Study shows that computer analysis of clinical laboratory test results has improved greatly in recent years
Studies using “big data” continue to show how combining different types of healthcare information can generate insights not available with smaller datasets. In this case, researchers at Washington University School of Medicine (WashU Medicine), St. Louis, Mo., determined that—by using the results from nine different types of clinical laboratory tests—they could correlate those test results to younger people who had “aged faster” and had developed cancer earlier than usual, according to CNN.
“Accumulating evidence suggests that the younger generations may be aging more swiftly than anticipated, likely due to earlier exposure to various risk factors and environmental insults. However, the impact of accelerated aging on early-onset cancer development remains unclear,” said Ruiyi Tian, PhD candidate at WashU Medicine’s Yin Cao Lab in an American Association for Cancer Research (AACR) news release.
The scientists presented their findings, which have not yet been published, at the AACR’s annual meeting held in April. Tian and the other researchers “hypothesized that increased biological age, indicative of accelerated aging, may contribute to the development of early-onset cancers, often defined as cancers diagnosed in adults younger than 55 years. In contrast to chronological age—which measures how long a person has been alive—biological age refers to the condition of a person’s body and physiological processes and is considered modifiable,” AACR noted in a news release.
“We all know cancer is an aging disease. However, it is really coming to a younger population. So, whether we can use the well-developed concept of biological aging to apply that to the younger generation is a really untouched area,” Yin Cao, ScD MPH (above), associate professor of surgery and associate professor of medicine at Washington University School of Medicine in St. Louis, and senior author of the study, told CNN. Analysis of clinical laboratory test results using computer algorithms continues to show value for new research into deadly diseases. (Photo copyright: Washington University.)
Lab Tests Share Insights about Aging
To acquire the data they needed for their research, the WashU Medicine scientists turned to the UK Biobank, a biomedical and research resource with genetic and health information on half a million UK residents.
The researchers reviewed the medical records of 148,724 biobank participants, age 37 to 54, focusing on nine blood-based biomarkers that “have been shown to correlate with biological age,” CNN reported. Those biomarkers are:
White blood cells: counts in “the high end of the normal range” may relate to “greater age.”
According to CNN, the researchers “plugged” the nine values into an algorithm called PhenoAge. Using the algorithm they compared the biological ages with each person’s actual chronological age to determine “accelerated aging.” They then consulted cancer registries to capture data on those in the study who were diagnosed with cancer before age 55. They found 3,200 cases.
Young Adults Aging Faster than Earlier Generations
According to the AACR news release, the WashU Medicine study found that:
“Individuals born in or after 1965 had a 17% higher likelihood of accelerated aging than those born between 1950 and 1954.
“Each standard deviation increase in accelerated aging was associated with a 42% increased risk of early-onset lung cancer, a 22% increased risk of early-onset gastrointestinal cancer, and a 36% increased risk of early-onset uterine cancer.
“Accelerated aging did not significantly impact the risk of late-onset lung cancer (defined here as cancer diagnosed after age 55), but it was associated with a 16% and 23% increased risk of late-onset gastrointestinal and uterine cancers, respectively.”
“We speculate that common pathways, such as chronic inflammation and cellular senescence, may link accelerated aging to the development of early-onset cancers,” the study’s principal investigator Yin Cao, ScD, MPH, associate professor of surgery and associate professor of medicine at WashU Medicine, told The Hill.
“Historically, both cancer and aging have been viewed primarily as concerns for older populations. The realization that cancer, and now aging, are becoming significant issues for younger demographics over the past decades was unexpected,” Tian told Fox News.
More Screenings, Further Analysis
The study’s results may suggest a change in clinical laboratory screenings for younger people.
In future studies, WashU Medicine scientists may aim to include groups of greater diversity and explore why people are aging faster and have risk of early-onset cancers.
“There is room to improve using better technologies. Looking at the bigger picture, the aging concept can be applied to younger people to include cancers, cardiovascular disease, and diabetes,” Cao told Discover Magazine.
While more research is needed, use of the UK’s Biobank of healthcare data—including clinical laboratory test results—enabled the WashU Medicine researchers to determine that accelerated aging among young adults is happening with some regularity. This shows that capabilities in computer analysis are gaining more refined capabilities and are able to tease out insights impossible to achieve with earlier generations of analytical software.
These findings should inspire clinical laboratory professionals and pathologists to look for opportunities to collaborate in healthcare big data projects involving their patients and the communities they serve.
More research into accelerated aging may lead to new clinical laboratory and anatomic pathology testing biomarkers for early-onset cancer
Could accelerated aging be contributing to the rise in early-onset cancer rates among younger individuals? A recent study conducted at the Washington University School of Medicine in St. Louis (WUSTL) claims the condition may be partially to blame for the increase in cancer diagnoses among young people. But what is accelerated aging, and what tests will clinical laboratories be required to perform to help physicians diagnose early-onset cancer in that age group?
“Accelerated aging—when someone’s biological age [how old one’s cells are] is greater than their chronological age [how long one has existed]—could increase the risk of cancer tumors,” Fox News reported.
In their presentation at the 2024 American Association for Cancer Research (AACR) annual meeting, the WUSTL researchers noted that “individuals born in or after 1965 had a 17% higher likelihood of accelerated aging than those born between 1950 and 1954,” according to an AACR news release.
The scientists studied “the association between accelerated aging and the risk of early-onset cancers,” and found that “each standard deviation increase in accelerated aging was associated with a 42% increased risk of early-onset lung cancer, a 22% increased risk of early-onset gastrointestinal cancer, and a 36% increased risk of early-onset uterine cancer.”
“Multiple cancer types are becoming increasingly common among younger adults in the United States and globally,” said Ruiyi Tian, MPH, a PhD candidate at WUSTL, in the news release. “Understanding the factors driving this increase will be key to improve the prevention or early detection of cancers in younger and future generations.”
Tian was part of the team conducting the study at the Cao Lab at WUSTL. The primary function of this lab is to uncover risk factors for various cancers and develop precision medicine protocols for cancer prevention and treatment.
“Historically, both cancer and aging have been viewed primarily as concerns for older populations,” Ruiyi Tian, MPH (above), a graduate student at Washington University School of Medicine in St. Louis and one of the study’s researchers, told Fox News. “The realization that cancer, and now aging, are becoming significant issues for younger demographics over the past decades was unexpected.” Clinical laboratories and anatomic pathologists will likely be performing cancer testing on younger populations as incidences of early-onset cancer increase. (Photo copyright: Washington University School of Medicine in St. Louis.)
The WUSTL researchers set out to prove that both chronological age and biological age could be determining factors in early-onset cancers. Chronological age refers to the amount of time an individual has been alive, while biological age refers to the age of cells and tissues based on physiological evidence.
“We all know cancer is an aging disease. However, it is really coming to a younger population,” said Yin Cao, MPH, Associate Professor of Surgery at WUSTL and senior author of the study, told CNN. “So, whether we can use the well-developed concept of biological aging to apply that to the younger generation is a really untouched area.”
To perform the research, the scientists examined data of 148,724 individuals between the ages of 37 and 54 located in the UK Biobank database. They calculated each person’s biological age by examining nine biomarkers found in blood:
They then input the data into the PhenoAge algorithm which estimated the biological age of each person.
“Individuals whose biological age was higher than their chronological age were defined as having accelerated aging,” the AACR news release noted.
The next step was to calculate each person’s level of accelerated aging by comparing biological and chronological ages. They then looked at how many of the individuals studied had been diagnosed with early-onset cancers.
For the WUSTL study, early-onset cancers were defined as cancers that were diagnosed before age 55. The researchers found 3,200 cases where such cancers had been discovered.
Faster Agers Twice as Likely to Develop Early-onset Cancer
The scientists then compared the data of people who showed slower aging to those showing faster aging based on the biobank samples. They found that individuals who had the highest accelerated aging were twice as likely to be diagnosed with early-onset lung cancer, had a 60% higher risk of gastrointestinal tumors, and had a more than 80% higher risk of uterine cancer.
“By examining the relationship between accelerating aging and the risk of early-onset cancers, we provide a fresh perspective on the shared etiology of early-onset cancers,” Tian said in the news release. “If validated, our findings suggest that interventions to slow biological aging could be a new avenue for cancer prevention, and screening efforts tailored to younger individuals with signs of accelerated aging could help detect cancers early.”
More clinical studies and research are needed to determine if accelerated aging truly is causing a rise in early-onset cancers. The fact that all of the participants in this study were from the United Kingdom indicates that future studies should include more diverse populations.
Studying accelerated aging’s influence on early-onset cancer may lead to new biomarkers that clinical laboratories and anatomic pathologists can use to help physicians diagnose the condition. Laboratory scientists and pathologists will want to follow any ongoing research and studies on the trend, as ‘accelerated aging’ might be identified as a new disorder to look for when diagnosing and treating cancers.
Number of patients eligible for genome-driven oncology therapy is increasing, but the percentage who reportedly benefit from the therapy remains at less than 5%
Advances in precision medicine in oncology (precision oncology) are fueling the need for clinical laboratory companion diagnostic tests that help physicians choose the best treatment protocols. In fact, this is a fast-growing area of clinical diagnostics for the nation’s anatomic pathologists. However, some experts in the field of genome-based cancer treatments disagree over whether such treatments offer more hype than hope.
Prasad and his colleagues evaluated 31 US Food and Drug
Administration (FDA) approved drugs, which were “genome-targeted” or
“genome-informed” for 38 indications between 2006 and 2018. The researchers
sought to answer the question, “How many US patients with cancer are eligible
for and benefit annually from genome-targeted therapies approved by the US Food
and Drug Administration?”
They found that in 2018 only 8.33% of 609,640 patients with
metastatic cancer were eligible for genome-targeted therapy—though this was an
increase from 5.09% in 2006.
Even more telling from Prasad’s view, his research team concluded
that only 4.9% had benefited from such treatments. Prasad’s study found the
percentage of patients estimated to have benefited from genome-informed therapy
rose from 1.3% in 2006 to 6.62% in 2018.
“Although the number of patients eligible for genome-driven treatment has increased over time, these drugs have helped a minority of patients with advanced cancer,” the researchers concluded. “To accelerate progress in precision oncology, novel trial designs of genomic therapies should be developed, and broad portfolios of drug development, including immunotherapeutic and cytotoxic approaches, should be pursued.”
The graph above is based on data from a study published in Science titled, “Estimation of the Percentage of US Patients With Cancer Who Benefit from Genome-Driven Oncology,” co-authored by Vinay Prasad, MD, MPH, et al. (Image copyright: Science.)
A Value versus Volume Argument?
Hyman, who leads a team of oncologists that conduct dozens
of clinical trials and molecularly selected “basket studies” each year,
countered Prasad’s assertions by noting the increase in the number of patients
who qualify for precision oncology treatments.
As reported in Science, Hyman said during his AACR
presentation that Sloan Kettering matched 15% of the 25,000 patients’ tumors it
tested with FDA-approved drugs and 10% with drugs in clinical trials.
“I think this is certainly not hype,” he said during the
conference.
Hyman added that another 10% to 15% of patient tumors have a
DNA change that matches a potential drug tested in animals. He expects “basket”
trials to further increase the patient pool by identifying drugs that can work
for multiple tumor types.
The US National Institute of Health (NIH) describes “basket studies” as “a new sort of clinical studies to identify patients with the same kind of mutations and treat them with the same drug, irrespective of their specific cancer type. In basket studies, depending on the mutation types, patients are classified into ‘baskets.’ Targeted therapies that block that mutation are then identified and assigned to baskets where patients are treated accordingly.”
Are Expectations of Precision Medicine Exaggerated?
A profile in MIT Technology Review, titled, “The Skeptic: What Precision Medicine Revolution?,” describes Prasad’s reputation as a “professional scold” noting the 36-year-old professor’s “sharp critiques of contemporary biomedical research, including personalized medicine.” Nevertheless, Prasad is not alone in arguing that precision oncology’s promise is often exaggerated.
“Like most ‘moonshot’ medical research initiatives,
precision medicine is likely to fall short of expectations,” Joyner wrote.
“Medical problems and their underlying biology are not linear engineering
exercises and solving them is more than a matter of vision, money, and will.”
“Although some niche applications have been found for
precision medicine—and gene therapy is now becoming a reality for a few rare
diseases—the effects on public health are miniscule while the costs are astronomical,”
they wrote.
Hope for Precision Medicine Remains High
However, optimism over precision oncology among some industry leaders has not waned. Cindy Perettie, CEO of molecular information company Foundation Medicine of Cambridge, Mass., argues genome-directed treatments have reached an “inflection point.”
“Personalized cancer treatment is a possibility for more patients than ever thanks to the advent of targeted therapies,” she told Genetic Engineering and Biotechnology News. “With a growing number of new treatments—including two pan-tumor approvals—the need for broad molecular diagnostic tools to match patients with these therapies has never been greater. We continue to advance our understanding of cancer as a disease of the genome—one in which treatment decisions can be informed by insight into the genomic changes that contribute to each patient’s unique cancer.”
Prasad acknowledges genome-driven therapies are beneficial for some cancers. However, he told MIT Technology Review the data doesn’t support the “rhetoric that we’re reaching exponential growth, or that is taking off, or there’s an inflection point” signaling rapid new advancements.
“Right now, we are investing heavily in immunotherapy and heavily in genomic therapy, but in other categories of drugs, such as cytotoxic drugs, we have stopped investigating in them,” he told Medscape Medical News. “But it’s foolish to do this—we need to have the vision to look beyond the fads we live by in cancer medicine and do things in a broader way,” he added.
“So, I support broader funding because you have to sustain
efforts even when things are not in vogue if you want to make progress,” Prasad
concluded.
Is precision oncology a fad? Dark Daily has covered the advancements in precision medicine extensively over the past decade, and with the launch of our new Precision Medicine Institute website, we plan to continue reporting on further advancements in personalized medicine.
Time will tell if precision oncology can fulfill its
promise. If it does, anatomic pathologists will play an important role in
pinpointing patients most likely to benefit from genome-driven treatments.
One thing that the debate between proponents of precision
medicine in oncology and their critics makes clear is that more and better
clinical studies are needed to document the true effectiveness of target
therapies for oncology patients. Such evidence will only reinforce the
essential role that anatomic pathologists play in diagnosis, guiding
therapeutic decisions, and monitoring the progress of cancer patients.
New approach to clinical laboratory testing could eliminate the need for tissue biopsies to diagnose different types of cancer
In Maryland, a 15-year-old high school freshman developed a diagnostic assay that experts say can be developed into medical laboratory test for the detection of pancreatic cancer. The teen’s prize-winning breakthrough test could change how cancer and other fatal diseases are diagnosed and treated.
More to the point for anatomic pathologists, this new approach to detecting pancreatic cancer is non-invasive, so it does not require a biopsy specimen. It is also inexpensive and fast. At a cost of about $3 per test, the diagnostic assay produces a result in five minutes. (more…)
Surgical pathologists could gain new tool to diagnose many types of cancers
It might soon be possible to determine the HER2 status of breast cancer patients from blood samples rather than tissue biopsies. If this new technology proves feasible, it would give surgical pathologists and medical laboratories a different, and possibly less complex, methodology to use when assessing a case of breast cancer.
In its report about the study, Medscape Medical News, wrote that “HER2 status derived from circulating tumor cells (CTCs) from breast cancer patients was generally concordant with that derived from tumor tissue” and that “CTCs could prove to be an alternative to biopsies for assessing tumor tissue for biomarker status.”