Cancer in Young Adults

Study shows that computer analysis of clinical laboratory test results has improved greatly in recent years

Studies using “big data” continue to show how combining different types of healthcare information can generate insights not available with smaller datasets. In this case, researchers at Washington University School of Medicine (WashU Medicine), St. Louis, Mo., determined that—by using the results from nine different types of clinical laboratory tests—they could correlate those test results to younger people who had “aged faster” and had developed cancer earlier than usual, according to CNN.

“Accumulating evidence suggests that the younger generations may be aging more swiftly than anticipated, likely due to earlier exposure to various risk factors and environmental insults. However, the impact of accelerated aging on early-onset cancer development remains unclear,” said Ruiyi Tian, PhD candidate at WashU Medicine’s Yin Cao Lab in an American Association for Cancer Research (AACR) news release.

The scientists presented their findings, which have not yet been published, at the AACR’s annual meeting held in April. Tian and the other researchers “hypothesized that increased biological age, indicative of accelerated aging, may contribute to the development of early-onset cancers, often defined as cancers diagnosed in adults younger than 55 years. In contrast to chronological age—which measures how long a person has been alive—biological age refers to the condition of a person’s body and physiological processes and is considered modifiable,” AACR noted in a news release.

“We all know cancer is an aging disease. However, it is really coming to a younger population. So, whether we can use the well-developed concept of biological aging to apply that to the younger generation is a really untouched area,” Yin Cao, ScD MPH (above), associate professor of surgery and associate professor of medicine at Washington University School of Medicine in St. Louis, and senior author of the study, told CNN. Analysis of clinical laboratory test results using computer algorithms continues to show value for new research into deadly diseases. (Photo copyright: Washington University.)

Lab Tests Share Insights about Aging

To acquire the data they needed for their research, the WashU Medicine scientists turned to the UK Biobank, a biomedical and research resource with genetic and health information on half a million UK residents.

The researchers reviewed the medical records of 148,724 biobank participants, age 37 to 54, focusing on nine blood-based biomarkers that “have been shown to correlate with biological age,” CNN reported. Those biomarkers are:

According to CNN, the researchers “plugged” the nine values into an algorithm called PhenoAge. Using the algorithm they compared the biological ages with each person’s actual chronological age to determine “accelerated aging.” They then consulted cancer registries to capture data on those in the study who were diagnosed with cancer before age 55. They found 3,200 cases.

Young Adults Aging Faster than Earlier Generations

According to the AACR news release, the WashU Medicine study found that:

  • “Individuals born in or after 1965 had a 17% higher likelihood of accelerated aging than those born between 1950 and 1954.
  • “Each standard deviation increase in accelerated aging was associated with a 42% increased risk of early-onset lung cancer, a 22% increased risk of early-onset gastrointestinal cancer, and a 36% increased risk of early-onset uterine cancer.
  • “Accelerated aging did not significantly impact the risk of late-onset lung cancer (defined here as cancer diagnosed after age 55), but it was associated with a 16% and 23% increased risk of late-onset gastrointestinal and uterine cancers, respectively.”

“We speculate that common pathways, such as chronic inflammation and cellular senescence, may link accelerated aging to the development of early-onset cancers,” the study’s principal investigator Yin Cao, ScD, MPH, associate professor of surgery and associate professor of medicine at WashU Medicine, told The Hill.

“Historically, both cancer and aging have been viewed primarily as concerns for older populations. The realization that cancer, and now aging, are becoming significant issues for younger demographics over the past decades was unexpected,” Tian told Fox News.

More Screenings, Further Analysis

The study’s results may suggest a change in clinical laboratory screenings for younger people.

“We see cancers earlier all the time now, and nobody knows why. The subset in the population that has accelerated aging may need screening more often or earlier,” Emanuela Taioli, MD, PhD, professor of population health and science and of thoracic surgery, and director of the Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, told Health.

In future studies, WashU Medicine scientists may aim to include groups of greater diversity and explore why people are aging faster and have risk of early-onset cancers. 

“There is room to improve using better technologies. Looking at the bigger picture, the aging concept can be applied to younger people to include cancers, cardiovascular disease, and diabetes,” Cao told Discover Magazine.

While more research is needed, use of the UK’s Biobank of healthcare data—including clinical laboratory test results—enabled the WashU Medicine researchers to determine that accelerated aging among young adults is happening with some regularity. This shows that capabilities in computer analysis are gaining more refined capabilities and are able to tease out insights impossible to achieve with earlier generations of analytical software.

These findings should inspire clinical laboratory professionals and pathologists to look for opportunities to collaborate in healthcare big data projects involving their patients and the communities they serve.

—Donna Marie Pocius

Related Information:

Accelerated Aging May Increase the Risk of Early-onset Cancers in Younger Generations

Accelerated Aging Linked to Cancer Risk in Younger Adults, Research Shows

An Epigenetic Biomarker of Aging for Lifespan and Health Span in Aging

Accelerated Aging May be a Cause of Increased Cancers in People under 55

Cancer Rates Rising in Young People Due to “Accelerated Aging,” New Study Finds

Research Shows Accelerated Aging Linked to Increased Cancer Risk in Younger Adults

Rate of Biological Aging is Accelerating in Young People, Leading to Medical Issues

In Vitro Diagnostics Companies Race to Develop Blood-based Tests for Alzheimer’s Disease, Data Suggest a Worldwide Growing Market

As new diagnostic assays are cleared by regulators, clinical laboratories will play a key role in identifying appropriate patients for new less-invasive Alzheimer’s tests

With multiple companies racing to develop a blood-based test for Alzheimer’s disease (AD), clinical laboratories may soon have new less-invasive diagnostic assays for AD on their menus.

Why a race? Because a less-invasive clinical laboratory test that uses a venous blood draw (as opposed to a spinal tap)—and which has increased sensitivity/specificity—has a potentially large market given the substantial numbers of elderly predicted to develop Alzheimer’s over the next decade. It has the potential to be a high volume, high dollar diagnostic test.

In fact, Mordor Intelligence estimates that the market for Alzheimer’s disease therapeutics will grow from $7.7 billion in 2024 to $10.10 billion by 2029.

Alzheimers.gov, an official website of the US government, says, “Researchers have made significant progress in developing, testing, and validating biomarkers that detect signs of the disease process. For example, in addition to PET scans that detect abnormal beta-amyloid plaques and tau tangles [abnormal forms of tau protein] in the brain, NIH-supported scientists have developed the first commercial blood test for Alzheimer’s. This test and others in development can not only help support diagnosis but also be used to screen volunteers for research studies.”

Several test developers presented their research at a recent Alzheimer’s Association   International Conference. They shared data about blood-based assay accuracy in diagnosis of Alzheimer’s as compared to current practices that involve a lumbar puncture (spinal tap) to collect cerebrospinal fluid (CSF).

Additionally, the US Food and Drug Administration (FDA) is clearing new Alzheimer’s drugs for clinical use. The pharma companies behind these drugs need clinical laboratory tests that accurately diagnosis the disease and confirm that it would be appropriate for the patient to receive the new therapeutic drugs, a key element of precision medicine.

“The big promise for blood tests is that they will eventually be accessible, hopefully, cost-effective, and noninvasive,” Rebecca Edelmayer, PhD (above), Vice President, Scientific Engagement, Alzheimer’s Association, told USA Today. “The field is really moving forward with use of these types of tests,” she added. Clinical laboratories may soon have these new assays on their test menus. (Photo copyright: Alzheimer’s Association.)

Companies in the Race to Develop Blood-based Alzheimer’s Tests

One advancing test is the PrecivityAD2 from in vitro test developer C2N Diagnostics, St. Louis, Mo., which Dark Daily reported on in “C2N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease.”

Researchers found that C2N’s blood test can detect brain amyloid status with “sensitivity, specificity, positive and negative predictive values that approximate those of amyloid positron emission tomography (PET) imaging,” according to a news release.

“The PrecivityAD2 blood test is intended for use in patients aged 55 and older with signs or symptoms of mild cognitive impairment or dementia who are undergoing evaluation of Alzheimer’s disease or dementia. Only a healthcare provider can order the PrecivityAD2 test,” the news release noted.

A study published in Alzheimer’s and Dementia, a journal of the Alzheimer’s Association, used “mass spectrometry-based assays to measure %p-tau217 and amyloid beta 42/40 ratio in blood samples from 583 individuals with suspected AD.”

“The PrecivityAD2 blood test showed strong clinical validity with excellent agreement with brain amyloidosis by PET,” the researchers wrote.

The PrecivityAD2 test, which is mailed directly by C2N to doctors and researchers, is performed at the company’s CLIA-certified lab, according to USA Today, which added that the cost of $1,450 is generally not covered by insurance plans.

Expanding Test Access with IVD Companies

ALZpath, Inc. has a different approach to the Alzheimer’s disease test market. The Carlsbad, Calif.-based company, set up an agreement with in vitro diagnostics (IVD) company Roche Diagnostics for use of its phosphorylated tau (pTau)217 antibody “to develop and commercialize an Alzheimer’s disease diagnostic blood test that will be offered on the Roche Elecsys platform,” according to a news release.

Roche received FDA breakthrough device designation on the Elecsys pTau217 test earlier this year and will work with pharmaceutical company Eli Lilly to commercialize the test.

Estimates show 75% of dementia cases go undetected—a number which could grow to 140 million by 2050, according to data shared by Roche with Fierce Biotech.

“We plan to leverage our installed base of diagnostic systems, which is the largest in the world, to ensure we are able to create access to this test for those who need it the most,” Matt Sause, CEO, Roche Diagnostics, told Fierce Biotech.

Another IVD company, Beckman Coulter, recently signed an agreement to use ALZpath’s pTau217 antibody test in its DxI 9000 Immunoassay Analyzer. In a news release, Kathleen Orland, SVP and General Manager of the Clinical Chemistry Immunoassay Business Unit at Beckman Coulter, said that the test had “high performance in detecting amyloid pathology” and could “integrate into our advanced DxI 9000 platform to support broad-based testing.”

Clinical Laboratory Participation

The FDA is drafting new guidance titled, “Early Alzheimer’s Disease: Developing Drugs for Treatment” that is “intended to assist sponsors in the clinical development of drugs for the treatment of the stages of sporadic Alzheimer’s disease (AD) that occur before the onset of overt dementia.” 

Pharma companies intent on launching new drugs for Alzheimer’s will need medical laboratory tests that accurately diagnosis the disease to confirm the medications would be appropriate for specific patients.

Given development of the aforementioned pTau217 antibody tests, and others featuring different diagnostic technologies, it’s likely clinical laboratories will soon be performing new assays for diagnosing Alzheimer’s disease.

—Donna Marie Pocius

Related Information:

Alzheimer’s Diagnosis and Drugs Market

How New Blood Testing Technology Could Change Alzheimer’s Treatment Forever

New Research Shows the PrecivityAD2 Blood Test Has High Accuracy Compared to Amyloid PET Scans in Individuals with Cognitive Impairment

Clinical Validation of the PrecivityAD2 Blood Test: A Mass Spectrometry-Based Test with Algorithm Combing %p-tau217 and Aβ42/40 Ratio to Identify Presence of Brain Amyloid

ALZpath Announces Licensing Agreement with Roche for Use of ALZpath’s Proprietary

Alzheimer’s Blood Test from Roche, Eli Lilly Nabs FDA Breakthrough Tag

ALZpath Signs Licensing Agreement with Beckman Coulter Diagnostics to Provide Proprietary pTau217 Antibody to Develop a Diagnostic Test for Alzheimer’s Disease

Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology

Groundbreaking Alzheimer’s Blood Test Proves Highly Effective in Primary Healthcare

Blood Biomarkers to Detect Alzheimer Disease in Primary Care and Secondary Care

C2N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease

Japanese Researchers Create Inexpensive Palm-Size Microfilter That Captures Circulating Tumor Cells from Minute Amounts of Blood

Its low cost may advance liquid biopsy cancer testing used by anatomic pathologists and improve outcomes by speeding time to diagnosis and treatment

Researchers in Japan say they have created a circulating tumor cell (CTC) detection solution that is inexpensive and easy to run. Such a device would be of huge interest to investors and companies wishing to develop clinical laboratory tests that use circulating tumor cells in the blood to identify patients with cancer.

In a proof-of-concept study, researchers at Kumamoto University (KU) in Japan have developed and tested a microfilter device they claim can separate and capture CTCs in blood without large equipment, a KU news release reported.

According to Medgadget, the device is an “inexpensive, convenient, and highly sensitive filter that can successfully work in samples containing as few as five tumor cells in one milliliter of blood and does not require expensive equipment or reagents, unlike certain pre-existing cell capture technologies.”

This Technology Could Give Pathologists a Less-Invasive Cancer Test

As medical laboratory scientists and anatomic pathologists know, a CTC test is less invasive than tissue biopsy, which benefits patients. Furthermore, such a CTC test may enable earlier detection of cancer and start of treatment improving odds for success.

Still, there are many pitfalls to overcome when the challenge is to detect cancer cells in a milliliter (about .03 fluid ounce) of blood. As Medgadget put it, “A needle in a haystack doesn’t even come close.”

“Cancer cell count in the blood of cancer patients is extremely low. If these cells are easily detectable, cancer diagnosis may be possible by simply using a blood test, thus reducing patient burden,” the researchers wrote in their paper.

The KU scientists published their findings in Talanta, the international journal of pure and applied analytical chemistry, titled, “Detection of Cancer Cells in Whole Blood Using a Dynamic Deformable Microfilter and a Nucleic Acid Aptamer.”

Yuta Nakashima, PhD

“This work demonstrates that our microfilter device can accurately detect trace amounts of cancer cells in blood,” said study leader Yuta Nakashima, PhD (above), Associate Professor, Department of Mechanical System Engineering at Kumamoto University, in the news release. “We expect it will be adopted for cancer diagnosis and treatment, including for early diagnosis of cancers that cannot be detected by imaging like CT and PET scans, post-operative follow-up, recurrence monitoring, and tailor-made treatments. In the future, we plan to use blood samples donated by cancer patients to verify the practical and clinical application of the method,” he added. Were it to become available, such a CTC test would be a boon for clinical laboratories and anatomic pathologists engaged in cancer diagnostics and treatment. (Photo copyright: Kumamoto University.)

How Does the CTC Filter Device Work?

The KU scientists created a palm-size “cancer detection device using a microfilter and nucleic acid aptamer,” the paper said, adding:

  • The microfilter was made with photolithography, electroforming, and three-dimensional (3D) printing.
  • It includes slits to enable a deformation with force of blood pumping through the device.
  • As blood flows over the microfilter, cancer cells bind to the nucleic acid aptamer.
  • Force of blood flow opens microfilter slits, pushing away the healthy cells.
  • Cancer cells are left on the microfilter.

To test the microfilter the researchers used one milliliter of blood that was “spiked with cancer cells,” according to the paper. Findings include:

  • Detection of five CTCs in one milliliter of blood. 
  • Blood cell removal rate of 98% suggested “no blood cells were absorbed by the microfilter,” the news release said.
  • The method “showed higher accuracy than the CellSearch System,” the Talanta paper noted.

The KU research team compared their microfluidic device to CellSearch, an FDA-cleared system for detecting CTCs from a blood sample. 

CellSearch enables “identification, isolation, and enumeration of CTCs of epithelial origin,” according to Menarini Silicon Biosystems of Castel Maggiore, Italy. It works from a blood sample of 7.5 millimeters with “high level of sensitivity and specificity,” notes the company’s website.

According to Menarini, labs offering CellSearch CTC testing include:

CTC Tests Progress, But More to Do

The UK scientists admit that their research needs further study. Nakashima indicated he plans to test blood samples donated by cancer patients in subsequent device trials.

However, a separate CTC study published in Oncology Letters, titled, “Detection of Circulating Tumor Cells: Advances and Critical Concerns,” suggested that CellSearch and another CTC assay, Gilupi CellCollector, are “limited in their clinical application, largely due to their low sensitivity.”  

“Although great progress has been made, there is a long way to go before CTC-based liquid biopsy is widely used as a routine test in clinical application,” the authors of that study noted.

Nevertheless, even with more to do, liquid biopsy testing has come a long way, as multiple Dark Daily eBriefs reported over the years.

If the KU scientists succeed in bringing to market a microfilter that can reduce the cost of CTC detection by clinical laboratories while also improving cancer diagnostics, that will have a huge impact on cancer patients and is worthy of clinical laboratory leaders’ attention.    

Donna Marie Pocius

Related Information:

Microfilter Device Capable of Detecting Trace Amounts of Cancer Cells in One mL of Blood

Inexpensive Filter Isolates Circulating Tumor Cells

Detection of Cancer Cells in Whole Blood Using a Dynamic Deformable Microfilter and a Nucleic Acid Aptamer

Detection of Circulating Tumor Cells: Advances and Critical Concerns

Dark Daily: Liquid Biopsy

Innovations in Microsampling Blood Technology Mean More Patients Can Have Blood Tests at Home, and Clinical Laboratories May Advance Toward Precision Medicine Goals

Clinical laboratory leaders aiming for patient-centered care and precision medicine outcomes need to acknowledge that patients do not want to be in hospitals or travel to physician offices and patient care centers for blood tests. It can be inconvenient, sometimes costly, and often painful.

That’s why disease management methods such as remote patient monitoring are appealing to many people. It’s a big market estimated to reach $1 billion by 2020, according to a Transparency Market Research Report. The study also associated popularity of devices such as heart rate and respiratory rate monitors with economic pressures of unnecessary hospital readmissions.

But can remote patient monitoring be used for more than to check heart rates, monitor blood glucose, and track activity levels? Could such technology be effectively leveraged by medical laboratories for remote blood sampling?

Microsampling versus Dried Blood Collecting

Remote patient monitoring must be able to address a large number of diseases and chronic health conditions for it to continue to expand and gain acceptance as a viable way to care for patients in different settings outside of hospitals. However, as most clinical pathologists and laboratory scientists know, clinical laboratory testing has an essential role in patient monitoring. Thus, there is the need for a way to collect blood and other relevant samples from patients in these remote settings.

One promising approach is the development of new microsampling technology that can overcome past obstacles of dried blood collection. Furthermore, microsampling-enabled devices can make it possible for medical laboratories to reach out to the homebound to secure accurate and volumetrically appropriate samples in a cost-effective manner.

“One well-established fact in today’s healthcare system is that an ever-greater proportion of patients want clinical care that is less invasive and less intrusive,” noted Robert Michel, Editor-in-Chief of Dark Daily and The Dark Report. “Patients want to take more control over their treatment and be more effective at maintaining the stability of their chronic conditions, and often are happier than those who need to travel to have chronic conditions monitored. To meet this need there has been significant innovation, particularly in the area of remote blood sampling using microsampling technology.”

For decades, medical laboratories have tried various methods for acquiring and transporting blood samples from remote locations. One such non-invasive alternative to venipuncture is called dried blood spot (DBS) collecting. It involves placing a fingerprick of blood on filter paper and allowing it to dry prior to transport to the lab.

But DBS collected bio samples often do not contain enough hematocrit (volume percentage of red blood cells) for laboratories and clinical pathologists to provide accurate reports and interpretations. Reported reasons DBS cards have not penetrated a wide market include:

  • Hematocrit bias or effect;
  • Costly card punching and automation equipment; and,
  • Possible disruption to existing lab workflows.

Microsampling Technology Enables Collection of Appropriate Samples

Microsampling has to have the capability to enable labs to deliver quality results from reliable blood samples. This remote sampling technology makes it possible for phlebotomists to offer a comfortable collection alternative for homebound patients and rural residents. It also can be useful for physicians stationed in remote areas. Patients themselves can even collect their own blood samples.

Volumetric Absorptive Microsampling (VAMS) technology enables accurate samples of blood or other fluids from amounts as small as 10, 20, or 30 microliters, according to Neoteryx, LLC, of Torrance, Calif., the developer of VAMS. The technology is integrated into the company’s Mitra microsampler blood collection devices (shown above) in formats for patient use and for medical laboratory microsample accessioning and extraction. Click here to watch a video on the Mitra Microsampler Specimen Collection Device. (Photo copyright: Neoteryx.)

One company developing these types of products is Neoteryx, LLC, of Torrance, Calif. It develops, manufactures, and distributes microsampling products. Patients with the company’s Mitra device use a lancet to puncture their skin and draw a small amount of blood, collect it on the device’s absorptive tip, and then mail the samples to a blood lab for testing (Neoteryx does not perform testing).

Fasha-Mahjoor

“Technologies such VAMS are driving [precision medicine] in an extremely cost-effective manner, while only requiring minimal patient effort. Patients are taking a more active role in their healthcare journeys, and at-home sampling is supporting this shift,” stated Fasha Mahjoor, Chief Executive Officer, Neoteryx, in a blog post. (Photo copyright: Neoteryx.)

Advantages of Microsampling

Patient satisfaction survey data collected by Neoteryx suggest patients are comfortable with their role in blood collection:

  • 70% are comfortable or very comfortable with the process;
  • 86% say it is easy or very easy to use the Mitra device;
  • 92% report it is easy to capture blood on the device’s tip;
  • 55% of Mitra device users are likely or very likely to choose microsampling over traditional venipuncture; and,
  • 93% noted they are likely or very likely to choose the device for child care.

A list of published studies describes certain advantages of VAMS technology that have implications for medical laboratories and clinical pathologists:

  • Microsampling has benefits and implications for therapeutic drug monitoring, infectious disease research, and remote specimen collection;
  • Dried blood microsamples from fingerstick can generate reliable data “correlating” to traditional blood collection processes;
  • Bioanalytical data collected with the Mitra device are accurate and dependable; and,
  • In a study for a panel of anti-epileptic drugs, VAMS led to optimized extraction efficiency above 86%, which means there was no hematocrit bias.

Learn More by Requesting the Dark Daily Microsampling White Paper

To help medical laboratories and clinical pathologists learn more about microsampling and VAMS devices, Dark Daily and The Dark Report have produced a white paper titled “How to Create a Patient-Centered Lab with Breakthrough Blood Collection Technology: Microsampling Takes Blood Collection Out of the Clinic.” The paper includes sections addressing these topics:

  • Rise of patient-centered care and remote patient monitoring;
  • Dried blood collection over the years and the hematocrit effect;
  • A look at microsampling and how it takes blood collection out of the clinic;
  • How Volumetric Absorptive Microsampling (VAMS) technology works;
  • Patient satisfaction data;
  • Research about microsampling including extensive graphics;
  • Launching new VAMS technology; and,
  • Frequently asked questions.

neoteryx-white-paper-cover

Innovative medical laboratory leaders who want to increase their understanding of how microsampling technology and remote patient monitoring relates to the goal of becoming a patient-centered lab are encouraged to request a copy of the white paper. It can be downloaded at no cost by clicking here, or placing https://www.darkdaily.com/how-to-create-a-patient-centered-lab-with-breakthrough-blood-collection-technology-9-2018/ into your browser.

—Donna Marie Pocius

Related Information:

Remote Patient Monitoring Devices Market

Neoteryx, LLC, and Cedars Sinai Partner to Investigate at Home Blood Sampling Possibilities for Patients with Inflammatory Bowel Disease

Creating a Patient-Centered Lab with Breakthrough Blood Collection Technology Using New Microsampling Methods Provides Reliable, Economic Collection, Shipping and Storage Solutions

How to Create a Patient-Centered Lab with Breakthrough Blood Collection Technology: Microscopy Takes Blood Collection Out of the Clinic

 

Journalists Take Home Top National Awards for Their Work Covering Theranos and the Clinical Laboratory Industry

Honors highlight concern among public and press over potential harm to patients of the medical laboratory industry and the need for more transparency in the quality of care delivered by pathologists and lab scientists

John Carreyrou, Investigative Reporter, and Mike Siconolfi, Senior Editor, both with The Wall Street Journal (WSJ), took home the prestigious National Institute for Health Care Management (NIHCM) Foundation Journalism Award on Monday, May 2, for their work covering Theranos, Inc.

This is the third time this year Carreyrou has won the award in the General Circulation Print Journalism category for his work covering Theranos, the embattled clinical laboratory company in Palo Alto, Calif., owned by CEO Elizabeth Holmes.

(more…)

;