News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Declining In-Patient Admission Rates Blamed on High-Deductible Health Plans; Could Impact Hospital-Based Medical Laboratories

Clinical laboratories may want to offset plunging patient lab specimens by increasing outreach business

Hospital admissions are in decline across the country and the trend is being blamed in part on the rising use of high-deductible health plans (HDHP). The implications for hospital-based clinical laboratories is that lower in-patient totals reduce the flow of patient lab specimens as well. This situation may encourage some hospital and health-system labs to increase their lab outreach business as a way to offset declining inpatient lab test volumes and help keep down overall average test costs.

Healthcare Dive, which named “changing patient admissions” its “Disruptor of the Year,” used data from America’s Health Insurance Plans (AHIP) annual surveys to show the admission rate trend that is causing hospital operators and health systems to rethink how they do business going forward.

“We are really talking about how providers are not taking in as much revenue as they are spending,” Healthcare Dive noted. “Hospitals are largely fixed cost businesses, and rising expenses have been outpacing admissions growth.”

Experts Claim the ‘Hand Writing Is on the Wall’

According to Healthcare Dive’s analysis of US hospital admissions, which used data from the American Hospital Association’s Annual Survey, hospital admissions peaked at 35.4 million in 2013, coinciding with the roll out of the Affordable Care Act. The total fell to 34.9 million in 2014, before rebounding slightly to 35.1 million in 2015. The 2016 survey, published in 2018, showed hospital admissions remaining relatively flat at approximately 35.2 million.

Paul Hughes-Cromwick

Paul Hughes-Cromwick (above), Co-Director, Sustainable Health Spending Strategies, Altarum in Ann Arbor, Mich., expects hospitals to be challenged by flat admission rates going forward. “Times are still pretty good, but the writing is on the wall for hospital operators,” he told Modern Healthcare. This will impact clinical laboratories owned by hospitals and health systems as well. Photo copyright: Long Beach Business Journal.)

Most experts place the blame for slumping patient admissions on HDHPs. Such plans, which are paired with a tax-advantaged health savings account, have enabled employers to shift initial medical costs to workers in exchange for lower monthly health insurance premiums. Nearly 20.2 million Americans were enrolled in HDHPs in 2016, up from 15.4 million in 2013 and far above the roughly one million plans in existence in 2005, the AHIP surveys revealed. HDHPs were first authorized by Congress in 2003.

Consumers Delaying or Opting Out of Healthcare

Faced with higher out-of-pocket medical costs, consumers are opting to postpone or forgo elective surgeries and procedures, which in turn is placing pressure on healthcare systems’ operating revenues.

According to Healthcare Dive, Community Health Systems experienced a 12% drop in operating revenue in the first nine months of fiscal year 2017, while HCA Healthcare and Tenet Healthcare dropped 6.7% and 3.8%, respectively.

J. Eric Evans, President of Hospital Operations, Tenet Healthcare (NYSE:THC), a 77-hospital chain, told Modern Healthcare, today’s consumers are spending their healthcare dollars differently.

“The more elective procedures, things like orthopedics, we see the softness,” Evans told Modern Healthcare. “So, we think that does play into the story of deductibles rising and changing behaviors.”

The challenges for not-for-profit hospital systems are no different. Modern Healthcare noted that the 14-hospital Indiana University Health system reported a 46% drop in operating income in the third quarter of FY 2017 on a year-over-year admission decline of 2%.

Healthcare Systems Rethinking Their Business Strategies

“Health systems en masse are reacting to shifting dynamics in healthcare utilization by throwing money and resources to lower cost settings, such as urgent care centers and freestanding emergency departments,” Healthcare Dive noted. Dark Daily has reported on this trend. (See, “From Micro-hospitals to Mobile ERs: New Models of Healthcare Create Challenges and Opportunities for Pathologists and Medical Laboratories,” May 26, 2017.) Health systems also are selling unprofitable hospitals and laying off or eliminating positions to cut costs. Tenet Healthcare, for example, is laying off 2,000 workers while selling eight of its US hospitals and all of its nine United Kingdom facilities, Modern Healthcare reported in January.

“We are seeing and are working with health systems to take out pretty significant amounts of cost out of their operations, both clinical and nonclinical, and setting targets  like 15-20%, which is a transformative change,” Igor Belokrinitsky, Vice President and Partner at Strategy&, PricewaterhouseCoopers’ strategy consulting group, told Healthcare Dive in a 2017 interview.

Lower hospital in-patient volume means less clinical laboratory test orders. This, in turn, will result in increases in the average cost per inpatient test. Anatomic pathology groups and medical laboratory leaders who work in or service hospitals may wish to take proactive steps to boost test referrals from outpatient and outreach settings as a way to help keep down the lab’s average cost per test.

—Andrea Downing Peck

Related Information:

Disrupter of the Year: Softening Patient Admissions

Hospital Volumes Laid Low by High-Deductible Health Plans

How Hospitals Feel about AHCA’s Death, Future with ACA

2016 Survey of Health Savings Account-High Deductible Health Plans

Fast Facts on U.S. Hospitals, 2018

5 Things to Know about Tenet Healthcare’s Restructuring

From Micro-hospitals to Mobile ERs: New Models of Healthcare Create Challenges and Opportunities for Pathologists and Medical Laboratories

Lab-on-a-Fiber Technology Continues to Highlight Nano-Scale Clinical Laboratory Diagnostic Testing in Point-of-Care Environments

Ever shrinking “lab-on-a-…” technologies, a boon to medical laboratories and anatomic pathologists in remote resource-strapped regions, also have a place in modern labs

Researchers took another leap forward in reducing the size of clinical laboratory diagnostic tests and observational tools. This demonstration involved lab-on-a-fiber technology and showed promise in both monitoring anatomic pathology biomarkers in vivo and supplementing the abilities of existing lab-on-a-chip and microfluidic devices.

Lab-on-a-Fiber Next Technological Step Toward Miniaturization

In 2013, Dark Daily reported on research into an implantable laboratory-on-a-chip (LOC) for monitoring blood chemistry during chemotherapy. It was a major breakthrough at the time, which promised new and powerful tools for cancer treatment regimens.

However, most LOC systems aren’t designed for wet environments. Also, while microfluidics and flexible membranes allow for smaller footprints and tighter placement, they are still invasive in ways that might make patients uncomfortable or make real-world use less than ideal. And, long-term use brings further complications, such as corrosion or foreign-body granulomas.

Thus, lab-on-a-fiber’s ability to function in vivo, is one of the device’s principal advantages, as ExtremeTech noted.

Lab-on-a-fiber technology addresses many concerns. It is small enough to insert directly into organs, muscle mass, or veins when used as biosensors. And the fibers can return a wealth of information by using light and reflection, while allowing for minimal discomfort and precision placement.

Schematic of the lab-on-a-fiber biosensing principle. A metallic nanostructure supporting a resonant plasmonic mode is integrated on the optical fiber tip. When a molecular binding event occurs at the sensor surface, the reflectance peak associated to the plasmonic mode shifts towards longer wavelengths. (Image and caption copyright: Analyst/The Royal Society of Chemistry.)

The Past and Future of Scaling Clinical Laboratory Testing

Dark Daily has followed these miniaturization trends for years starting with their earliest stages. A detailed timeline of developments can be viewed in “Lab-on-a-Chip Diagnostics: When Will Clinical Laboratories See the Revolution?” from 2016.

Additional Dark Daily “lab-on-a-…” coverage includes:

In the past year, a myriad of lab-on-a-fiber applications also have received media coverage, including:

Developers believe lab-on-a-fiber approaches could offer further adaptability and functionality to other “lab-on-a-…” technologies. For example, as highlighted in Advanced Science News, researchers are employing lab-on-a-fiber technologies to further refine and improve LOC functions and designs.

“As the scientific world moves inexorably to smaller dimensions … The emerging concept of ‘lab‐on‐fiber’ will give the optical fiber platform additional (highly integrated) functionalities,” noted Deepak Uttamchandani, PhD, Vice Dean Research, Faculty of Engineering, and, Robert Blue, PhD, Research Fellow, both at the University of Strathclyde, Glasgow, UK, in their review paper, “Recent Advances In Optical Fiber Devices for Microfluidics Integration.” The paper, published in the Journal of Biophotonics, examined “the recent emergence of miniaturized optical fiber-based sensing and actuating devices that have been successfully integrated into fluidic microchannels that are part of microfluidic and lab‐on‐chip systems.”

Deepak Uttamchandani, PhD

In his review paper on the emerging concept of lab-on-a-fiber, Deepak Uttamchandani, PhD, notes, “The versatility of the optical fiber platform has already allowed researchers to conduct immunoassays in microchannels using both fluorescently‐labelled and label‐free formats whilst gaining advantages of reduced assay time and increased sensitivity.” (Photo copyright: University of Strathclyde.)

Lab-on-a-Fiber: Another Step Forward or a Major Change?

At each milestone in the scaling of clinical laboratory testing, experts and media outlets predicted the demise of big laboratories and the dawn of a POC-centric testing era. Yet, despite 20-plus years of progress, this has yet to happen.

While it is critical for anatomical pathology leaders and clinical laboratory managers to stay abreast of developments in testing technology, much of the innovation behind lab-on-a-fiber remains strictly in the research realm. Challenges to the commercialization of these new techniques include both physical factors, such as design and manufacture of ready-to-use tests, and regulatory concerns, including FDA clearances and payer approval of new assays and diagnostic procedures.

Until researchers and test manufacturers overcome these hurdles, threats to current standards and workflows are minimal. However, much like the gains in scale realized through incorporating lab-on-a-chip concepts into clinical laboratory testing, the research powering these innovations might prove useful in further improving and expanding medical laboratory testing options.

—Jon Stone

 

Related Information:

Optical Fiber Devices for Microfluidics Integration Open Up New Horizons for Advanced “Lab-on-a-Chip” Technologies

Recent Advances in Optical Fiber Devices for Microfluidics Integration

Lab-on-Fiber Technology: A New Vision for Chemical and Biological Sensing [Abstract]

Lab-on-Fiber Technology: A New Vision for Chemical and Biological Sensing [Full Downloadable PDF]

How We’re Shrinking Chemical Labs onto Optical Fibers

Lab-on-Fiber Could Shine Light on Disease

Doctors Might Soon Diagnose You by Feeding a Lab-on-a-Fiber Straight into Your Veins

Fiber-Optic Device Can Detect Stray Cancer Cells and Improve Tumor Removal: Study

Fiber Optic Probe Beats a Biopsy for Measuring Muscle Health

Lab-on-a-Chip Diagnostics: When Will Clinical Laboratories See the Revolution?

Implantable Medical Laboratory-on-a-Chip Continuously Monitors Key Chemicals in Chemotherapy and High-Risk Patients

In the Field of Nano-Scale Diagnostics, Many Researchers Are Developing ‘Lab-on-Skin’ Technologies That Can Monitor Many Clinical Laboratory Biomarkers

Hematology on a Chip: University of Southampton Develops POC Blood Analysis

Sleek ‘Lab in a Needle’ Is an All-in-One Device That Detects Liver Toxicity in Minutes during a Study, Showing Potential to Supplant Some Medical Laboratory Tests

Whole Animal Assays Use Lab-on-a-Chip at MIT

IBM and Mount Sinai Researchers Develop Innovative Medical Lab-on-a-Chip Solution

In the Field of Nano-Scale Diagnostics, Many Researchers Are Developing ‘Lab-on-Skin’ Technologies That Can Monitor Many Clinical Laboratory Biomarkers

International Pilot Program Tests Whether People Would Be Willing to Exchange Clinical Laboratory Test Results and Photos of Their Bodies for Cryptocurrency

Developers believe participants will be interested in controlling how their private health data is provided to medical laboratories, drug companies, research organizations, and the federal government, while also earning an income

Bitcoins for blood tests, anyone? A new venture is examining the idea of exchanging cryptocurrency, a digital asset, for the results of weekly clinical laboratory tests and photographs of body parts from healthcare consumers. If successful, in a couple of years, people might be able to earn a “basic income” from selling their private health data to pharmaceutical companies, medical laboratories, research organizations, the federal government, and more.

Insilico Medicine, a Baltimore developer of artificial intelligence (AI) solutions for research and pharmaceutical companies, and the Bitfury Group, a blockchain technology company based in Amsterdam, Holland, are working together on the project they call Longenesis, a blockchain-based platform that uses AI to collect, store, manage, and trade data, such as medical records and health data.

Marketing Human Life Data

The two participants presented their novel idea this past November in Taipei, Taiwan, at the TaiwanChain Blockchain Summit. They published their report in Oncotarget, an open-access biomedical journal that covers oncology research. The authors of the paper believe blockchain and AI technologies could support patients and physicians in working with medical data.

“There are many companies engaged in the marketplaces of human life data with billions of dollars in turnover. However, the advances in AI and blockchain allow returning the control of this data back to the individual and make this data useful in the many new ways,” Alex Zhavoronkov, PhD, founder of Insilico Medicine, told Cryptovest.

“I would love to live in a world where I’m motivated to regularly take all kinds of medical tests for free, I get the data back, and I will be able to sell this data to the marketplace, and I earn all kinds of goods and services—primarily health related,” Zhavoronkov told Motherboard.

Alex-Zhavoronkov-PhD

Alexander Zhavoronkov, PhD, Founder and CEO of Insilico Medicine, told Motherboard, “Right now, it’s difficult to predict. But I think that if [users] submit blood tests, pictures, transcriptomes let’s say on a weekly basis, you probably will be able to earn a good universal basic income.” Zhavoronkov is describing a new business model involving clinical laboratory testing. (Photo copyright: Insilico Medicine.)

Exchanging Human Biomarkers for Digital Coin

Combining blockchain and AI technologies is one of the many emerging technological advances emerging to enhance the medical and pharmaceutical industries.

“Recent advances in machine intelligence turned almost every data into health data. The many data types can now be combined in the new ways: one data type can be inferred from another data type and systems learning to optimize the lifestyle for the desired health trajectory can now be developed using the very basic and abundant data,” noted Polina Mamoshina, research scientist at Pharma AI, a division of Insilico Medicine, during the company’s presentation at TaiwanChain. “Pollen, weather, and other data about the environment can now be combined with the human biomarkers to uncover and minimize the allergic response among the myriad of examples. People should be able to take control over this data.”

Because pharmaceutical companies rely on data mining to obtain individual demographic information and medical records, the growth potential for this type of product is huge.

Clinical Laboratory Test Results Earn LifePound Tokens

Longenesis is still being tested, but Zhavoronkov hopes it will be ready for the public within the next two years. The plan is to utilize blockchain technology to collect and store patient medical data in exchange for their cryptocurrency, known as LifePound.

According to the Longenesis website, “Longenesis is a marketplace, which uses personal health data, transformed into a LifePound token. LifePound is used inside a marketplace as a monetary system, powered by Exonum blockchain technology to keep data secure and transparent. Tokens are distributed between Longenesis marketplace members and are used for transactions between the following elements:

  • Developers;
  • Users;
  • Data providers;
  • Customers; and the,
  • Stock cryptocurrency market.

The developers believe the “Longenesis Data Marketplace will be able to provide new insights in the fields of healthcare research and development. It will provide analysis and recommendations to pharmaceutical companies to help develop new drugs.”

It’s too early to predict whether Longenesis will be successful and catch on with the public. However, the popularity of cryptocurrency, and the opportunity to earn an income from one’s clinical laboratory data, could encourage individuals to participate in this type of endeavor.

In addition, this is a highly unusual and unexpected approach to encourage consumers to undergo regular medical laboratory testing in order to earn payment by a digital currency. It is a reminder of how rapid advances in a myriad of technologies are going to make it possible for entrepreneurs to create new business models that involve clinical laboratory tests and the data produced by such tests.

—JP Schlingman

Related Information:

This Biotech Company Wants You to Give It Selfies and Blood Tests in Exchange for Cryptocurrency

A Decentralized Medical Record Marketplace Powered by Human Data

Blockchain, AI Could Spur Biomedical Research, Insilico Medicine Says

Converging Blockchain and Next-generation Artificial Intelligence Technologies to Decentralize and Accelerate Biomedical Research and Healthcare

Blockchain, Explained

Telemedicine and Microhospitals Could Make Up for Reducing Numbers of Primary Care Physicians in US Urban and Metro Suburban Areas

Microhospitals already offer most of the critical features of traditional hospitals, and by featuring telemedicine technology at the point of care, they are becoming powerful tools for healthcare providers

Dark Daily reported in January that microhospitals are opening nationwide, including in such innovative states as Texas, Colorado, Nevada, and Arizona. In addition to being open 24/7 and mostly located in high-density areas, these scaled down hospitals feature the most critical aspects of full-size hospitals—medical laboratories, emergency departments, pharmacies, and imaging centers.

However, a report by the Health Resources and Service Administration (HRSA) predicted that by 2020 the US will be short as many as 20,000 primary care physicians! Many specialty practices also are expected to see stiff shortages of physicians in the near future. Without enough physicians, even microhospitals cannot provide adequate care.

Thus, the ever increasing practice of using telemedicine as a way to serve more people, while providing faster, more efficient care tailored to meet the needs of individuals and communities, is welcomed news. If this trend becomes more widespread, it will create new opportunities and challenges for clinical laboratories in hospitals, as well as health systems that own and operate microhospitals.

 Filling a Need in Vulnerable Communities

At the end of 2016, there were approximately 50 microhospitals operating in the United States, mostly in the Midwest, Arizona, Colorado, Nevada, and Texas. Sometimes referred to as neighborhood or community hospitals, microhospitals are acute care facilities that are smaller than traditional hospitals but can deliver many of the same medical services. They provide more comprehensive treatments than typical urgent care and outpatient centers and fill a gap between freestanding healthcare centers and major hospitals.

Microhospitals typically have less than a dozen short-stay beds and have the ability to provide inpatient care, emergency care, and imaging and medical laboratory services. And, they are usually affiliated with larger healthcare systems, which allows them to expand into certain areas without incurring the high costs of building a full-scale hospital.

“Right now they seem to be popping up in large urban and suburban metro areas,” Priya Bathija, Vice President, Value Initiative American Hospital Association, told NPR. “We really think they have the potential to help in vulnerable communities that have a lack of access.”

Patient Satisfaction and Declining Physician Populations Drive Demand for Telemedicine

Telemedicine, a combination of telecommunications and information technology, is primarily used to remotely connect healthcare providers to patients during office visits. But it also is being used successfully at the point of care in emergency departments and even surgery.

Microhospitals like St. Vincent Neighborhood hospital in Noblesville, Ind., which offer most of the critical functions of traditional hospitals, such as clinical laboratories, ERs, and the CT scanning station above (left), are increasingly including telemedicine technologies (above right) at the point of care to offset reductions in primary care and specialty physicians. (Photo copyright: Jill Sheridan/IPB News.)

Microhospitals like St. Vincent Neighborhood hospital in Noblesville, Ind., which offer most of the critical functions of traditional hospitals, such as clinical laboratories, ERs, and the CT scanning station above (left), are increasingly including telemedicine technologies (above right) at the point of care to offset reductions in primary care and specialty physicians. (Photo copyright:  Jill Sheridan/IPB News.)

Consumers are becoming more accepting of telemedicine (AKA, telehealth) as these services offer savings in both time and money. A recent survey by the Health Industry Distributors Association (HIDA) found that many patients were pleased with telehealth services. More than 50% of the surveyed individuals stated they were very satisfied with a recent telemedicine encounter. In addition, 54% of those individuals described their telehealth experience as better than a traditional, in-person office visit.

Telemedicine and Microhospitals Mutually Beneficial, According to HRSA

Other research suggests microhospitals may generate a mutually beneficial alliance with telemedicine that increases the progress of both entities, especially when considering projected increases in the number of nurse practitioners and physician assistants.

In its report, “Projecting the Supply and Demand for Primary Care Practitioners Through 2020,” Health Resources and Service Administration (HRSA) estimates there will be a shortage of more than 20,000 primary care physicians working in the US by the year 2020. Other specialties expected to experience staff shortfalls include:

Anticipation of this decline in physician numbers is fueling the demand for telemedicine to help with patient loads, especially in remote areas.

Saving Time and Money with Televisits

A study by Nemours Children’s Health System indicates that telemedicine may reduce medical costs for both patients and healthcare providers while sustaining patient satisfaction.

“At Nemours, we’ve seen how telemedicine can positively impact patients’ lives,” Shayan Vyas, MD, Medical Director of Telehealth at Nemours, noted in a press release. “The overwhelmingly positive response we’ve seen from parents who are early adopters of telemedicine really reinforces the feasibility of online doctor visits and sets the stage for real change in the way healthcare is delivered.”

The Nemours study involved 120 patients under the age of 18. The majority of families surveyed stated they would be interested in future telehealth visits and an impressive 99% said they would recommend telemedicine to other families.

The study discovered that patients and family members saved an average of $50 and about an hour of time, by utilizing telehealth for sports medicine appointments. The health system also experienced some monetary perks with the televisits, as they cost approximately $24 less per patient.

“We know that telemedicine is often looked to for common childhood ailments, like cold and flu, or skin rashes. But we wanted to look at how telemedicine could benefit patients within a particular specialty such as sports medicine,” Alfred Atanda Jr, MD,  Pediatric Orthopedic Surgeon at Nemours/Alfred I. DuPont Hospital for Children in Wilmington, DE., told FierceHealthcare. “As the healthcare landscape continues to evolve and the emphasis on value and satisfaction continues to grow, telemedicine may be utilized by providers as a mechanism to keep costs and resource utilization low, and to comply with payer requirements.”

Healthcare consumers and providers are increasing looking to technology to enhance medical care and solve resource shortfalls. Separately, telehealth and microhospitals already help with these needs, Combined, however, they are a powerful solution to our nation’s reducing ranks of primary care physicians and medical specialists.

If this trend of microhospitals using telemedicine should continue and increase, both components will give medical professionals vital tools to provide faster, more economical, and more personalized services, to more patients across wider areas of America.

—JP Schlingman

 

Related Information:

Why Telehealth is Fueling the Move Towards Microhospitals

Projecting the Supply and Demand for Primary Care Practitioners Through 2020

Are Microhospitals the Answer for Systems Looking for Low-cost Expansions? They Might Be

Microhospitals: Healthcare’s Newest Patient Access Point

Microhospitals Could Prove Financial Boon and Salvation to Healthcare Systems

Microhospitals Provide Health Care Closer to Home

Telemedicine Saves Patients Time and Money, Study Shows

5 Common Questions about Micro-Hospitals, Answered

Survey: More than Half of Patients Prefer Telehealth Visits to In-Person Care

Majority of Parents Plan to Use Telemedicine for Pediatric Care

Microhospitals May Help Deliver Care in Underserved Areas

 “Thinking Small” May Be Next Big Innovation in Healthcare Delivery as Microhospitals Spring Up in Metropolitan Areas Across Multiple States

 

Clinical Laboratory Accuracy and Quality Is under Increased Scrutiny as Precision Medicine Puts Diagnostics in the Spotlight

As the public gains awareness of the role clinical laboratories play in modern healthcare, increased engagement and understanding of the technology underlying many of these advances could create risk for labs without transparent reporting protocols to both patients and the public

In recent years, consumers have continually raised the bar in their expectation of quality when they interact with the healthcare system. Not only do patients expect providers—including clinical laboratories and anatomic pathology groups—to improve regularly over time, but the public has even less tolerance for medical errors of any type. Thus, a recent NPR story is one more warning to the medical laboratory profession that it should be devoting resources and effort to improving quality.

Today’s healthcare consumers and patients are more educated about and involved in the care process than ever before. While the exact science and skills may not interest the general public, the technologies underpinning much of the shift toward personalized medicine (AKA, precision medicine) are the same technologies that created the always-connected, digital lifestyles seen around the world.

With this, comes a level of scrutiny and questioning from the public that clinical laboratories or anatomic pathology groups would not have experienced even just a decade ago.

Mounting Scrutiny of Medical Laboratories and Healthcare Professionals

A recent segment on NPR’sAll Things Considered” highlighted this trend and questioned the quality control standards behind many of the procedures powering current testing. The segment also questioned the impact quality control has on the quality of biobanks used to research and create future technologies and tests.

Pathologist Richard Friedberg, PhD, Medical Director of Baystate Reference Laboratories and former president of the College of American Pathologists, told NPR, “We need to be sure that the stuff [doctors and researchers are] looking at is valid, accurate, reliable, and reproducible … If it’s garbage in, it’s garbage out.”

The story highlights improved standards and guidelines surrounding immunohistochemical (IHC) HER2 tests in the early 2000s. In 2007, The New York Times questioned the reliability of the tests, based on studies presented to the American Society of Clinical Oncology the week prior.

In response, the American Society of Clinical Oncology and the College of American Pathologists released guideline recommendations outlining the exact standards required to reduce assay variation and ensure that data produced is accurate and reproducible. NPR’s coverage claims this is the only test with such strict guidelines.

“I don’t think physicians think this way about their entire medical system,” Carolyn Compton, PhD, CMO of the National Biomarker Development Alliance, CMO of the Complex Adaptive Systems Initiative, and professor of Life Sciences at Arizona State University, told NPR. “I don’t see how we’re going to get precision medicine at the end of the day when everything under the hood is so imprecise.”

Atul-Butte-PhD

Atul Butte, PhD (above), Director of the Institute of Computation Health Sciences at the University of California-San Francisco, presents an alternate side to Compton and Friedberg’s views in the NPR article. “I am not a believer in garbage-in, garbage out at all,” he said. “I know that no one scientist, no one clinician or pathologist is perfect … But, I’d rather take 10 or 100 so-called mediocre data sets and find out what’s in common, then to take one who says they’re perfect at doing this kind of measurement.” (Photo copyright: Santiago Mejia/San Francisco Chronicle.)

 

When data and previous research powers much of the innovation taking place across the modern healthcare landscape, the accuracy of said data would seem critical. Yet, without standards in place, there’s not always safeties by which to verify sample integrity and other critical concerns.

Late last year, Dark Daily reported on a study published in PLOS ONE from Radboud University in the Netherlands questioning the accuracy of more than 30,000 published scientific studies that contained misidentified or contaminated cell lines. Guidelines, such as those created for IHR and FISH HER2 testing, provide standards intended to prevent such issues from occurring or detecting them when they do occur.

Quality versus Quantity: A Gamble Worth Taking?

Apart from challenges with healthcare reform and the regulatory landscape surrounding precision medicine, medical laboratories also must struggle with the challenges of gleaning and maintaining useful, accurate information from an ever-growing trove of data produced by analyzers and assays.

Yet, these mediocre datasets include the results of tests that carried a potentially significant impact on patient lives. In the first two weeks of February alone, both the St. Louis Post-Dispatch and The Telegraph published stories related to erroneous testing related to cancer and the potential impact on the clinical laboratories involved and the patients tested.

Increased coverage shows that the world is watching what goes on in medical laboratories, hospitals, and data centers as healthcare continues to evolve. Clinical laboratories must move forward with this in mind or risk pushback and questioning from the public. Transparency regarding standards, and reporting information to patients surrounding testing or concerns, might effectively address this rising trend.

“We are moving faster and faster and faster as this whole precision medicine train is moving down the track,” Tim Allen, MD, Laboratory Director at the University of Texas Medical Branch Department of Laboratory Services, told NPR. “I suspect standardization of these things is going to become a reality much quicker than I would have expected even a few years ago.”

That quality control issues in anatomic pathology are considered newsworthy by no less than NPR is a sign of increased public attention to the quality of lab testing. The story was written to educate the public about the gap that exists in the quality control of anatomic pathology testing. All of this is consistent with the trend for providers to be transparent and report their quality metrics to the public, including patients.

—Jon Stone

Related Information:

Hormone Receptor Testing Volume 1: Investigation and Findings Commission of Inquiry on Hormone Receptor Testing

Precision Medical Treatments Have a Quality Control Problem

HER2 TESTS: How Do We Choose?

Cancer Drug May Elude Many Women Who Need It

American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer

Impact of Electronic Health Record Systems on Information Integrity: Quality and Safety Implications

His Doctor Said It Was Cancer. It Wasn’t. But the Lab Mix-Up News Came Too Late.

Up to 60,000 Cancer Test Results May Have to Be Reviewed After Women Wrongly Given the All-Clear

Over 30,000 Published Studies Could Be Wrong Due to Contaminated Cells

Netherlands University Researchers Question Validity of More Than 30,000 Published Scientific Studies; Findings Have Implications for Medical Laboratories

Smartwatch-based Fitness Apps Gaining Popularity Over Other Fitness Wearables such as Fitbit. Will This Affect the Data Clinical Laboratories See Streaming Their Way?

Consumer demand for health trackers combined with other smartwatch capabilities is driving a trend away from simple health trackers and toward more complex devices, such as the Apple Watch, for their more powerful capabilities

It is still an open question as to whether clinical laboratories will experience an onrush of patient test data streaming at them from healthcare consumer portals and mobile devices. The popularity of wearable fitness/medical technology has been widely touted in the media. Predictions have been that these devices—when coupled with smartphone and tablet applications (apps)—would generate substantial volumes of digital patient data that would be useful for medical laboratories to capture and add to the clinical lab test data of the patients they serve.

But will these predictions of a flood of data from wearable devices become reality? Is this a trend about which medical laboratories should be concerned? Recent statistics provide some insight into these questions. For example, the sales numbers for wearable devices are significant.

Smartwatches Gaining Ground in Wearable Fitness Market

In 2016, 102.4 million wearable devices were sold, which was a 25% increase over the previous year, according to Smart Insights, a publisher for marketers. Now, several sports apparel companies, such as Adidas and Under Armour, are either launching smartwatches with health/fitness-related software and activity trackers, or eliminating their digital fitness business units altogether.

And according to MobiHealthNews, “[today’s] landscape looks awfully different.

“I think the industry is still struggling to find real, meaningful points of reference with consumers,” Dan Ledger, Principal and Founder, Path Collaborative, a Massachusetts consulting firm, told MobiHealthNews. “You hear anecdotes of people who had Fitbit (NYSE:FIT) and lost weight. But it hasn’t really been a success as a market product like a smartphone—like a lot of these companies were expecting when they were reading the tea leaves four or five years ago.”

For example, Adidas reassigned employees working in the fitness watch and sensor-enabled footwear departments to other areas, according to the Portland Business Journal. “We are integrating digital across all areas of our business and will continue to grow our digital expertise but in a more integrated way,” an Adidas spokesperson told Just-Style.

And, Nike announced its intention late last year to abandon the wearables market altogether. “It wasn’t authentic to who we were,” Jordan Rice, Senior Director of Nike NXT Smart Systems Engineering, told MobiHealthNews.

Meanwhile, Under Armour announced in 2017 that it planned to eliminate the UA HealthBox, a wearable device that offered a connected activity tracker, heart rate monitor, and smart scale tools, according to MHealth Spot. Instead, the publication reported, Under Armour was partnering with Samsung on fitness apps:

  • MyFitnessPal;
  • MapMyFitness;
  • Endomondo; and,
  • UA Record.

More Consumers Strapping on Smartwatches

Fitbit recently released the Fitbit Ionic Watch. According to Fitbit’s website, features include:

  • Personal coaching;
  • Heart rate monitor;
  • All-day activity tracking;
  • Sleep stages monitoring; and more.
Apple-Watch-Biometric-Data-500w@96ppi

The smartwatch may be the new “smart” way to go, compared to simple activity trackers. Smartwatch manufactures are partnering with biometric monitoring app developers (such as Apple Watch and IBM Watson Health, shown above) to service consumers who need to monitor, capture, and distribute their critical health data. (Photo copyright: Alexey Boldin/Shutterstock.)

 

Consumer Reports, citing NPD Group market data, noted smartwatches are increasingly becoming the device-of-choice for consumers who gather fitness data. Besides tracking heart rate, some smartwatch apps also release notifications about accomplishment of goals, enable access to e-mail, and more.

Consumer Reports noted:

  • Smartwatches were used by 17% of US adults in the first quarter of 2015, and the remaining 83% in the demographic used activity trackers;
  • Smartwatch use jumped to 38% by the fourth quarter of 2017; and,
  • Smartwatches will rise to 48% of new market purchases by the fourth quarter this year.

Hardware is Hard

Fitness wearable devices have long been touted by the media for their potential to stream critical health data directly to physicians, to patients’ electronic health records, and to medical laboratories. Dark Daily foresaw in 2016 that, when paired with a smartphone or table computer, the momentum of the fitness wearables trend was substantial. For this reason, clinical laboratory managers and pathologists would want to stay current with these developments. However, today it appears companies offering wearable monitoring devices could be finding it more difficult than anticipated to capture the attention of consumers and leverage what the devices do.

In the end, sports apparel companies are not leaving the digital fitness space entirely, but simply adjusting to new consumer demands. Clinical laboratory leaders will want to keep watch on these developments as the trend evolves. The outcome could alter how patient data enters the pathology workflow.

—Donna Marie Pocius

Related Information:

Digital Marketing Strategy Wearables Statistics 2017

Sports Apparel Brands are All Walking Away from Fitness Wearables

Under Armour Kills the HealthBox Suite of Connected Devices

Adidas to Cut Digital Sports Division

Fitness Tracker or Smartwatch: Which is Best for You?

Improvements to Fitness Wearables Help Stream Data from Consumers Homes to EHRs and Clinical Pathology Laboratories

;