News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Researchers at Several Top Universities Unveil CRISPR-Based Diagnostics That Show Great Promise for Clinical Laboratories

Three innovative technologies utilizing CRISPR-Cas13, Cas12a, and Cas9 demonstrate how CRISPR might be used for more than gene editing, while highlighting potential to develop new diagnostics for both the medical laboratory and point-of-care (POC) testing markets

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is in the news again! The remarkable genetic-editing technology is at the core of several important developments in clinical laboratory and anatomic pathology diagnostics, which Dark Daily has covered in detail for years.

Now, scientists at three universities are investigating ways to expand CRISPR’s use. They are using CRISPR to develop new diagnostic tests, or to enhance the sensitivity of existing DNA tests.

One such advancement improves the sensitivity of SHERLOCK (Specific High Sensitivity Reporter unLOCKing), a CRISPR-based diagnostic tool developed by a team at MIT. The new development harnesses the DNA slicing traits of CRISPR to adapt it as a multifunctional tool capable of acting as a biosensor. This has resulted in a paper-strip test, much like a pregnancy test, that can that can “display test results for a single genetic signature,” according to MIT News.

Such a medical laboratory test would be highly useful during pandemics and in rural environments that lack critical resources, such as electricity and clean water.

One Hundred Times More Sensitive Medical Laboratory Tests!

Co-lead authors Jonathan Gootenberg, PhD Candidate, Harvard University and Broad Institute; and Omar Abudayyeh, PhD and MD student, MIT, published their findings in Science. They used CRISPR Cas13 and Cas12a to chop up RNA in a sample and RNA-guided DNA binding to target genetic sequences. Presence of targeted sequences is then indicated using a paper-based testing strip like those used in consumer pregnancy tests.

MIT News highlighted the high specificity and ease-of-use of their system in detecting Zika and Dengue viruses simultaneously. However, researchers stated that the system can target any genetic sequence. “With the original SHERLOCK, we were detecting a single molecule in a microliter, but now we can achieve 100-fold greater sensitivity … That’s especially important for applications like detecting cell-free tumor DNA in blood samples, where the concentration of your target might be extremely low,” noted Abudayyeh.

Feng-Zhang-Broad-Institute-500w@96ppi

“The [CRISPR] technology demonstrates potential for many healthcare applications, including diagnosing infections in patients and detecting mutations that confer drug resistance or cause cancer,” stated senior author Feng Zhang, PhD. Zhang, shown above in the MIT lab named after him, is a Core Institute Member of the Broad Institute, Associate Professor in the departments of Brain and Cognitive Sciences and Biological Engineering at MIT, and a pioneer in the development of CRISPR gene-editing tools. (Photo copyright: MIT.)

Creating a Cellular “Black Box” using CRISPR

Another unique use of CRISPR technology involved researchers David Liu, PhD, and Weixin Tang, PhD, of Harvard University and Howard Hughes Medical Institute (HHMI). Working in the Feng Zhang laboratory at the Broad Institute, they developed a sort of “data recorder” that records events as CRISPR-Cas9 is used to remove portions of a cell’s DNA.

They published the results of their development of CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems, in Science. The story was also covered by STAT.

“The order of stimuli can be recorded through an overlapping guide RNA design and memories can be erased and re-recorded over multiple cycles,” the researchers noted. “CAMERA systems serve as ‘cell data recorders’ that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.”

This creates a system much like the “black box” recorders in aircraft. However, using Cas9, data is recorded at the cellular level. “There are a lot of questions in cell biology where you’d like to know a cell’s history,” Liu told STAT.

While researchers acknowledge that any medical applications are in the far future, the technology holds the potential to capture and replay activity on the cellular level—a potentially powerful tool for oncologists, pathologists, and other medical specialists.

Using CRISPR to Detect Viruses and Infectious Diseases

Another recently developed technology—DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR)—shows even greater promise for utility to anatomic pathology groups and clinical laboratories.

Also recently debuted in Science, the DETECTR system is a product of Jennifer Doudna, PhD, and a team of researchers at the University of California Berkeley and HHMI. It uses CRISPR-Cas12a’s indiscriminate single-stranded DNA cleaving as a biosensor to detect different human papillomaviruses (HPVs). Once detected, it signals to indicate the presence of HPV in human cells.

Despite the current focus on HPVs, the researchers told Gizmodo they believe the same methods could identify other viral or bacterial infections, detect cancer biomarkers, and uncover chromosomal abnormalities.

Future Impact on Clinical Laboratories of CRISPR-based Diagnostics

Each of these new methods highlights the abilities of CRISPR both as a data generation tool and a biosensor. While still in the research phases, they offer yet another possibility of improving efficiency, targeting specific diseases and pathogens, and creating new assays and diagnostics to expand medical laboratory testing menus and power the precision medicine treatments of the future.

As CRISPR-based diagnostics mature, medical laboratory directors might find that new capabilities and assays featuring these technologies offer new avenues for remaining competitive and maintaining margins.

However, as SHERLOCK demonstrates, it also highlights the push for tests that produce results with high-specificity, but which do not require specialized medical laboratory training and expensive hardware to read. Similar approaches could power the next generation of POC tests, which certainly would affect the volume, and therefore the revenue, of independent clinical laboratories and hospital/health system core laboratories.

—Jon Stone

 

Related Information:

Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a, and Csm6

Rewritable Multi-Event Analog Recording in Bacterial and Mammalian Cells

CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity

Researchers Advance CRISPR-Based Tool for Diagnosing Disease

CRISPR Isn’t Just for Gene Editing Anymore

CRISPR’s Pioneers Find a Way to Use It as a Glowing Virus Detector

With New CRISPR Inventions, Its Pioneers Say, You Ain’t Seen Nothin’ Yet

New CRISPR Tools Can Detect Infections Like HPV, Dengue, and Zika

Breakthrough DNA Editing Tool May Help Pathologists Develop New Diagnostic Approaches to Identify and Treat the Underlying Causes of Diseases at the Genetic Level

CRISPR-Related Tool Set to Fundamentally Change Clinical Laboratory Diagnostics, Especially in Rural and Remote Locations

Harvard Researchers Demonstrate a New Method to Deliver Gene-editing Proteins into Cells: Possibly Creating a New Diagnostic Opportunity for Pathologists

What Makes US Healthcare So Expensive? It’s Price, Not Overutilization, Say Researchers at IHME and UCLA

Recent studies exploring the economics behind the high price of US healthcare independently point to the price of labor, goods, services, administrative costs, and pharmaceuticals as primary reason why the US spends almost twice as much as peer countries on healthcare

It is regularly reported that the cost of healthcare in the United States is notably more expensive that in most developed nations. Overutilization of medical services in this country is often given as a reason why this is true. But the findings of a new research study suggest that the reason healthcare in the US is expensive is not due to overutilization. Rather, it is because of the much higher prices American patients pay for services, including clinical laboratory testing.

This recent study contradicts the claims of some experts who say overutilization is to blame for the high cost of healthcare in the United States. The research was conducted by researchers at the Institute for Health Metrics and Evaluation (IHME) in Seattle and the UCLA David Geffen School of Medicine. They attribute the overarching factor in high healthcare costs not to high utilization of services—such as clinical laboratory and anatomic pathology testing—or increased rates of illness.

Instead, the researchers found that it’s simply a matter of higher prices for healthcare delivered in this nation, compared to other healthcare systems around the globe. This is what makes America’s healthcare system so expensive. And, lacking financial incentives for stakeholders to lower prices, these researchers suggest that continued high costs could negatively impact providers’ quality of care.

High Cost of Diagnostic Services, including Medical Laboratory Testing

The IHME/UCLA researchers published their findings in the Journal of the American Medical Association (JAMA), in which they argued that increases in US healthcare cost are independent of increases in:

  • Disease prevalence;
  • US population age;
  • Use of healthcare services; or,
  • Overall population size.

Joseph L. Dieleman, PhD, Assistant Professor at IHME and lead researcher on the investigation, stated, “After adjustments for price inflation, annual healthcare spending on inpatient, ambulatory, retail pharmaceutical, nursing facility, emergency department, and dental care increased by $933.5 billion between 1996 and 2013—from $1.2 trillion to $2.1 trillion.”

Data produced by the study identified one overlying factor in increased spending—increased prices. According to Dieleman, health spending in 2015 “reached $3.2 trillion and constituted 17.8% of the US economy.”

In an editorial response to Dieleman’s investigation, also published in JAMA, Patrick H. Conway, MD, MSc (above), President and CEO of Blue Cross Blue Shield of North Carolina in Durham, stated that “the United States is on an unsustainable growth path in terms of healthcare costs and must get costs under control.” He added that data from Dieleman’s study has important implications for quality of healthcare, which may include medical laboratory diagnostics. (Photo copyright: Duke University.)

Price Spirals and Artificial Price Hikes: No Real Incentive for Regulation

Pricing for medical care is notoriously opaque. Patients are often unaware of the cost of services until the bill arrives. This lack of transparency prevents patients from comparing prices between healthcare providers and medical laboratories.

To try and create some cost transparency for consumers, Conway noted that some states, such as Maryland and Vermont, have adopted multi-payer payment models or all-payer rate settings. However, there could be resistance to such reforms, according to some experts.

Health economist Austin Frakt, PhD; and Aaron E. Carroll, MD, MS, Vice Chair for Health Policy and Outcomes Research, and Director of the Center for Health Policy and Professionalism Research at Indiana University School of Medicine, co-authored a New York Times article that agrees with Conway’s assertion. In it, they state that attempts to create regulation for healthcare prices “would be met with resistance from all those who directly benefit from high prices, including physicians, hospitals, pharmaceutical companies—and pretty much every other provider of healthcare in the United States.”

No Incentive to Lower the Prices of Medical Services

An opinion piece in the Wall Street Journal, Keith Lemer, CEO, WellNet Healthcare Group, shared a similar view. He stating that insurers and preferred provider organizations (PPOs) have no “natural incentive to keep provider prices down.” Lemer looks at the Affordable Care Act and its establishment of a medical loss ratio rule, which “requires insurers covering individuals and small businesses to spend at least 80 cents of every premium dollar on medical expenses.”

Lemer uses the cost of a routine blood test as an example, stating that when providers raise costs of such tests, “insurers can charge higher premiums, while also boosting the value of their 20% share,” which goes “towards administrative costs and profits.”

Lemer argues that the deck is stacked against consumers, and that the medical loss ratio “encourages insurers to ignore providers” artificial price hikes,” while attracting customers “with the promise of steep discounts through their PPO plans.” The resulting affect is what Lemer calls a “price spiral” that’s difficult to escape.

Higher Costs Do Not Equate to Better Care

A special JAMA communication from Irene Papanicolas, PhD, and other members of the Department of Health Policy and Management, Harvard T. H. Chan School of Public Health, Harvard Global Health Institute, and Department of Health Policy at the London School of Economics and Political Science, reports that higher US costs do not coincide with better care.

In comparison to 10 other high-income countries the US spends “approximately twice as much,” Papanicolas noted. She added that despite the higher spending in the US, the nation “performs poorly in areas such as healthcare coverage and health outcomes.”

To illustrate the difference in average costs, Papanicolas and colleagues listed “comparison prices” on a series of healthcare services between countries in 2013. For example, the price of a single computed tomography (CT) scan varies widely:

  • $896 (US);
  • $97 (Canada);
  • $279 (Netherlands); and,
  • $500 (Australia).

The high prices of clinical laboratory (AKA, pathology laboratory in Australia) diagnostics have already caused a sharp decline in the use of important imaging utilization and are at risk of affecting other aspects of clinical pathology, such as anatomic pathology (histopathology in AU) services.

PricewaterhouseCoopers (PwC) Health Research Institute’s annual medical cost report predicts 2018 medical costs will rise by 6.5% and that “price continues to be a major driver of healthcare costs” that are outpacing the economy. PwC recommends “increasing collaboration across the industry” to address the growing issue of rising medical costs and shift the burden of cost away from patients.

Clinical Laboratories Contribute to High Costs

Although US healthcare cost is a topic of intense conversation, little change may come if there is no incentive to change. Each of the recent JAMA published articles ends on the same repeated note: a plea for active debate among policy makers, healthcare providers, patients, insurers, and politicians, with the goal of decreasing healthcare costs, without sacrificing patient care.

This is also true for clinical laboratory and anatomic pathology stakeholders, which are critical aspects of the healthcare continuum, and therefore, contribute to the overall financial burden on healthcare consumers.

Amanda Warren

Related Information:

Why the US Spends So Much More Than Other Nations on Healthcare

Healthcare Spending in the United States and Other High-Income Countries

Factors Associated with Increases in US Healthcare Spending, 1996-2013

Factors Associated with Increased US Healthcare Spending: Implications for Controlling Healthcare Costs (Editorial Response)

The Best Healthcare System in the World: Which One Would You Pick?

The Deception Behind Those In-Network Health ‘Discounts’

Medical Cost Trend: Behind the Numbers 2018

PwC Predicts Forces Shaping Healthcare in 2018; Some Could Impact Clinical Laboratories and Anatomic Pathology Groups

PwC’s list of 12 factors that will shape the healthcare landscape in 2018 calls attention to many new innovations Dark Daily has reported on that will impact how medical laboratories perform their tests

PwC’s Health Research Institute (HRI) issued its annual report, detailing the 12 factors expected to impact the healthcare industry the most in 2018. Dark Daily culled items from the list that will most likely impact clinical laboratories and anatomic pathology groups. They include:

How clinical laboratory leaders respond to these items could, in part, be determined by new technologies.

AI Is Everywhere, Including in the Medical Laboratory

Artificial intelligence is becoming highly popular in the healthcare industry. According to an article in Healthcare IT News, business executives who were polled want to “automate tasks such as routine paperwork (82%), scheduling (79%), timesheet entry (78%), and accounting (69%) with AI tools.” However, only about 20% of the executives surveyed have the technology in place to use AI effectively. The majority—about 75%—plan to invest in AI over the next three years—whether they are ready or not.

One such example of how AI could impact clinical laboratories was demonstrated by a recent advancement in microscope imaging. Researchers at the University of Waterloo (UW) developed a new spectral light fusion microscope that captures images in full color and is far less expensive than microscopes currently on the market.

“In medicine, we know that pathology is the gold standard in helping to analyze and diagnose patients, but that standard is difficult to come by in areas that can’t afford it,” Alexander Wong, PhD, one of the UW researchers, told CLP.

“The newly developed microscope has no lens and uses artificial intelligence and mathematical models of light to develop 3D images at a large scale. To get the same effect using current technologies—using a machine that costs several hundred thousand dollars—a technician is required to ‘stitch together’ multiple images from traditional microscopes,” CLP noted.

Healthcare Intermediaries Could Become Involved with Clinical Laboratory Data

Pricing is one of the biggest concerns for patients and government entities. This is a particular concern for the pharmaceutical sector. PwC’s report notes that “stock values for five of the largest intermediaries in the pharmacy supply chain have slumped in the last two years as demands for lower costs and better outcomes have intensified.”

Thus, according to PwC, pressure may come to bear on intermediaries such as Pharmacy Benefit Managers (PBMs) and wholesalers, to “prove value and success in creating efficiencies or risk losing their place in the supply chain.”

Similar pressures to lower costs and improve efficiency are at work in the clinical laboratory industry as well. Dark Daily reported on one such cost-cutting measure that involves shifting healthcare payments toward digital assets using blockchains. The technology digitally links trusted payers and providers with patient data, including medical laboratory test results. (See, “Blockchain Technology Could Impact How Clinical Laboratories and Pathology Groups Exchange Lab Test Data,” September 29, 2017.)

PwC 2018 Annual Report

PwC’s latest report predicts 12 forces that will continue to impact healthcare, including clinical laboratories and anatomic pathology groups, in 2018. Click on the image of the cover above to access an online version of the report. (Photo copyright: PwC/Issuu.)

The Opioid Crisis Remains at the Forefront

Healthcare will continue to feel the impact of the opioid crisis, according to the PwC report. Medical laboratories will continue to be involved in the diagnosis and treatment of opioid addition, which has garnered the full attention of the federal government and has become a multi-million-dollar industry.

Security Remains a Concern

Cybersecurity will continue to impact every facet of healthcare in 2018. Healthcare IT News reported, “While 95% of provider executives believe their organization is protected against cybersecurity attacks, only 36% have access management policies and just 34% have a cybersecurity audit process.”

Patients are aware of the risks and are often skeptical of health information technology (HIT), Dark Daily reported in June of last year. Clinical laboratories must work together with providers and healthcare organizations to audit their security measures. Recognizing the importance of the topic, the National Independent Laboratory Association (NILA) has named cybersecurity for laboratory information systems (LIS) a focus area.

Patient Experience a Priority

Although there have been significant improvements in the area of administrative tasks, there is still an enormous demand for a better patient experience, including in clinical laboratories. Healthcare providers want patients to make changes for the better that ultimately improve outcomes and the patient experience is one path toward that goal.

“Provider reimbursements will be based in part on patient engagement efforts such as promoting self-management and coaching patients between visits,” PwC noted in its report, a fact that Dark Daily has continually reported on for years. (See, “Pathologists and Clinical Lab Executives Take Note: Medicare Has New Goals and Deadlines for Transitioning from Fee-For-Service Healthcare Models to Value-Based Reimbursement,” April 1, 2015.)

Demands for Price Transparency Increase

As they follow healthcare reform guidelines to increase quality while lowering costs, state governments will continue to ramp up pressure on healthcare providers and third parties in the area of pricing. Rather than simply requiring organizations to report on pricing, states are moving towards legislating price controls, as Dark Daily reported in February.

Social Factors Affect Healthcare Access

The transition to value-based care makes the fact that patients’ socioeconomic statuses matter when it comes to their health. “The most important part of getting good results is not the knowledge of the doctors, not the treatment, not the drug. It’s the logistics, the social support, the ability to arrange babysitting,” David Berg, MD, co-founder of Redirect Health told PwC.

One such transition that is helping patients gain access to healthcare involves microhospitals and their adoption of telemedicine technologies, which Dark Daily reported on in March.

“Right now, they seem to be popping up in large urban and suburban metro areas,” Priya Bathija, Vice President, Value Initiative American Hospital Association, told NPR. “We really think they have the potential to help in vulnerable communities that have a lack of access.”

Data Collection Challenges Pharma

The 21st Century Cures Act, along with the potential exploitation of Big Data, will make it possible for organizations to gain faster, less expensive approvals from the US Food and Drug Administration (FDA). As Dark Daily noted in April, the FDA “released guidelines on how the agency intends to regulate—or not regulate—digital health, clinical-decision-support (CDS), and patient-decision-support (PDS) software applications.

“Physician decision-support software utilizes medical laboratory test data as a significant part of a full dataset used to guide caregivers,” Dark Daily noted. “Thus, if the FDA makes it easier for developers to get regulatory clearance for these types of products, that could positively impact medical labs’ ability to service their client physicians.”

Healthcare Delivery During and Following Natural Disasters

PwC predicts the long-term physical results, financial limitations, and supply chain disruptions following natural disasters will continue to affect healthcare in 2018. The devastation can prevent many people from receiving adequate, timely healthcare.

However, new laboratory-on-a-chip (LOC) and other “lab-on-a-…” testing technologies, coupled with medical drone deliver services, can bring much need healthcare to remote, unreachable areas that lack electricity and other services. (See Dark Daily, “Lab-on-a-Fiber Technology Continues to Highlight Nano-Scale Clinical Laboratory Diagnostic Testing in Point-of-Care Environments,” April 2, 2018, and, “Johns Hopkins’ Test Drone Travels 161 Miles to Set Record for Delivery Distance of Clinical Laboratory Specimens,” November 15, 2017.)

PwC’s report is an important reminder of from where the clinical laboratory/anatomic pathology industry has come, and to where it is headed. Sharp industry leaders will pay attention to the predictions contained therein.

—Dava Stewart

Related Information:

Top Health Industry Issue of 2018

PwC Health Research Institute Top Health Industry Issues of 2018 Report: Issuu Slide Presentation

12 Defining Healthcare Issues of 2018

Is Laboratory Medicine Ready for Artificial Intelligence?

Artificial Intelligence Imaging Research Facilitates Disease Diagnosis

Blockchain Technology Could Impact How Clinical Laboratories and Pathology Groups Exchange Lab Test Data

Skepticism, Distrust of HIT by Healthcare Consumers Undermines Physician Adoption of Medical Reporting Technologies, But Is Opportunity for Pathology Groups, Clinical Laboratories

Pathologists and Clinical Lab Executives Take Note: Medicare Has New Goals and Deadlines for Transitioning from Fee-For-Service Healthcare Models to Value-Based Reimbursement

Researchers Point to Cost of Services, including Medical Laboratories, for Healthcare Spending Gap Between the US and Other Developed Countries

Telemedicine and Microhospitals Could Make Up for Reducing Numbers of Primary Care Physicians in US Urban and Metro Suburban Areas

New FDA Regulations of Clinical Decision-Support/Digital Health Applications and Medical Software Has Consequences for Medical Laboratories

Lab-on-a-Fiber Technology Continues to Highlight Nano-Scale Clinical Laboratory Diagnostic Testing in Point-of-Care Environments

Johns Hopkins’ Test Drone Travels 161 Miles to Set Record for Delivery Distance of Clinical Laboratory Specimens

Kaiser Health News Labels Routine Clinical Laboratory Testing and Other Screening of Elderly Patients an ‘Epidemic’ in US

Some experts in medical community question value of health screenings of older patients with shortened life expectancies, though many aging adults are skeptical of calls to skip tests

What does it mean when a credible health organization makes the assertion that there is an “epidemic” of clinical laboratory testing being ordered on the nation’s elderly? Clinical laboratory leaders and anatomic pathologists know that lab tests are a critical part of screening patients.

Health screenings, particularly those for chronic diseases, such as cancer, can save lives by detecting diseases in their early stages. However, as consumers become more engaged with the quality of their care, one trend is for healthcare policymakers to point out that many medical procedures and care protocols may not bring benefit—and may, instead, bring harm.

No less an authority than Kaiser Health News (KHN) also is questioning what it calls an “epidemic” of testing in geriatric patients. Since medical laboratory tests are part of many screening programs, a rethinking of what tests are necessary in older patients would likely impact clinical laboratories and pathology groups going forward.

Treatment Overkill or Necessary Clinical Laboratory Tests?

“In patients well into their 80s, with other chronic conditions, it’s highly unlikely that they will receive any benefit from screening, and [it is] more likely that the harms will outweigh the benefits,” Cary Gross, MD, Professor of Medicine and Director of the National Clinician Scholars Program at the Yale School of Medicine, told KHN as part of an investigative series called “Treatment Overkill.”

That opinion is supported by a 2014 study published in the Journal of the American Medical Association (JAMA) Internal Medicine. The researchers concluded, “A substantial proportion of the US population with limited life expectancy received prostate, breast, cervical, and colorectal cancer screening that is unlikely to provide net benefit. These results raise concerns about over screening in these individuals, which not only increases healthcare expenditure but can lead to patient harm.”

Yet, seniors and their family members often request health screenings for themselves or their elderly parents, even those with dementia, if they perceive doing so will improve their quality of life, KHN noted.

Cary Gross, MD

Cary Gross, MD, Professor of Medicine and Director of the National Clinician Scholars Program at Yale University, told Kaiser Health News patients “well into their 80s, with other health conditions” are unlikely candidates for the many routine health screening tests administered to elderly patients. Were this to become a trend, medical laboratories could see a drop in physician-ordered screening tests. (Photo copyright: Yale University.)

Meanwhile, an earlier study in JAMA Internal Medicine found older adults perceived screening tests as “morally obligatory” and were skeptical of stopping routine screenings.

In its series, KHN noted two studies that outlined the frequency of screening tests in seniors with limited life expectancies due to dementia or other diseases:

  1. According to the American Journal of Public Health, nearly one in five women with severe cognitive impairment are still getting regular mammograms;
  2. Likewise, 55% of older men with a high risk of death over the next decade still receive PSA tests for prostate cancer, the 2014 JAMA Internal Medicine study found.

“Screening tests are often done in elderly patients as a knee-jerk reaction,” Damon Raskin, MD, a board-certified internist in Pacific Palisades, Calif., who also serves as Medical Director for two skilled nursing facilities, told AgingCare.com.

Correct Age or Correct Test?

While a movement may be afoot to reduce screening tests in older patients, a one-size-fits-all answer to who should continue to be tested may not be possible.

“You can have an 80-year-old who’s really like a 60-year-old in terms of [his or her] health,” Raskin noted. “In these instances, screening tests such as mammograms and colonoscopies, can be extremely valuable. However, I’ve seen 55-year-olds who have end-stage Parkinson’s or Alzheimer’s disease. For those individuals, I probably wouldn’t recommend screenings, for quality of life reasons.”

However, for the general population, researchers have emphasized that the focus should not be on whether physicians are ordering “unnecessary” lab tests, but whether they are ordering the “correct” tests.

A 2013 study published in the online journal PLOS ONE analyzed 1.6 million results from 46 of medicine’s 50 most commonly ordered lab tests. Researchers found, on average, the number of unnecessary tests ordered (30%) was offset by an equal number of necessary tests that went unordered.

“It’s not ordering more tests or fewer tests that we should be aiming for. It’s ordering the right tests, however few or many that is,” senior author Ramy Arnaout, MD, Harvard Medical School, Assistant Professor of Pathology and Associate Director of the Clinical Microbiology Laboratories at Beth Israel Deaconess Medical Center in Boston, stated in a news release. “Remember, lab tests are inexpensive. Ordering one more test or one less test isn’t going to ‘bend the curve,’ even if we do it across the board. It’s everything that happens next—the downstream visits, the surgeries, the hospital stays—that matters to patients and to the economy and should matter to us.”

Since the elderly are the fastest growing population in America, and since diagnosing and treating chronic diseases is a multi-billion-dollar industry, it seems unlikely that such a trend to move away from medical laboratory health screenings for the very old will gain much traction. Still, with increasing focus on healthcare costs, the federal government may pressure doctors to do just that.

—Andrea Downing Peck

Related Information:

Cancer Screening Rates in Individuals with Different Life Expectancies

Doing More Harm Than Good? Epidemic of Screening Burdens Nation’s Older Patients

Large-Scale Analysis Describes Inappropriate Lab Testing Throughout Medicine

Preventive Screening for Seniors: Is that Test Really Necessary?

Impact of Cognitive Impairment on Screening Mammography Use in Older US Women

Cancer Screening Rates in Individuals with Different Life Expectancies

The Landscape of Inappropriate Laboratory Testing

Older Adults and Forgoing Cancer Screening: ‘Think it would be Strange’

Sales of Direct-to-Consumer Clinical Laboratory Genetic Tests Soar, as Members of Congress Debate How Patient Data Should be Handled, Secured, and Kept Private

Direct-to-consumer (DTC) genetic testing has been much in the news of late and clinical laboratories, anatomic pathology groups, and biomedical researchers have a stake in how the controversy plays out.

While healthcare consumers seem enamored with the idea of investigating their genomic ancestry in growing numbers, the question of how the data is collected, secured, and distributed when and to whom, is under increased scrutiny by federal lawmakers, bioethicists, and research scientists.

However, should public demand for DTC testing find support in Congress, some lab companies offering direct-to-consumer genetic tests could find their primary source of revenue curtailed.

DTC Sales Skyrocket as FDA Authorizes Genetic Tests for Certain Chronic Diseases

Dark Daily reported last fall on one company that had its plans to distribute thousands of free genetic tests at a football game suspended due to privacy concerns. (See, “State and Federal Agencies Throw Yellow Flag Delaying Free Genetic Tests at NFL Games in Baltimore—Are Clinical Laboratories on Notice about Free Testing?” October 13, 2017.)

Nevertheless, consumer demand for DTC tests continues to rise. In a press release, Ancestry, a family genetic history and consumer genomics company, reported:

  • Record sales of AncestryDNA kits during the 2017 four-day Black Friday to Cyber Monday weekend, selling more than 1.5 million kits; and,
  • The 2017 sales were triple the amount of kits sold during the same period in 2016.

Possibly helping the sale of DTC genetic tests may be the US Food and Drug Administration (FDA) authorization last year of 23andMe’s Personal Genome Service Genetic Health Risk tests for 10 diseases or conditions, including:

Senator Calls for Investigation of DTC Genetic Test Company Use of Patient Data

These are impressive sales. However, medical professionals may wonder how so much genetic data can be kept private by the testing companies. And medical laboratory leaders are not the only ones asking about privacy and the use of genetic test results.

In a November press conference, Senate Minority Leader Chuck Schumer called on the Federal Trade Commission (FTC) to look into genetic testing companies’ privacy and disclosure practices, noted NBC News.

“What those companies can do with all that data—your most sensitive and deepest info, your genetics—is not clear, and in some cases not fair and not right,” stated Schumer.

Congress took action in 2008 by passing the Genetic Information and Nondiscrimination Act (GINA), which bans employers and insurers from making decisions about people based on genetic predispositions to disease.

However, lawmakers also recently introduced House Bill 1313, the Preserving Employee Wellness Programs Act. It reads, in part, “… the collection of information about the manifested disease or disorder of a family member shall not be considered an unlawful acquisition of genetic information with respect to another family as part of a workplace wellness program offered by an employer ….”

“We’re injecting terrible opportunities for discrimination in the workplace,” Robert Green, MD, Professor of Medicine (Genetics) at Harvard Medical School, told Gizmodo.

Robert C. Green, MD, MPH

Robert C. Green, MD, MPH (above), Professor of Medicine, Harvard Medical School; Associate Physician, Brigham and Women’s Hospital; Geneticist, Brigham and Women’s Hospital; and Director, Genomes2People Research Program at Brigham and Women’s Hospital, believes weak genetic privacy laws are inhibiting research and clinical care. “People decline genetic tests because of concerns over privacy and genetic discrimination, especially insurance discrimination,” he told Gizmodo. “This is stymying biomedical research and people’s access to healthcare.” (Photo copyright: Harvard Medical School.)

HIPAA Enables Selling of Anonymized Patient Genetic Data

Peter Pitts, former FDA Associate Commissioner, and President and Co-founder of the Center for Medicine in the Public Interest, a non-profit medical issues research group, blames the release of data by DTC genetic test companies on the Health Insurance Portability and Accountability Act (HIPAA), a law he says makes way for “anonymized” sale of patient data.

“The Portability Act was passed when genetic testing was just a distant dream on the horizon of personalized medicine,” Pitts wrote in a Forbes commentary. “But today that loophole has proven to be a cash cow. 23andMe has sold access to its database to at least 13 outside pharmaceutical firms … AncestryDNA recently announced a lucrative data-sharing partnership with the biotech company Calico.”

For its part, in an online privacy statement, 23andMe noted, “We will use your genetic information or self-reported information and share it with third parties for scientific research purposes only if you sign the appropriate consent document.”

Similarly, Ancestry points out in its posted privacy statement, “We share your genetic information with research partners only when you provide us with your express consent to do so through our informed consent to research.

Consumers Speak Out on Privacy; States Study Laws and Genetic Testing by Research Hospitals

How do consumers feel about the privacy of their genetic test data?  According to a news release, a survey by 23andMe found the following:

  • 80% of Americans are concerned about DNA testing privacy; however,
  • 88% have no awareness or understanding of what testing companies do to protect information; and,
  • 74% of people are, nonetheless, interested in genetic testing.

Meanwhile, as states promulgate various genetic privacy laws, a paper published at SSRN by researchers at the Massachusetts Institute of Technology (MIT) and the University of Virginia (UV) examined how different state laws affect patients’ decisions about having genetic testing performed at various research hospitals.

The MIT/UV study focused on genetic testing by research hospitals as opposed to the DTC genetic testing by private companies. The paper explained that states have one of three types of laws to protect patients’ privacy in genetic testing:

  • “Require the provider to notify the individual about potential privacy risks;
  • “Restrict discriminatory use of genetic data by employers or insurance companies; and,
  • “Limit redisclosure without consent.”

Findings, netted from more than 81,000 respondents, suggest:

  • When genetic data are explained in state laws as patient property, more tests are performed;
  • Conversely, state laws that focus on risk, and ask patients to consent to risk, lead to less people giving the go-ahead for genetic testing.

“We found a positive effect [on the number of tests] was an approach where you gave patients the potential to actually control their own data,” Catherine Tucker, PhD,  Distinguished Professor of Management at MIT and one of the study researchers, told MIT News.

Whether the provider of genetic tests is a private testing company or a research hospital’s clinical laboratory, privacy continues to be a concern, not just to physicians but to federal lawmakers as well. Nevertheless, healthcare consumers and patients who receive comprehensible information about how their genetic data may be used seem to be agreeable to it. At least for now, that is.

—Donna Marie Pocius

Related Information:

AncestryDNA Breaks Holiday Sales Record Black Friday to Cyber Monday

Senator Calls for More Scrutiny of Home DNA Test Industry

The Present and Future Asymmetry of Consumer Genetic Testing

Are Our Terrible Genetic Privacy Laws Hurting Science?

The Privacy Delusions of Genetic Testing

National Survey Shows Strong Interest in DNA Testing

Privacy Protection, Personalized Medicine, and Genetic Testing

How Privacy Policies Affect Genetic Testing

State and Federal Agencies Throw Yellow Flag Delaying Free Genetic Tests at NFL Games in Baltimore—Are Clinical Laboratories on Notice about Free Testing?

New FDA Regulations of Clinical Decision-Support/Digital Health Applications and Medical Software Has Consequences for Medical Laboratories

Softened FDA regulation of both clinical-decision-support and patient-decision-support software applications could present opportunities for clinical laboratory developers of such tools

Late 2017, the Food and Drug Administration (FDA) released guidelines on how the agency intends to regulate—or not regulate—digital health, clinical-decision-support (CDS), and patient-decision-support (PDS) software applications. The increased/decreased oversight of the development of these physicians’ tools could have important implications for anatomic pathology groups and clinical laboratories.

Physician decision-support software utilizes medical laboratory test data as a significant part of a full dataset used to guide caregivers. Thus, if the FDA makes it easier for developers to get regulatory clearance for these types of products, that could positively impact medical labs’ ability to service their client physicians.

Additionally, clinical pathologists have unique training in diagnosing diseases and understanding the capabilities and limitations of medical laboratory tests in supporting how physicians diagnose disease and make treatment decisions. Thus, actions by the FDA to make it easier for developers of software algorithms that can incorporate clinical laboratory data and anatomic pathology images with the goal of improving diagnoses, decisions to treat, and monitoring of patients have the potential to bring great benefit to the nation’s medical laboratories.

FDA Clarifies Role in Regulating CDS/PDS Applications

The new guidelines clarified items specified in the 21st Century Cures Act, which was enacted by Congress in December of 2016. This Act authorized $6.3 billion in funding for the discovery, development, and delivery of advanced, state-of-the art medical cures.

“Today, we’re announcing three new guidances—two draft and one final—that address, in part, important provisions of the 21st Century Cures Act, that offer additional clarity about where the FDA sees its role in digital health, and importantly, where we don’t see a need for FDA involvement,” FDA commissioner Scott Gottlieb, MD, Commissioner of Food and Drugs, noted in a statement. “We’ve taken the instructions Congress gave us under the Cures Act and [we] are building on these provisions to make sure that we’re adopting the full spirit of the goals we were entrusted with by Congress.”

Helping Doctors’ Decision-Making

The first guideline concerns clinical decision support systems that are designed to help doctors make data-driven decisions about patient care. The new guidelines make it easier for software developers to get regulatory clearance, which, the FDA hopes, will spark innovation and makes regulation more efficient.

“CDS has many uses, including helping providers, and ultimately patients, identify the most appropriate treatment plan for their disease or condition,” Gottlieb said in the FDA’s statement. “For example, such software can include programs that compare patient-specific signs, symptoms, or results with available clinical guidelines to recommend diagnostic tests, investigations or therapy.

“This type of technology has the potential to enable providers and patients to fully leverage digital tools to improve decision making,” Gottlieb continued. “We want to encourage developers to create, adapt, and expand the functionalities of their software to aid providers in diagnosing and treating old and new medical maladies.”

Identifying Digital Health Applications That Receive/Don’t Receive FDA Oversight

The second guideline discusses and delineates which digital health applications are considered low risk and, thus, will not fall under FDA regulations.

Products that are not intended to be used for the diagnosis, cure, mitigation, prevention, or treatment of a condition will not be regulated by the FDA. These technologies are not considered medical devices and may include gadgets such as weight management and mindfulness tools. They can provide value to consumers and the healthcare industry while posing a low risk to patients.

“Similarly, the CDS draft guidance also proposes to not enforce regulatory requirements for lower-risk decision support software that’s intended to be used by patients or caregivers—known as patient-decision-support software (PDS)—when such software allows a patient or a caregiver to independently review the basis of the treatment recommendation,” Gottlieb noted in the statement.

 

Scott Gottlieb

Scott Gottlieb, MD (above), FDA Commissioner of Food and Drugs, noted in a statement, “We believe our proposals for regulating CDS and PDS not only fulfill the provisions of the Cures Act, but also strike the right balance between ensuring patient safety and promoting innovation. Clinical laboratories may find opportunities to work with CDS/PDS developers and support their client physicians. (Photo copyright: FDA.)

However, products that are intended to be used for the diagnosis, cure, mitigation, prevention, or treatment of a condition are considered medical devices and will fall under FDA regulations.

“The FDA will continue to enforce oversight of software programs that are intended to process or analyze medical images, signals from in vitro diagnostic devices, or patterns acquired from a processor like an electrocardiogram that use analytical functionalities to make treatment recommendations, as these remain medical devices under the Cures Act,” noted Gottlieb.

Items such as mobile apps that are utilized to maintain and encourage a healthy lifestyle are not deemed to be medical devices and will fall outside FDA regulations. The guidelines also defined that Office of the National Coordinator for Health Information Technology (ONC)-certified electronic health record (EHR) systems are not medical devices and, thus, will not be regulated by the FDA.

Software-as-a-Medical Device Gets FDA Oversight

The third guidance document deals with the assessment of the safety, performance, and effectiveness of Software as a Medical Device (SaMD).

“This final guidance provides globally recognized principles for analyzing and assessing SaMD, based on the overall risk of the product. The agency’s adoption of these principles provides us with an initial framework when further developing our own specific regulatory approaches and expectations for regulatory oversight and is another important piece in our overarching policy framework for digital health,” Gottlieb noted in the statement.

SaMD is defined by the International Medical Device Regulators Forum (IMDRF) as “software intended to be used for one or more medical purposes that perform these purposes without being part of a hardware medical device.”

Gottlieb noted that the three important guidance documents being issued would continue to expand the FDA’s efforts to encourage innovation in the ever-changing field of digital health. “Our aim is to provide more clarity on, and innovative changes to, our risk-based approach to digital health products, so that innovators know where they stand relative to the FDA’s regulatory framework. Our interpretation of the Cures Act is creating a bright line to define those areas where we do not require premarket review,” he concluded.

What remains to be seen is how the new FDA regulations will impact clinical laboratories and anatomic pathology groups. With the expanding interest in artificial intelligence (AI) and self-learning software systems, healthcare futurists are predicting a rosy future for informatics products that incorporate these technologies. Hopefully, with these new guidelines in place, innovative clinical laboratories will have the opportunity to develop new digital products for their clients.

—JP Schlingman

Related Information:

FDA Softens Stance on Clinical-decision Support Software

Clinical and Patient Decision Support Software

FDA Issues New Guidance for Clinical and Patient Decision Support Software

Statement from FDA Commissioner Scott Gottlieb, M.D., on Advancing New Digital Health Policies to Encourage Innovation, Bring Efficiency and Modernization to Regulation

FDA Issues Three Guidances, Including Long-awaited CDS Guidelines

The Feds Just Cleared a Major Roadblock for Digital Health

FDA Unveils Clinical Decision Support, Medical Device Guidance

 

;