Scientists turned to metabolomics to find cause of biological aging and release index of 25 metabolites that predict healthy and rapid agers
Researchers at the University of Pittsburg Medical Center and the University of Pittsburgh School of Medicine have identified biomarkers in human blood which appear to affect biological aging (aka, senescence). Since biological aging is connected to a person’s overall condition, further research and studies confirming UPMC’s findings will likely lead to a new panel of tests clinical laboratories can run to support physicians’ assessment of their patients’ health.
UPMC’s research “points to pathways and compounds that may underlie biological age, shedding light on why people age differently and suggesting novel targets for interventions that could slow aging and promote health span, the length of time a person is healthy,” according to a UPMC news release.
“We decided to look at metabolites because they’re very dynamic,” Aditi Gurkar, PhD, the study’s senior author, told the Pittsburgh Post-Gazette. Gurkar is Assistant Professor of Medicine, Division of Geriatric Medicine, Aging Institute at the University of Pittsburg. “They can change because of the diet, they can change because of exercise, they can change because of lifestyle changes like smoking,” she added.
The scientists identified 25 metabolites that “showed clear differences” in the metabolomes of both healthy and rapid agers. Based on those findings, the researchers developed the Healthy Aging Metabolic (HAM) Index, a panel of metabolites that predicted healthy agers regardless of gender or race.
“Age is more than just a number,” said Aditi Gurkar, PhD (above), Assistant Professor of Geriatric Medicine at University of Pittsburg School of Medicine and the study’s senior author in a news release. “Imagine two people aged 65: One rides a bike to work and goes skiing on the weekends and the other can’t climb a flight of stairs. They have the same chronological age, but very different biological ages. Why do these two people age differently? This question drives my research.” Gurkar’s research may one day lead to new clinical laboratory tests physicians will order when evaluating their patients’ health. (Photo copyright: University of Pittsburg.)
Clear Differences in Metabolites
According to the National Cancer Institute, a metabolite is a “substance made or used when the body breaks down food, drugs, or chemicals, or its own tissue (for example, fat or muscle tissue). This process, called metabolism, makes energy and the materials needed for growth, reproduction, and maintaining health. It also helps get rid of toxic substances.”
The UPMC researchers used metabolomics—the study of chemical process in the body that involves metabolites, other processes, and biproducts of cell metabolism—to create a “molecular fingerprint” of blood drawn from individuals in two separate study groups.
They included:
People over age 75 able to walk a flight of stairs or walk for 15 minutes without a break, and
People, age 65 to 75, who needed to rest during stair climbing and walk challenges.
The researchers found “clear differences” in the metabolomes of healthy agers as compared to rapid agers, suggesting that “metabolites in the blood could reflect biological age,” according to the UPMC news release.
“Other studies have looked at genetics to measure biological aging, but genes are very static. The genes you’re born with are the genes you die with,” said Gurkar in the news release.
Past studies on aging have explored other markers of biological age such as low grade-inflammation, muscle mass, and physical strength. But those markers fell short in “representing complexity of biological aging,” the UPMC study authors wrote in Aging Cell.
“One potential advantage of metabolomics over other ‘omic’ approaches is that metabolites are the final downstream products, and changes are closely related to the immediate (path) physiologic state of an individual,” they added.
The researchers used an artificial intelligence (AI) model that could identify “potential drivers of biological traits” and found three metabolites “that were most likely to promote healthy aging or drive rapid aging. In future research, they plan to delve into how these metabolites, and the molecular pathways that produce them, contribute to biological aging and explore interventions that could slow this process,” the new release noted.
“While it’s great that we can predict biological aging in older adults, what would be even more exciting is a blood test that, for example, can tell someone who’s 35 that they have a biological age more like a 45-year-old,” Gurkar said. “That person could then think about changing aspects of their lifestyle early—whether that’s improving their sleep, diet or exercise regime—to hopefully reverse their biological age.”
Looking Ahead
The UPMC scientists plan more studies to explore metabolites that promote healthy aging and rapid aging, and interventions to slow disease progression.
It’s possible that the blood-based HAM Index may one day become a diagnostic tool physicians and clinical laboratories use to aid monitoring of chronic diseases. As a commonly ordered blood test, it could help people find out biological age and make necessary lifestyle changes to improve their health and longevity.
With the incidence of chronic disease a major problem in the US and other developed countries, a useful diagnostic and monitoring tool like HAM could become a commonly ordered diagnostic procedure. In turn, that would allow clinical laboratories to track the same patient over many years, with the ability to use multi-year lab test data to flag patients whose biomarkers are changing in the wrong direction—thus enabling physicians to be proactive in treating their patients.
While Apple recently debuted features to bring personal health records and protected health information to its mobile devices, Microsoft shuttered HealthVault in favor of focusing on AI-powered healthcare advances
As clinical laboratories and anatomic pathology groups know, lab testing data comprise more than 70% of the average patient’s health record. Thus, creating a universal platform on which consumers can share or review health information and medical histories with caregivers is a critical, yet elusive goal for most major tech companies, including tech giants Apple (Nasdaq:AAPL) and Microsoft (Nasdaq:MSFT).
Apple has big plans for patient health records and is working to bring protected health information (PHI) and healthcare advice to iPhones, iPads, and Apple Watch. Meanwhile, Microsoft is reducing its footprint in the mobile device healthcare market. Instead, it appears to be banking on its Artificial Intelligence (AI) platform. How these two diverging paths play out could have ramifications for the pathology and clinical laboratory industries.
HealthVault Insights versus AI versus Apple Health Mobile Apps
Launched in February 2017, Microsoft’s HealthVault Insights combined machine learning and AI with patients’ PHI and mobile activity tracking. The intent was to create an accessible, interactive platform for patients to monitor important health trends.
However, as of January 2018, Microsoft pulled the mobile app from Android, iOS, and Windows App stores. While summary information that draws on previously collected data is still available from the HealthVault website, new data and detailed insights are no longer available.
“We launched HealthVault Insights as a research project … with the goal of helping patients generate new insights about their health,” states Microsoft’s HealthVault Insights website. “Since then, we’ve learned a lot about how machine learning can be used to increase patient engagement and are now applying that knowledge to other projects.”
Shuttering HealthVault highlighted Microsoft’s shift away from consumer-facing health efforts and toward assisting medical laboratories, physicians, and research groups discover and implement treatments driving modern personalized medicine.
In a Microsoft blog post, Peter Lee, Corporate VP of Microsoft Healthcare, stated that Microsoft hopes its Healthcare NeXT platform will “dramatically transform healthcare, will deeply integrate Greenfield research and health technology product development, as well as establish a new model at Microsoft for strategic health industry partnerships.”
HealthVault Insights was one of several projects in Microsoft’s Healthcare NeXT initiative. Run by Microsoft’s AI and Research Group and partnering with major healthcare and research facilities across the country, other projects in the Healthcare NeXT initiative include:
Speaking with Business Insider, Lee noted that healthcare is becoming a “very large business” for Microsoft. “We don’t talk publicly about the dollars, but it’s large,” he concluded.
Microsoft’s EmpowerMD website states the eventual goal is to use the system to connect conversations with the growing trove of healthcare data available. “Our long-term vision is a learning system that incorporates data from longitudinal medical records, medical devices, genomics, population health, research papers, and more.”
AI a ‘Sleeping Giant for Healthcare’
“AI can be viewed as a sleeping giant for healthcare,” Eric Horvitz, PhD, Director of Microsoft Research Labs, told Nasdaq, when discussing Microsoft’s view of technology and healthcare. “AI methods show promise for multiple roles in healthcare. [This includes] inferring and alerting about hidden risks of potential adverse outcomes, selectively guiding attention, care, and interventional programs where [they are] most needed and reducing errors in hospitals.”
One such project involves a strategic partnership with the University of Pittsburg Medical Center (UPMC), which is a “$13-billion Pittsburgh-based system, comprising more than 25 hospitals, a three-million-member health plan, and 3,600 physicians, [that] will be a core partner in our efforts to improve healthcare delivery through a series of projects, beginning with a focus on transforming clinician empowerment and productivity,” according to Microsoft.
“Despite UPMC’s efforts to stay on the leading edge of technology, too often our clinicians and patients feel as though they’re serving the technology rather than the other way around. With Microsoft, we have a shared vision of empowering clinicians by reducing the burden of electronic paperwork and allowing the doctor to focus on the sacred doctor-patient relationship,” Steven D. Shapiro, MD (above), Chief Medical and Scientific Officer of UPMC and President of UPMC’s Health Services division, stated in the Microsoft blog. [Photo copyright: University of Pittsburg Medical Center.]
Today, patients can directly interact with their PHI to analyze trends and take a proactive role in their own healthcare, while researchers tap into the computational power of Cloud computing and correlate data across vast sources using AI. Both trends highlight how technology continues to play a critical role in improving access to healthcare. And how tech researchers continue to develop more efficient and effective treatments.
Medical laboratories and anatomic pathology groups may soon contribute health information to databases that one day will power AI systems. These trends highlight opportunities to both educate physicians on the tools available to utilize patient health data in an effective manner, and on new platforms that clinical laboratories could use to further streamline operations, reduce costs, and boost efficiency.
Recently-announced partnerships want to use big data to improve patient outcomes and lower costs; clinical laboratory test data will have a major role in these efforts
In the race to use healthcare big data to improve patient outcomes, several companies are using acquisitions and joint ventures to beef up and gain access to bigger pools of data. Pathologists and clinical laboratory managers have an interest in this trend, because medical laboratory test data will be a large proportion of the information that resides in these huge healthcare databases.
For health systems that want to be players in the healthcare big data market, one strategy is to do a risk-sharing venture with third-party care-management companies. This allows the health systems to leverage their extensive amounts of patient data while benefiting from the expertise of their venture partners. (more…)