News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Edinburgh Scientists Associate Increased Cancer Rates to Descendants from Multiple Scottish Islands

Findings could lead to new clinical laboratory cancer screening tests for BRCA1 and BRCA2 among specific population regions

Descendants of a remote Scottish island are much more likely to carry a cancer-causing BRCA2 gene than the rest of the UK. That’s according to a study conducted by the University of Edinburgh in Scotland. For pathologists and clinical laboratory managers, the study’s findings demonstrate how ongoing research into the genetic makeup of subpopulations will find groups that have higher risk for specific health conditions than the general population. Thus, diagnosticians can pay closer attention to screening these groups to achieve early diagnosis and intervention.

“The findings follow earlier research from the Viking Genes study that found a cancer-causing variant in the related BRCA1 gene, common among people from Orkney [a group of islands off Scotland’s northern coast],” noted a University of Edinburgh news release.

In their latest research, the genetic scientists discovered that the BRCA2 gene can be found in one in every 40 people with heritage from the island of Whalsay in Scotland’s Shetland island group. This gene is one of the most common genes that can be linked to breast cancer and ovarian cancer in women and breast and prostate cancer in men.

Those who inherit the BRCA2 gene have a significantly higher risk of developing certain cancers than the general population. For example, according to the National Cancer Institute, more than 60% of women who inherit the gene will develop breast cancer in their lifetimes.

The volunteers in the Viking Genes study have a risk of having a BRCA2 gene that is 130 times higher than the general UK population. According to the BBC, geneticists believe the gene can be traced back to one family from the island of Whalsay before 1750.

The researchers published their findings titled, “Two Founder Variants Account for Over 90% of Pathogenic BRCA Alleles in the Orkney and Shetland Isles in Scotland,” in the European Journal of Human Genetics.

“It is very important to understand that just two gene changes account for more than 90% of the inherited cancer risk from BRCA variants in Orkney and Shetland. This is in stark contrast to the situation in the general UK population, where 369 variants would need to be tested to account for the same proportion of cancer risk from BRCA genes. Any future screening program for the Northern Isles should therefore be very cost-effective,” said James Wilson, DPhil, FRCPE (above), Professor of Human Genetics at University of Edinburgh and leader of the study, in a news release. Clinical laboratories in the UK will be involved in those screenings. (Photo copyright: Scottish Genomes Partnership.)

Early Diagnosis Brings Hope to Families

The UK’s National Health Service (NHS) offers genetic testing to relatives of people with a known BRCA variant. Individuals with at least one Whalsay grandparent, and who have a close family history of breast, ovarian, or prostate cancer, can also request NHS testing.

As the BBC reported, University of Edinburgh’s discovery has given families answers and hope for the future. Individuals who fit the criteria for being at risk of inheriting the BRCA gene can narrow their testing and work more specifically on preventative measures with their doctors.

Christine Glaser, a woman from Lerwick in Shetland, learned she carried the BRCA gene after participating in the study. Though the Viking genes research took place nearly a decade ago, scientific understanding of genes has improved allowing geneticists to draw new conclusions from previous studies.

Although Glaser lost her sister to ovarian cancer, she and her family were unaware of their heightened genetic risk.

“I got offered preventative measures so I could get my ovaries removed and I could get a mastectomy. So, that’s what I did … when I got my ovaries removed, they checked them and there was no cancer, but then I had a mammogram and they found cancer,” she told the BBC. Glaser’s cancer was successfully treated thanks to early detection.

Closing Gap in Genetic Testing

“This BRCA2 variant in Whalsay I think arose prior to 1750. This is why these things become so common in given places because many people descend from a couple quite far back in the past, and if they have a cancer variant, then a significant number of people today—five or even 10 generations later—will have it. This is true everywhere in Scotland, it’s just magnified in these small places,” said James Wilson, DPhil, FRCPE, Professor of Human Genetics at University of Edinburgh, who led the study on Viking genes that found individuals with familial ties to two small Scottish communities may be at a higher risk of having a cancer-causing gene.

Wilson hopes to see testing for these genetic abnormalities become more common for these at-risk communities.

“The Ashkenazi Jewish community have BRCA1 and BRCA2 variants that also have a frequency of about one in 40,” he told the BBC. “The Ashkenazi Jewish population in England are able to take part in genetic testing for these genes but that’s not yet the case in Scotland.”

The findings of the most recent University of Edinburgh genetic study are very new. Future developments and offerings from the NHS may be influenced by the results.

Deeper understanding about the genetic make-up of certain population subgroups could lead to new genetic personalized medicine and preventative testing for those at risk of hereditary cancer. In turn, it could also encourage individuals to seek preventative care earlier. Thus, pathologists and clinical laboratory managers should keep an eye on these developments and be prepared to work with geneticists who may develop new screening methods for BRCA1 and BRCA2.

—Ashley Croce

Related Information:

Cancer Gene Linked to Scottish Island

Cancer Risk Gene Variant Discovered in Orkney

BRCA Gene Changes: Cancer Risk and Genetic Testing

Two Founder Variants Account for Over 90% of Pathogenic BBRCA Alleles in the Orkney and Shetland Isles in Scotland

Faulty Cancer Gene Traced Back to Shetland Island

NHS Launches National BRCA Gene Testing Program to Identify Cancer Risk Early

University of Warwick Researchers Identity Blood Protein Biomarkers That Can Predict Dementia Onset Years in Advance

With further study, this research may provide clinical laboratories with a new proteomic biomarker for dementia screenings that identifies risk more than 10 years before symptoms appear

Researchers at the University of Warwick in the UK and Fudan University in Shanghai, China, identified four protein biomarkers in blood that they say can predict dementia up to 15 years before diagnosis. They say these biomarkers may lead to clinical laboratory blood tests that offer alternatives to costly brain scans and lumbar punctures for diagnosis of dementia.

The scientists “used the largest cohort of blood proteomics and dementia to date,” according to a University of Warwick news release. This included taking blood from 52,645 “healthy” people without dementia who participated in the UK Biobank—a population-based study cohort, the new release noted.

“The proteomic biomarkers are [easy] to access and non-invasive, and they can substantially facilitate the application of large-scale population screening,” said neurovegetative disease specialist Jin-tai Yu, MD, PhD, a professor at Fudan University and co-author of the study, in the news release.

The scientists published their findings in the journal Nature Aging titled, “Plasma Proteomic Profiles Predict Future Dementia in Healthy Adults.”

“The advent of proteomics offers an unprecedented opportunity to predict dementia onset,” the researchers wrote.

“This is a well-conducted study that adds to what we know about changes in blood that occur very early in diseases that cause dementia, which will be important for early diagnosis in the future,” said Tara Spires-Jones, PhD, in a post from the Science Media Center in the UK. “However,” she added, “it is important to note that these are still scientific research studies and that there are currently no blood tests available for routine use that can diagnose dementia with certainty.

Jones, who was not involved in the study, is President of the British Neuroscience Association (BNA) and group leader of the UK Dementia Research Institute at the University of Edinburgh.

“Based on this study, it does seem likely that blood tests will be developed that can predict risk for developing dementia over the next 10 years, although individuals at higher risk often have difficulty knowing how to respond,” Suzanne Schindler, MD, PhD (above), told Reuters. Schindler, an Associate Professor of Neurology at Washington University in St. Louis, was not involved in the research. Clinical laboratories may soon have a new blood test for dementia. (Photo copyright: VJDementia.)

Predicting Onset of Dementia with 90% Accuracy

The researchers analyzed 52,645 blood samples from the UK Biobank (UKBB). The samples were collected between 2006 and 2010 from healthy individuals who at that time were without dementia.

By March 2023, 1,417 of the study participants had developed Alzheimer’s disease or some other form of dementia. The researchers looked at 1,463 proteins and identified four that were present in high levels among those people:

“Individuals with higher GFAP levels were 2.32 times more likely to develop dementia,” the researchers wrote in Nature Aging. “Notably, GFAP and LTBP2 were highly specific for dementia prediction. GFAP and NEFL began to change at least 10 years before dementia diagnosis.”

When adding known risk factors such as age, sex, and genetics, the researchers said they could predict onset of dementia with 90% accuracy, according to the University of Warwick news release.

“Our findings strongly highlight GFAP as an optimal biomarker for dementia prediction, even more than 10 years before the diagnosis, with implications for screening people at high risk for dementia and for early intervention,” the researchers wrote.

The news release also noted that smaller studies had already identified some of the proteins as potential biomarkers, “but this new research was much larger and conducted over several years.”

Further Validation Needed

Amanda Heslegrave, PhD, of the UK Dementia Research Institute, University College London described the UKBB as “an excellent resource” in the Science Media Center (SMC) post. However, she noted, it’s “a highly curated biobank and may not capture all populations that we need to know the risk for. The new biomarkers identified will need further validation before being used as screening tools.”

Another expert raised additional questions about the University of Warwick/Fudan University study in the SMC post.

“These results may help researchers understand the biological systems involved in the development of dementia,” said David Curtis, MD, PhD, of the UCL Genetics Institute at University College London. “However in my view the strengths of the reported associations are not really strong enough to say that these would form a useful test for predicting who will get dementia in the future.”

Conversely, Curtis pointed to other studies suggesting that phosphorylated tau (p-tau) proteins are better candidates for developing a simple blood test.

P-tau “provides a very good indicator of whether the pathological processes leading to Alzheimer’s disease are present in the brain,” he said. “When effective treatments for Alzheimer’s disease are developed it will be very helpful indeed to have simple blood tests—such as measuring phosphorylated tau—available in order to identify who could benefit.”

At least two blood tests based on the p-tau217 variant—from ALZpath and C2N—are currently available to US clinicians as laboratory developed tests (LDT).

In “University of Gothenburg Study Findings Affirm Accuracy of Clinical Laboratory Blood Test to Diagnose Alzheimer’s Disease,” Dark Daily reported on a study from the University of Gothenburg in Sweden which found that the ALZpath test was as good or better than lumbar punctures and brain scans as a diagnostic tool for Alzheimer’s.

UK Biobank

The UK Biobank continues to be used by researchers both in the UK and abroad because of the full sets of data on large numbers of patients over many years. There are few other sources of such data elsewhere in the world. The UK Biobank is a large-scale biomedical database and research resource. It contains de-identified genetic, lifestyle and health information, and biological samples from 500,000 UK participants.

On its website, the UK Biobank states, “It is the most comprehensive and widely-used dataset of its kind and is globally accessible to approved researchers who are undertaking health-related research that is in the public interest, whether they are from academic, commercial, government or charitable settings.”

Thus, clinical laboratory managers and pathologists can expect a continuing stream of published studies that identify biomarkers associated with different health conditions and to see where the data used in these analyses came from the UK’s biobank.

—Stephen Beale

Related Information:

Protein Biomarkers Predict Dementia 15 Years Before Diagnosis, According to New Study

Plasma Proteomic Profiles Predict Future Dementia in Healthy Adults

Proteins May Predict Who Will Get Dementia 10 Years Later, Study Finds

Expert Reaction to Study of Potential Protein Biomarkers for Dementia Risk

Two New p-Tau217 Blood Tests Join a Crowded Field

Plasma p-Tau-217 Assays Work Well, But No Home Run for Diagnosis

Dementia Can Be Predicted More than a Decade Before Diagnosis with These Blood Proteins

Dementia Predicted 10 Years Before Diagnosis

Early Blood Test to Predict Dementia Is Step Closer as Biological Markers Identified

Validating Blood Tests as A Possible Routine Diagnostic Assay of Alzheimer’s Disease

Woman Who Can Smell Parkinson’s Disease in Patients Even Before Symptoms Appear May Help Researchers Develop New Clinical Laboratory Test

She worked with researchers at the University of Manchester in England to identify volatile biomarkers for Parkinson’s disease that may lead to first noninvasive screening

Clinical pathologists and medical laboratories are used to working with certain biological indicators that drive diagnostics and clinical laboratory testing. Mostly, those biomarkers are contained within various liquid samples, such as blood and urine. But what if a person’s odor could accurately predict risk for certain diseases as well?

Far-fetched? That’s what Parkinson’s researcher Tilo Kunath, PhD, first thought when he was contacted by a woman who claimed she could “smell” Parkinson’s disease coming from her husband. Kunath is Group Leader, Reader in Regenerative Neurobiology, at the Center for Regenerative Medicine at the University of Edinburgh, and head of the Tilo Kunath Research Group, which focuses on how the protein, alpha-synuclein, causes degeneration of neurons in Parkinson’s patients, as well as on producing a cell-based therapy for Parkinson’s disease.

Joy Milne, a retired nurse from Perth, Scotland, is the women whose heightened sense of smell enabled her to detect her husband’s Parkinson’s a decade before he was diagnosed with the disease.

Of course, Milne did not know at the time that what she was smelling was in fact a disease. She told NPR that she first noticed that her husband’s smell had changed from “his lovely male musk smell,” which she’d noticed when they first met, into “this overpowering sort of nasty yeast smell.”

Frequent washing did not remove the odor and as time went on the smell became stronger. When aspects of her husband’s personality and sleep habits also began to change, Joy convinced her husband, Les Milne, an anesthetist, to seek a diagnosis, thinking he had a brain tumor. Les was diagnosed with Parkinson’s disease.

It was 20 years later, when the Milnes attended a Parkinson’s disease support group, that Joy recognized the same distinctive smell she had noticed on Les on the other members of the group. That’s when the Milnes first realized Joy’s heightened sense of smell was something quite unique and possibly unprecedented.  

Retired nurse Joy Milne of Perth, Scotland
Retired nurse Joy Milne (above) of Perth, Scotland, has an uncanny ability to diagnose Parkinson’s disease based on her highly sensitive sense of smell. Before her husband was diagnosed with the disease, she noticed a change in his smell. When she later recognized the same distinct odor among participants in a Parkinson’s support group, the Milnes asked scientists to investigate. (Photo copyright: NPR.)

Dogs Can Do It, Why Not Humans?

The concept that a disease gives off an aroma that can be detected by humans or animals is not far-fetched. As far back as 2013, Dark Daily was writing about such research. For example, in “C. diff-sniffing Beagle Dog Could Lead to Better Infection Control Outcomes in Hospitals and Nursing Homes,” we wrote about one hospital’s innovative approach to early detection of Clostridium difficile (C. diff) infection using a two-year-old beagle named Cliff that was faster at detecting certain infections than standard clinical laboratory tests used daily in hospitals throughout the world.

And in, “Researchers Determine That Individuals’ ‘Breathprints’ Are Unique; May Have Potential for Clinical Laboratory Testing When Coupled with Mass Spectrometry Technology,” we reported on research that showed a person’s breathprint is as unique as a fingerprint and may be as effective as bodily fluids in diagnosing diseases. The research also showed it was feasible to combine breath specimens and mass spectrometry to accurately identify disease, possibly leading to new diagnostic assays.

Thus, when the Milnes approached Dr. Kunath about Joy’s ability to “smell” Parkinson’s, they were on solid ground. However, he was not convinced.

“It just didn’t seem possible,” Kunath told NPR. “Why should Parkinson’s have an odor? You wouldn’t think neurodegenerative conditions such as Parkinson’s, or Alzheimer’s, would have an odor.”

But Kunath reconsidered after learning of research presented during the Experimental Biology annual meeting in 2019, which showed canines can in fact effectively detect lung cancer biomarkers in blood serum.

He contacted Milne and devised an experiment in which a group of people who had Parkinson’s disease, and another group that did not, would take home t-shirts and wear them overnight. The next day the t-shirts were assigned randomized numbers and put in a box. Milne then smelled each of the 12 t-shirts and assigned each one a score.

Kunath told NPR that Milne was “incredibly accurate.” She had misidentified only one shirt worn by a person in the control group. She incorrectly diagnosed the person with Parkinson’s. However, three months later, that man was in fact diagnosed with Parkinson’s, meaning Joy’s accuracy was 12-for-12.

“She was telling us this individual had Parkinson’s before he knew, before anybody knew,” Kunath told the BBC Scotland.

In an ensuing study, “Discovery of Volatile Biomarkers of Parkinson’s Disease from Sebum,” published in 2019 in ACS Central Science, the researchers describes the “distinct volatiles-associated signature” of Parkinson’s disease, which includes “altered levels of perillic aldehyde and eicosane, the smell of which was then described as being highly similar to the scent of Parkinson’s disease by our ‘Super Smeller.’” Joy Milne co-authored the study.

The concept of the human body producing volatile chemicals that can serve as biomarkers for disease or illness is not new to clinical laboratory professionals. The urea breath test, for example, to detect the presence of active H. pylori bacteria in the stomach is a longstanding example of one such diagnostic test.

Inspired by Milne’s accuracy, Kunath enlisted the help of Perdita Barran, PhD, Director of the Michael Barber Center for Collaborative Mass Spectrometry at the University of Manchester in England, to identify the specific compounds that contributed to the smell Joy had detected on her husband and the other Parkinson’s patients.

Barran led a larger Manchester University study which was published on ChemRxiv, titled, “Sebum: A Window into Dysregulation of Mitochondrial Metabolism in Parkinson’s Disease,” which was funded by a Michael J. Fox research grant (12921). Barran and her research team, which included Milne, “found 10 compounds linked to Parkinson’s by using mass spectrometry and other techniques” on skin sebum samples, reported NPR.

“We really want to know what is behind this and what are the molecules. And then, [determine if] the molecules [can] be used as some sort of diagnostic test,” Kunath told NPR.

A Definitive, Noninvasive Test for Parkinson’s?

The UK researchers discovered in the skin sebum volatile biomarkers of Parkinson’s disease that may lead to development of the first definitive test for the disease.

Katherine Crawford, Scotland Director of Parkinson’s UK, aka the Parkinson’s Disease Society of the United Kingdom, said a noninvasive diagnostic test for Parkinson’s would be game changing.

“We still effectively diagnose it today the way that Dr. James Parkinson diagnosed it in 1817, which is by observing people and their symptoms,” Crawford told BBC Scotland. “A diagnostic test like this could cut through so much of that, enable people to go in and see a consultant, have a simple swab test and come out with a clear diagnosis of Parkinson’s.”

“It wouldn’t have happened without Joy,” Barran told BBC Scotland. “For all the serendipity, it was Joy and Les who were absolutely convinced that what she could smell would be something that could be used in a clinical context, and so now we are beginning to do that.”

A viable, working diagnostic test based on these new biomarkers may be years away. Nevertheless, clinical laboratory leaders will want to follow the ongoing efforts toward development of a noninvasive swab test for Parkinson’s disease. Such a breakthrough would revolutionize Parkinson’s testing and might never have come to light without the persistence of a woman with an extremely sensitive sense of smell.

—Andrea Downing Peck

Related Information:

Her Incredible Sense of Smell Is Helping Scientists Find New Ways to Diagnose Disease

Discovery of Volatile Biomarkers of Parkinson’s Disease from Sebum

Parkinson’s Smell Test Explained by Science

Scientists Sniff Out Parkinson’s Disease Smell

The Woman Who Can Smell Parkinson’s Disease

Sebum: A Window into Dysregulation of Mitochondrial Metabolism in Parkinson’s Disease

Accuracy of Canine Scent Detection of Lung Cancer in Blood Serum

C. diff-sniffing Beagle Dog Could Lead to Better Infection Control Outcomes in Hospitals and Nursing Homes

Researchers Determine That Individuals’ ‘Breathprints’ Are Unique; May Have Potential for Clinical Laboratory Testing When Coupled with Mass Spectrometry Technology

University of Edinburgh Study Finds Antimicrobial Bacteria in Hospital Wastewater in Research That Has Implications for Microbiologists

The highly infectious bacteria can survive treatment at local sewage plants and enter the food chain of surrounding populations, the study revealed

Researchers at the University of Edinburgh (UE) in Scotland found large amounts of antimicrobial-resistance (AMR) genes in hospital wastewater. These findings will be of interest to microbiologists and clinical laboratory managers, as the scientists used metagenomics to learn “how abundances of AMR genes in hospital wastewater are related to clinical activity.”

The UE study sheds light on the types of bacteria in wastewater that goes down hospital pipes to sewage treatment plants. The study also revealed that not all infectious agents are killed after passing through waste treatment plants. Some bacteria with antimicrobial (or antibiotic) resistance survive to enter local food sources. 

The scientists concluded that the amount of AMR genes found in hospital wastewater was linked to patients’ length-of-stays and consumption of antimicrobial resistant bacteria while in the hospital.

Using Metagenomics to Surveille Hospital Patients

Antimicrobial resistance is creating super bacteria that are linked to increases in hospital-acquired infections (HAIs) nationwide. Dark Daily has reported many times on the growing danger of deadly antimicrobial resistant “super bugs,” which also have been found in hospital ICUs (see “Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed,” August 26, 2019.)

In a paper the University of Edinburgh published on medRxiv, the researchers wrote: “There was a higher abundance of antimicrobial-resistance genes in the hospital wastewater samples when compared to Seafield community sewage works … Sewage treatment does not completely eradicate antimicrobial-resistance genes and thus antimicrobial-resistance genes can enter the food chain through water and the use of [processed] sewage sludge in agriculture. As hospital wastewater contains inpatient bodily waste, we hypothesized that it could be used as a representation of inpatient community carriage of antimicrobial resistance and as such may be a useful surveillance tool.”

Additionally, they wrote, “Using metagenomics to identify the full range of AMR genes in hospital wastewater could represent a useful surveillance tool to monitor hospital AMR gene outflow and guide environmental policy on AMR.”

AMR bacteria also are being spread by human touch throughout city subways, bus terminals, and mass transportation, making it difficult for the Centers for Disease Control and Prevention (CDC) to identify the source of the outbreak and track and contain it. This has led microbiologists to conduct similar studies using genetic sequencing to identify ways to track pathogens through city infrastructures and transportation systems. (See, “Microbiologists at Weill Cornell Use Next-Generation Gene Sequencing to Map the Microbiome of New York City Subways,” December 13, 2013.)

Antimicrobial stewardship programs are becoming increasingly critical to preventing the spread of AMR bacteria. “By having those programs, [there are] documented cases of decreased antibiotic resistance within organisms causing these infections,” Paul Fey, PhD, of the University of Nebraska Medical Center, told MedPage Today. “This is another indicator of how all hospitals need to implement stewardship programs to have a good handle on decreasing antibiotic use.” [Photo copyright: University of Nebraska.]

Don’t Waste the Wastewater

Antibiotic resistance occurs when bacteria change in response to medications to prevent and treat bacterial infections, according to a World Health Organization (WHO) fact sheet. The CDC estimates that more than 23,000 people die annually from two million antibiotic-resistance infections.

Wastewater, the UE scientists suggest, should not go to waste. It could be leveraged to improve hospitals’ detection of patients with antimicrobial resistance, as well as to boost environment antimicrobial-resistance polices.

They used metagenomics (the study of genetic material relative to environmental samples) to compare the antimicrobial-resistance genes in hospital wastewater against wastewater from community sewage points. 

The UE researchers:

  • First collected samples over a 24-hour period from various areas in a tertiary hospital;
  • They then obtained community sewage samples from various locations around Seafield, Scotland;
  • Finally, they complete the genetic sequencing on an Illumina HiSeq4000 System.

The researchers reported these findings:

  • 181 clinical isolates were identified in the samples of wastewater;
  • 1,047 unique bacterial genes were detected across all samples;
  • 19 genes made up more than 60% of bacteria in samples;
  • Overriding bacteria identified as Pseudomonas and Acinetobacter environmental samples (Pseudomonas fluorescens and Acinetobacter johnsonii) were most likely from hospital pipes;
  • Gut-related bacteria—Faecalibacterium, Bacteroides, Bifidobacterium, and Escherichia, were more prevalent in the hospital samples than in those from the community;
  • Antimicrobial-resistance genes increased with longer length of patient stays, which “likely reflects transmission amongst hospital inpatients,” researchers noted. 

Fey suggests that further research into using sequencing technology to monitor patients is warranted.

“I think that monitoring each patient and sequencing their bowel flora is more likely where we’ll be able to see if there’s a significant carriage of antibiotic-resistant organisms,” Fey told MedPage Today. “In five years or so, sequencing could become so cheap that we could monitor every patient like that.”

Fey was not involved in the University of Edinburgh research.

Given the rate at which AMR bacteria spreads, finding antibiotic-resistance genes in hospital wastewater may not be all that surprising. Still, the University of Edinburgh study could lead to cost-effective ways to test the genes of bacteria, which then could enable researchers to explore different sources of infection and determine how bacteria move through the environment.

And, perhaps most important, the study suggests clinical laboratories have many opportunities to help eliminate infections and slow antibiotic resistance. Microbiologists can help move their organizations forward too, along with infection control colleagues.  

—Donna Marie Pocius

Related Information:

Secrets of the Hospital Underbelly: Abundance of Antimicrobial-Resistance Genes in Hospital Wastewater Reflects Hospital Microbial Use and Inpatient Length of Stay

Antibiotic-Resistance Genes Trouble Hospital Water; Study Emphasizes Importance of Antibiotic Stewardship Programs, Expert Says

Fact Sheet: Antibiotic Resistance

United States Gathers 350 Commitments to Combat Antibiotic Resistance, Action Must Continue

Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenemase Resistance

Dark Daily E-briefings: Hospital-Acquired Infections

NIH Study Reveals Surprising New Source of Antibiotic Resistance that Will Interest Microbiologists and Medical Laboratory Scientists

Venter’s Research Team Creates an Artificial Cell and Reports That 32% of Genes Are Life-Essential but Contain Unknown Functions

Understanding the unknown functions of these genes may lead to the creation of new diagnostic tests for clinical laboratories and anatomic pathology groups

Once again, J. Craig Venter, PhD, is charting new ground in gene sequencing and genomic science. This time his research team has built upon the first synthetic cell they created in 2010 to build a more sophisticated synthetic cell. Their findings from this work may give pathologists and medical laboratory scientists new tools to diagnose disease.

Recently the research team at the J. Craig Venter Institute (JCVI) and Synthetic Genomics, Inc. (SGI) published their latest findings. Among the things they learned is that science still does not understand the functions of about a third of the genes required for their synthetic cells to function. (more…)

;