News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Study Shows Huge Increase in Bloodstream Infections in Europe During First Two Years of COVID-19 Pandemic

Clinical laboratory data was key in identifying antibiotic-resistant bacteria responsible for surge in BSIs in hospitals and other healthcare facilities in 2020 and 2021

Clinical laboratory data compiled by the European Antimicrobial Resistance Surveillance Network (EARS-Net) shows that a massive increase in bloodstream infections (BSIs) occurred among EU nations during the first two years of the COVID-19 pandemic. The study found that BSIs caused by certain antimicrobial-resistant (AMR) pathogens, known as superbugs, more than doubled in EU hospitals and healthcare facilities in 2020 and 2021. 

Microbiologists and clinical laboratory managers in the US may find it valuable to examine this peer-reviewed study into AMR involved in blood stream infections. It could contain useful insights for diagnosing patients suspected of BSIs in US hospitals where sepsis prevention and antibiotic stewardship programs are major priorities.

The EU researchers published their findings in the journal Eurosurveillance, titled, “Large Increase in Bloodstream Infections with Carbapenem-resistant Acinetobacter Species During the First Two years of the COVID-19 Pandemic, EU/EEA, 2020 and 2021.” The paper outlines what the author’s characterize as the alarming rise in BSIs caused by the Acinetobacter species of bacteria.

Tedros Adhanom Ghebreyesus, PhD

“Antimicrobial resistance undermines modern medicine and puts millions of lives at risk,” said Tedros Adhanom Ghebreyesus, PhD, Director-General, World Health Organization, in a WHO press release. “To truly understand the extent of the global threat and mount an effective public health response to [antimicrobial resistance], we must scale up microbiology testing and provide quality-assured data across all countries, not just wealthier ones.” Clinical laboratories in the US may be called upon to submit data on bloodstream infections in this country. (Photo copyright: WHO.)

Clinical Laboratories in EU Report Huge Increase in Carbapenem Resistance

To perform their study, researchers measured the increase in Acinetobacter BSIs between 2020 and 2021, the first two years of the COVID-19 pandemic. Their data originated from qualitative regular antimicrobial susceptibility testing (AST) from blood samples collected by local clinical laboratories in the European Union/European economic area (EU/EEA) nations.

The researchers limited their dataset to Acinetobacter BSI information from the European medical laboratories that documented results of carbapenem susceptibility testing for the bacterial species.

Carbapenems are a class of very powerful antibiotics that are typically used to treat severe bacterial infections. A total of 255 EU/EEA clinical laboratories reported their data for the study. The scientists found that the percentages of Acinetobacter resistance varied considerably between EU/EEA nations, so they separated the countries into three different groups: 

  • Nations in Group One—The Netherlands, Belgium, Austria, Estonia, Denmark, Germany, Iceland, Finland, Luxembourg, Ireland, Norway, Sweden, and Malta—experienced less than 10% resistance to carbapenems.
  • Nations in Group Two—Slovenia, Czech Republic, and Portugal—had carbapenem resistance between 10% and 50%.
  • Nations in Group Three—Croatia, Bulgaria, Greece, Cyprus, Italy, Hungary, Lithuania, Latvia, Romania, Poland, Spain, and Slovakia—demonstrated carbapenem resistance equal or greater than 50%.

The study also found that Acinetobacter BSIs rose by 57% and case counts increased by 114% in 2020 and 2021 when compared to 2018 and 2019. The percentage of resistance to carbapenems rose to 66% in 2020 and 2021, up from 48% in 2018 and 2019. 

Antimicrobial Resistance Especially High in Hospital Settings

The researchers further arranged the data into three hospital ward types: intensive care unit (ICU), non-ICU, and unknown. The increase in BSIs caused by Acinetobacter species resistant to carbapenems was greater in ICU-admitted individuals (144%) than non-ICU-admitted individuals (41%).

There are more than 50 species of Acinetobacter bacteria and various strains are often resistant to many types of commonly-used antibiotics. Symptoms of an Acinetobacter infection usually appear within 12 days after a person comes into contact with the bacteria. These symptoms may include:

  • Blood infections,
  • Urinary tract infections,
  • Pneumonia, and
  • Wound infections.

Healthy people have a low risk of contracting an Acinetobacter infection with the highest number of these infections occurring in hospitals and other healthcare settings. Acinetobacter bacteria can survive for a long time on surfaces and equipment, and those working in healthcare or receiving treatment are in the highest risk category.

The prevalence of this type of bacteria increases in relation to the use of medical equipment, such as ventilators and catheters, as well as antibiotic treatments.

WHO Report Validates EARS-Net Research

In December of 2022, the World Health Organization (WHO) issued a Global Antimicrobial Resistance and Use Surveillance System (GLASS) report that revealed the presence of an increasing resistance to antibiotics in some bacterial infections. That report showed high levels (above 50%) of resistance in bacteria that frequently caused bloodstream infections in hospitals, such as Klebsiella pneumonia and Acinetobacter.

The WHO report examined data collected during 2020 from 87 different countries and found that common bacterial infections are becoming increasingly resistant to treatments. Both Klebsiella pneumoniae and Acinetobacter can be life threatening and often require treatment with strong antibiotics, such as carbapenems.

More research is needed to determine the reasons behind increases in Acinetobacter infections as reported in European hospitals and other healthcare settings, and to ascertain the extent to which they are related to hospitalizations and the upsurge in antimicrobial resistance during the COVID-19 pandemic.

Microbiologists and clinical laboratory managers in the US may want to learn more about the fIndings of this European study involving AMR and use those insights to plan accordingly for any future increase in bloodstream infections in this country. 

JP Schlingman

Related Information:

Enormous Rise in Acinetobacter Bloodstream Infection Cases in Initial Two Years of COVID-19

COVID Pandemic Led to Surge in Superbug Infections, EU Agency Says

Large Increase in Bloodstream Infections with Carbapenem-resistant Acinetobacter Species During the First 2 years of the COVID-19 Pandemic, EU/EEA, 2020 and 2021

Antimicrobial Resistance in the EU/EEA (EARS-Net)–Annual Epidemiological Report for 2021

Acinetobacter: What to know

Some Bloodstream Infection Bacteria Grew Resistant to Last-resort Drugs in 2020 – WHO

Report Signals Increasing Resistance to Antibiotics in Bacterial Infections in Humans and Need for Better Data

Carbapenem-resistant Acinetobacter

University of Edinburgh Study Finds Antimicrobial Bacteria in Hospital Wastewater in Research That Has Implications for Microbiologists

The highly infectious bacteria can survive treatment at local sewage plants and enter the food chain of surrounding populations, the study revealed

Researchers at the University of Edinburgh (UE) in Scotland found large amounts of antimicrobial-resistance (AMR) genes in hospital wastewater. These findings will be of interest to microbiologists and clinical laboratory managers, as the scientists used metagenomics to learn “how abundances of AMR genes in hospital wastewater are related to clinical activity.”

The UE study sheds light on the types of bacteria in wastewater that goes down hospital pipes to sewage treatment plants. The study also revealed that not all infectious agents are killed after passing through waste treatment plants. Some bacteria with antimicrobial (or antibiotic) resistance survive to enter local food sources. 

The scientists concluded that the amount of AMR genes found in hospital wastewater was linked to patients’ length-of-stays and consumption of antimicrobial resistant bacteria while in the hospital.

Using Metagenomics to Surveille Hospital Patients

Antimicrobial resistance is creating super bacteria that are linked to increases in hospital-acquired infections (HAIs) nationwide. Dark Daily has reported many times on the growing danger of deadly antimicrobial resistant “super bugs,” which also have been found in hospital ICUs (see “Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed,” August 26, 2019.)

In a paper the University of Edinburgh published on medRxiv, the researchers wrote: “There was a higher abundance of antimicrobial-resistance genes in the hospital wastewater samples when compared to Seafield community sewage works … Sewage treatment does not completely eradicate antimicrobial-resistance genes and thus antimicrobial-resistance genes can enter the food chain through water and the use of [processed] sewage sludge in agriculture. As hospital wastewater contains inpatient bodily waste, we hypothesized that it could be used as a representation of inpatient community carriage of antimicrobial resistance and as such may be a useful surveillance tool.”

Additionally, they wrote, “Using metagenomics to identify the full range of AMR genes in hospital wastewater could represent a useful surveillance tool to monitor hospital AMR gene outflow and guide environmental policy on AMR.”

AMR bacteria also are being spread by human touch throughout city subways, bus terminals, and mass transportation, making it difficult for the Centers for Disease Control and Prevention (CDC) to identify the source of the outbreak and track and contain it. This has led microbiologists to conduct similar studies using genetic sequencing to identify ways to track pathogens through city infrastructures and transportation systems. (See, “Microbiologists at Weill Cornell Use Next-Generation Gene Sequencing to Map the Microbiome of New York City Subways,” December 13, 2013.)

Antimicrobial stewardship programs are becoming increasingly critical to preventing the spread of AMR bacteria. “By having those programs, [there are] documented cases of decreased antibiotic resistance within organisms causing these infections,” Paul Fey, PhD, of the University of Nebraska Medical Center, told MedPage Today. “This is another indicator of how all hospitals need to implement stewardship programs to have a good handle on decreasing antibiotic use.” [Photo copyright: University of Nebraska.]

Don’t Waste the Wastewater

Antibiotic resistance occurs when bacteria change in response to medications to prevent and treat bacterial infections, according to a World Health Organization (WHO) fact sheet. The CDC estimates that more than 23,000 people die annually from two million antibiotic-resistance infections.

Wastewater, the UE scientists suggest, should not go to waste. It could be leveraged to improve hospitals’ detection of patients with antimicrobial resistance, as well as to boost environment antimicrobial-resistance polices.

They used metagenomics (the study of genetic material relative to environmental samples) to compare the antimicrobial-resistance genes in hospital wastewater against wastewater from community sewage points. 

The UE researchers:

  • First collected samples over a 24-hour period from various areas in a tertiary hospital;
  • They then obtained community sewage samples from various locations around Seafield, Scotland;
  • Finally, they complete the genetic sequencing on an Illumina HiSeq4000 System.

The researchers reported these findings:

  • 181 clinical isolates were identified in the samples of wastewater;
  • 1,047 unique bacterial genes were detected across all samples;
  • 19 genes made up more than 60% of bacteria in samples;
  • Overriding bacteria identified as Pseudomonas and Acinetobacter environmental samples (Pseudomonas fluorescens and Acinetobacter johnsonii) were most likely from hospital pipes;
  • Gut-related bacteria—Faecalibacterium, Bacteroides, Bifidobacterium, and Escherichia, were more prevalent in the hospital samples than in those from the community;
  • Antimicrobial-resistance genes increased with longer length of patient stays, which “likely reflects transmission amongst hospital inpatients,” researchers noted. 

Fey suggests that further research into using sequencing technology to monitor patients is warranted.

“I think that monitoring each patient and sequencing their bowel flora is more likely where we’ll be able to see if there’s a significant carriage of antibiotic-resistant organisms,” Fey told MedPage Today. “In five years or so, sequencing could become so cheap that we could monitor every patient like that.”

Fey was not involved in the University of Edinburgh research.

Given the rate at which AMR bacteria spreads, finding antibiotic-resistance genes in hospital wastewater may not be all that surprising. Still, the University of Edinburgh study could lead to cost-effective ways to test the genes of bacteria, which then could enable researchers to explore different sources of infection and determine how bacteria move through the environment.

And, perhaps most important, the study suggests clinical laboratories have many opportunities to help eliminate infections and slow antibiotic resistance. Microbiologists can help move their organizations forward too, along with infection control colleagues.  

—Donna Marie Pocius

Related Information:

Secrets of the Hospital Underbelly: Abundance of Antimicrobial-Resistance Genes in Hospital Wastewater Reflects Hospital Microbial Use and Inpatient Length of Stay

Antibiotic-Resistance Genes Trouble Hospital Water; Study Emphasizes Importance of Antibiotic Stewardship Programs, Expert Says

Fact Sheet: Antibiotic Resistance

United States Gathers 350 Commitments to Combat Antibiotic Resistance, Action Must Continue

Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenemase Resistance

Dark Daily E-briefings: Hospital-Acquired Infections

NIH Study Reveals Surprising New Source of Antibiotic Resistance that Will Interest Microbiologists and Medical Laboratory Scientists

New Fast, Inexpensive, Mobile Device Accurately Identifies Healthcare-Acquired Infections and Communicates Findings to Doctors’ Smartphones and Portable Computers

Use of these new technologies creates opportunities for clinical laboratories and pathologists to add more value when collaborating with physicians to advance patient care

Ongoing improvements in point-of-care testing are encouraging one major academic medical center to apply this mode of testing to the diagnosis of hospital-acquired infections (HAIs). This development should be of interest to clinical laboratory professionals and pathologists, since it has the potential to create a different way to identify patients with HAIs than medical lab tests done in the central laboratory.

Massachusetts General Hospital (MGH), Harvard Medical School’s (HMS’) largest teaching hospital, has developed a prototype diagnostic system that works with doctors’ smartphones or mobile computers. The hand-held system can identify pathogens responsible for specific healthcare-acquired infections (HAIs) at the point of care within two hours, according to an MGH statement.

The researchers noted that 600,000 patients develop HAIs each year, 10% of which die, and that costs related to HAIs can reach $100 to $150 billion per year. However, as Dark Daily reported, the Centers for Medicare and Medicaid Services (CMS) does not reimburse hospitals for certain HAIs. (See Dark Daily, Consumer Reports Ranks Smaller and Non-Teaching Hospitals Highest in Infection Prevention,” October, 30, 2015.) Thus, the critical need to identify from where the infection originated, which generates a significant proportion of samples tested at the clinical laboratories of the nation’s hospitals and health systems.

Therefore, pathologists and medical laboratory scientists will understand that shifting some of that specimen volume to point-of-care testing will change the overall economics of hospital laboratories.

Smartphone-based Genetic Test for HIAs

The MGH research team created a way to do accurate genetic testing in a simple device powered by a system they call Polarization Anisotropy Diagnostics (PAD). The system measures changes in fluorescence anisotropy through a detection probe’s recognition of bacterial nucleic acid, reported Medscape Medical News. More than 35 probes for detecting bacterial species and virulence factors are available.

Optical test cubes are placed on an electronic base station that transmits data to a smartphone or computer, where results are displayed. “In a pilot clinical test, PAD accuracy was comparable to that of bacterial culture. In contrast to the culture, the PAD assay was fast (under two hours), multiplexed, and cost effective (under $2 per assay), wrote the MGH researchers in the journal Science Advances. (more…)

;