News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Mount Sinai Researchers Create a “Smart Tweezer” That Can Isolate a Single Bacterium from a Microbiome Sample Prior to Genetic Sequencing

New technology could enable genetic scientists to identify antibiotic resistant genes and help physicians choose better treatments for genetic diseases

Genomic scientists at the Icahn School of Medicine at Mount Sinai Medical Center in New York City have developed what they call a “smart tweezer” that enables researchers to isolate a single bacterium from a patient’s microbiome in preparation for genetic sequencing. Though primarily intended for research purposes, the new technology could someday be used by clinical laboratories and microbiologists to help physicians diagnose chronic disease and choose appropriate genetic therapies.

The researchers designed their new technology—called mEnrich-seq—to improve the effectiveness of research into the complex communities of microorganisms that reside in the microbiomes within the human body. The discovery “ushers in a new era of precision in microbiome research,” according to a Mount Sinai Hospital press release.

Metagenomics has enabled the comprehensive study of microbiomes. However, many applications would benefit from a method that sequences specific bacterial taxa of interest, but not most background taxa. We developed mEnrich-seq (in which ‘m’ stands for methylation and seq for sequencing) for enriching taxa of interest from metagenomic DNA before sequencing,” the scientists wrote in a paper they published in Nature Methods titled, “mEnrich-seq: Methylation-Guided Enrichment Sequencing of Bacterial Taxa of Interest from Microbiome.”

“Imagine you’re a scientist who needs to study one particular type of bacteria in a complex environment. It’s like trying to find a needle in a large haystack,” said the study’s senior author Gang Fang, PhD (above), Professor of Genetics and Genomic Sciences at Icahn School of Medicine at Mount Sinai Medical Center, in a press release. “mEnrich-seq essentially gives researchers a ‘smart tweezer’ to pick up the needle they’re interested in,” he added. Might smart tweezers one day be used to help physicians and clinical laboratories diagnose and treat genetic diseases? (Photo copyright: Icahn School of Medicine.)

Addressing a Technology Gap in Genetic Research

Any imbalance or decrease in the variety of the body’s microorganisms can lead to an increased risk of illness and disease.

“Imbalance of the normal gut microbiota, for example, have been linked with conditions including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), obesity, type 2 diabetes, and allergies. Meanwhile, the vaginal microbiome seems to impact sexual and reproductive health,” Inside Precision Medicine noted.

In researching the microbiome, many scientists “focus on studying specific types of bacteria within a sample, rather than looking at each type of bacteria present,” the press release states. The limitation of this method is that a specific bacterium is just one part of a complicated environment that includes other bacteria, viruses, fungi and host cells, each with their own unique DNA.

“mEnrich-seq effectively distinguishes bacteria of interest from the vast background by exploiting the ‘secret codes’ written on bacterial DNA that bacteria use naturally to differentiate among each other as part of their native immune systems,” the press release notes. “This new strategy addresses a critical technology gap, as previously researchers would need to isolate specific bacterial strains from a given sample using culture media that selectively grow the specific bacterium—a time-consuming process that works for some bacteria, but not others. mEnrich-seq, in contrast, can directly recover the genome(s) of bacteria of interest from the microbiome sample without culturing.”

Isolating Hard to Culture Bacteria

To conduct their study, the Icahn researchers used mEnrich-seq to analyze urine samples taken from three patients with urinary tract infections (UTIs) to reconstruct Escherichia coli (E. Coli) genomes. They discovered their “smart tweezer” covered more than 99.97% of the genomes across all samples. This facilitated a comprehensive examination of antibiotic-resistant genes in each genome. They found mEnrich-seq had better sensitivity than standard study methods of the urine microbiome. 

They also used mEnrich-seq to selectively examine the genomes of Akkermansia muciniphila (A. muciniphila), a bacterium that colonizes the intestinal tract and has been shown to have benefits for obesity and Type 2 diabetes as well as a response to cancer immunotherapies.

Akkermansia is very hard to culture,” Fang told GenomeWeb. “It would take weeks for you to culture it, and you need special equipment, special expertise. It’s very tedious.”

mEnrich-seq was able to quickly segregate it from more than 99.7% of A. muciniphila genomes in the samples.

Combatting Antibiotic Resistance Worldwide

According to the press release, mEnrich-seq could potentially be beneficial to future microbiome research due to:

  • Cost-Effectiveness: It offers a more economical approach to microbiome research, particularly beneficial in large-scale studies where resources may be limited.
  • Broad Applicability: The method can focus on a wide range of bacteria, making it a versatile tool for both research and clinical applications.
  • Medical Breakthroughs: By enabling more targeted research, mEnrich-seq could accelerate the development of new diagnostic tools and treatments.

“One of the most exciting aspects of mEnrich-seq is its potential to uncover previously missed details, like antibiotic resistance genes that traditional sequencing methods couldn’t detect due to a lack of sensitivity,” Fang said in the news release. “This could be a significant step forward in combating the global issue of antibiotic resistance.”

More research and clinical trials are needed before mEnrich-seq can be used in the medical field. The Icahn researchers plan to refine their novel genetic tool to improve its efficiency and broaden its range of applications. They also intend to collaborate with physicians and other healthcare professionals to validate how it could be used in clinical environments.  

Should all this come to pass, hospital infection control teams, clinical laboratories, and microbiology labs would welcome a technology that would improve their ability to detect details—such as antibiotic resistant genes—that enable a faster and more accurate diagnosis of a patient’s infection. In turn, that could contribute to better patient outcomes.

—JP Schlingman

Related Information:

‘Smart Tweezer’ Can Pluck Out Single Bacterium Target from Microbiome

mEnrich-seq: Methylation-guided Enrichment Sequencing of Bacterial Taxa of Interest from Microbiome

Genomic ‘Tweezer’ Ushers in a New Era of Precision in Microbiome Research

Molecular Tweezers Can Precisely Select Microbiome Bacteria

Identification of DNA Motifs that Regulate DNA Methylation

New Bacterial Epigenetic Sequencing Method Could Be Boon for Complex Microbiome Analyses

Researchers in Two Separate Studies Discover Gut Microbiome Can Affect Efficacy of Certain Cancer Drugs; Will Findings Lead to a New Clinical Laboratory Test?

If the link between certain types of gut bacteria and improved effectiveness of certain cancer treatments can be leveraged, then medical laboratories could soon have another diagnostic tool to use in supporting physicians with cancer care

From improving treatments for chronic diseases to extending lives, gut microbiome (bacteria that is part of human microbiota) has been at the forefront of developing clinical laboratory testing and anatomic pathology diagnostic technologies in recent years. Now, two studies recently published in the online journal Science confirm research that the “composition” of gut bacteria may have a significant influence on the effectiveness of certain cancer drugs.

The goal of both studies was to determine whether there was a link between gut bacteria and the efficacy of cancer drugs known as PD-1 inhibitors. These drugs are used for several types of cancer, including:

  • Melanoma;
  • Lung;
  • Bladder; and,
  • Stomach cancers.

They function by freeing up the immune system to attack cancer cells.

Greater Bacterial Diversity in Gut Brings Improved Response to PD-1 Inhibitors

One of the studies, “Gut Microbiome Modulates Response to Anti–PD-1 Immunotherapy in Melanoma Patients,” found that a microbiome populated with “good” bacteria can elevate the potency of certain drug treatments. The researchers discovered that the gut bacteria in patients who responded well to PD-1 inhibitors differed from that found in patients who did not respond to the treatment.

For this study, researchers at the MD Anderson Cancer Center at the University of Texas collected oral, gut, and fecal microbiome samples and tumor biopsies from 112 patients with advanced melanoma. Clinical laboratorians took the samples before and after PD-1 treatments. They divided the patients into two groups—responders and non-responders—and profiled each microbiome using genetic sequencing.

“What we found was impressive: There were major differences both in the diversity and composition of the gut microbiome in responders versus non-responders,” Jennifer Wargo, MD, MMSc, leader of the study, told STAT. “Those who did well had greater bacterial diversity in their gut, whereas those whose tumors didn’t much shrink had fewer varieties of microbes present.”

Melanoma patients who experienced success with PD-1 therapy had a more diverse microbiome and higher concentrations of bacteria known as Ruminococcus and Faecalibacterium. Patients involved in the study who did not respond well to PD-1 therapy had the presence of another bacterium called Bacteroidales.

Jennifer Wargo, MD (above center) with her team at the MD Anderson laboratories. The researchers cautioned that clinical trials are needed before a definitive conclusion can be reached on whether altering gut bacteria can improve the effectiveness of PD-1 therapy. “If you’re changing the microbiome, depending on how you do it, it may not help you—and it might harm you,” Wargo emphasized in STAT. “Don’t try this at home.” (Photo copyright: MD Anderson.)

Antibiotics Can Reduce Effectiveness of PD-1Therapy

The other study, “Gut Microbiome Influences Efficacy of PD-1-based Immunotherapy Against Epithelial Tumors,” discovered that some drug therapies were less effective in patients who were also taking antibiotics to treat infections shortly before beginning treatment with PD-1 drugs.

Researchers for this study, led by Laurence Zitvogel, MD, PhD, of the Gustave Roussy Cancer Campus in Villejuif, France, examined 249 patients who were given a PD-1 inhibitor for lung, kidney, or urinary tract cancers. A little over one fourth of these patients had recently taken antibiotics, which can strip the gut of essential bacteria necessary to treat infections.

The team found that patients who had ingested an antibiotic relapsed faster and did not live as long as patients who had not taken an antibiotic before receiving PD-1 therapy. When they analyzed variances between patients who responded well to treatment versus patients who did not, they detected the presence of Akkermansia muciniphila, a mucin-degrading bacterium, in the responders.

Personalized Treatment Based on Each Patient’s Gut Microbiome

The culmination of this type of research raises questions about how cancer medications may interact with microbiomes.

“Should we be profiling the gut microbiome in cancer patients going into immunotherapy?” asked Wargo in the STAT article. “And, should we also be limiting, or closely monitoring, the antibiotic use in these patients?

“This is all very context-specific, and multiple different factors need to be considered on how best to change the microbiome,” she continued. “When it comes to optimizing cancer therapy, treatments will have to be heavily personalized, based on what a patient’s gut microbiome looks like already.”

Diagnostic tests that could determine whether a certain drug will be beneficial for a patient would perform a critical role in healthcare decision-making. Since cancer drug treatments can cost tens of thousands of dollars or more, it would be advantageous to know which therapies would be optimal for individual patients. The hope is that in the future, clinicians, working with anatomic pathologists and clinical laboratories, will have the tools needed to ascertain if patient’s microbiomes will best work with a particular drug and if they would likely encounter any side effects.

—JP Schlingman

Related Information:

Patients’ Gut Bugs May Play Role in Cancer Care

Gut Microbiome Modulates Response to Anti–PD-1 Immunotherapy in Melanoma Patients

Gut Microbiome Influences Efficacy Of PD-1–Based Immunotherapy Against Epithelial Tumors

Your Gut Bacteria Could Determine How You Respond to Cutting-edge Cancer Drugs

The Bacteria in Your Gut Could Help Determine if a Cancer Therapy Will Work

Attention Microbiologists and Medical Laboratory Scientists: New Research Suggests an Organism’s Microbiome Might Be a Factor in Longer, More Active Lives

Get the Poop on Organisms Living in Your Gut with a New Consumer Laboratory Test Offered by American Gut and uBiome

Mayo Clinic and Whole Biome Announce Collaboration to Research the Role of the Human Microbiome in Women’s Diseases Using Unique Medical Laboratory Tests

;