News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

At-Home Microbiology Tests Trigger Concerns about Scientific Value and Impact from Microbiologists and Clinical Laboratory Scientists

As science learns more about the human genome, new companies are being formed to offer consumers at-home microbiology test kits, a development many microbiologists consider worrisome

Can consumers rely on the accuracy of at-home microbiology tests that promise to give them useful information about their microbiome? That’s just one question being asked by clinical laboratory scientists and microbiologists in response to the proliferation of companies offering such tests.

Advances in gene sequencing technology, new insights into the human microbiome, and more sophisticated software to analyze test data are fueling the growth of companies that want to offer consumers at-home microbiology test kits. And no less an authority than the American Academy of Microbiology (ASM) states in a 2017 report, that knowledge of the microbiome can revolutionize healthcare as “insights acquired from NGS [next-generation sequencing] methods can be exploited to improve our health as individuals and the greater public health.”

The move towards more “precision medicine” in terms of diagnostics and treatments, according to the ASM, is based in part on microbial genomic testing, which when combined with a patient’s medical history, clinical signs, symptoms, and human genomic information, can help  “create treatment pathways that are individualized and tailored for each patient.”

However, critics worry about overreach given current limitations in the analysis and diagnosis of microbiome data produced by testing, particularly in connection to the rising number of consumer self-testing services aimed at the general public.

No Science to Back Up Claims of Accuracy for At-Home Microbiology Tests

A recent article from the MIT Technology Review, notes that these at-home microbiology testing services, while exciting, can only offer limited information—despite claims. Companies such as Thryve, for example, offer visitors to their website a $99 gut health kit, which they recommend using four times per year. The goal is to use the data to target regimens of supplements and “correct” problems the testing identifies.

Another company, uBiome, offers physician-ordered and customer-requested test kits that the company suggests can determine risk factors for disease. However, critics suggest science cannot currently back up those claims. Concerns about the value of such consumer self-testing, the legitimacy of recommendations based on “diagnoses,” and basic health privacy are leading to serious concerns within the scientific community.

Ethics and Realistic Expectations

One additional criticism of consumer self-testing of microbiomes involves privacy. An NPR article on the American Gut Project (AGP), which Dark Daily reported on in previous e-briefings, notes that those tested may be disclosing quite a bit of information about themselves. The article’s author points out basic privacy and value concerns about the AGP. American Gut Project is a crowd-funded “citizen science project,” and part of the larger global Earth Microbiome Project, described as a “massively collaborative effort to characterize microbial life on this planet.” (See Dark Daily, “Get the Poop on Organisms Living in Your Gut with a New Consumer Laboratory Test Offered by American Gut and uBiome,” September 9, 2015.)

One example of an at-home microbiology test marketed to consumers is the SmartGut by uBiome (above). It is “a microbiome screening test that uses precision sequencing technology to identify key microorganisms in your gut, both pathogenic and commensal.” (Photo copyright: uBiome.)

In her blog post on the Center for Microbiome Informatics and Therapeutics’ website, Tami Lieberman, PhD, claims that “microbiome profiling is messy (and I’m not just talking about the sample collection).” Lieberman submitted samples to American Gut and uBiome for her article. Lieberman’s skepticism of the services is based on two things:

1.     There is no “gold standard” for microbiome DNA profiling technology or analysis methods at this time; and,

2.     Human microbiomes are in her words, “a moving target, changing with age and diet.”

Thus, the best these services can provide, Lieberman argues, is a snapshot of gut microbes at one period of time. Additionally, she claims there is a danger in trying to interpret personal microbiome data. And, Lieberman is not alone in her criticism.

Science Must Be ‘On Guard’ Against Hype about the Usefulness of Microbiome Tests

Martin Blaser, MD, PhD, Director of the Human Microbiome Project at New York University, also criticizes at-home self-tests of microbiomes. In a New York Times article, Blaser points out that the enormous amount of data generated by microbiome testing is “basically uninterpretable” at this time. According to Blaser, scientists can chart the presence, absence, and levels of specific microbiomes and note correlations, but there is no way to know if changes to microbiomes in a particular patient signal disease risk, progression, or development.

The study of microbiomes is still in its nascent stages, so despite there being significant information correlating the presence or absence of specific microbes to diseases, Blaser states that scientists are currently unsure of what that correlation implies. They simply know the correlations exist.

Although discoveries related to human microbiomes, such as the link between fecal bacteria and infant intellect, insights into the connections between gut microbiome and colorectal cancer, and the tenuous and debatable connection between obesity and microbiome diversity make for interesting news, science must be—as William Hanage, PhD, Director of Harvard’s Department of Epidemiology writes in an article for Nature—on guard against allowing microbiomics to be “drowned in a tsunami of its own hype.”

The “gold rush” of companies offering consumers an at-home microbiology test requires skepticism, notes Hanage. He further urges researchers, press officers, and journalists to remain objective. Hanage writes, “Press officers must stop exaggerating results, and journalists must stop swallowing them whole.” Hanage warns that scientists should be on guard against the “buzz around the field” distorting scientific priorities and misleading the public at large. So, while studies of the human microbiome do carry vast potential for medical laboratories and pathologists to change healthcare and healthcare diagnostics, a healthy dose of skepticism is still the best medicine.

  —Amanda Warren

Related Information:

Changing Diagnostic Paradigms for Microbiology, May 2017

Gut Check: Scientists are Wary of At-Home Microbiome Tests

Getting Your Microbes Analyzed Raises Big Privacy Issues

American Gut Project Crowdfunds $1 Million to Study the Human Microbiome

Which Bacteria Are In My Poop? It depends Where You Look

Can I Test the Health of My Gut Microbiota?

Study: Fecal Bacteria Linked with Greater Infant Thinking Skills

Microbiology: Microbiome Science Needs a Healthy Dose of Skepticism

Get the Poop on Organisms Living in Your Gut with a New Consumer Laboratory Test Offered by American Gut and uBiome

Clinical Laboratories Might Soon Be ‘Diagnosing’ Obesity and Guiding Therapies That Utilize Engineered Microbes

Mayo Clinic and Whole Biome Announce Collaboration to Research the Role of the Human Microbiome in Women’s Diseases Using Unique Medical Laboratory Tests

Expanding Knowledge about the Human Microbiome Will Lead to New Clinical Pathology Laboratory Tests

Effort to Map Human Microbiome Will Generate Useful New Clinical Lab Tests for Pathologists

Winners of the Qualcomm Tricorder XPRIZE for Medical Laboratory Testing Were Announced in April, Five Years After the Competition Began

More than 312 teams applied for the completion and the prize-winning hand-held device uses clinical laboratory assays to diagnose up to 34 different medical conditions

Star Trek fans among clinical laboratory manager and pathologist will be excited to learn that the winners of the Qualcomm Tricorder XPRIZE were announced earlier this year, five years after the contest began. The purpose of the XPRIZE competition was to challenge teams to create a mobile integrated diagnostic device that weighed less than five pounds and had the ability to monitor health metrics and diagnose 13 specific health conditions. The premise for the contest was inspired by the Star Trek medical tricorder that was first conceptualized on the television show “Star Trek” in the 1960s.

In the popular science-fiction show, the tricorder was a multifunctional hand-held device used for sensor scanning, data analysis, and recording data. The name “tricorder” was an abbreviation for the full name of the gadget, “tri-function recorder,” which referred to the three primary functions of the device.

Based in Culver City, Calif, the XPRIZE Foundation is a non-profit organization that creates and oversees prestigious technological competitions for the purpose of prompting innovations that could benefit humanity.

Handheld Device That Can Perform Multiple Clinical Laboratory Assays

The Qualcomm Tricorder XPRIZE competition was launched in January 2012. Participants had until August 2013 to register for the contest. The qualifying round was held the following August. Three hundred and twelve teams entered the competition. Qualifiers had until March 2015 to design and build their prototypes. Consumer testing on the products began in September 2016 and the winners were announced in April 2017.

The top prize of $2.6 million was awarded to Final Frontier Medical Devices, the team led by Basil Harris, MD, an emergency room physician with a PhD in Materials Engineering led the team, along with his network engineer brother, George Harris.

Basil Leaf Technologies, founded by Basil Harris, MD, PhD, FACEP (above center); and his brother George, a Network Engineer (second from left), is a medical technology company headquartered in Paoli, Pa. Their winning entry, called DxtER (pronounced Dexter), is a small FDA-approved group of medical devices that enable consumers to diagnose illnesses at home or remotely and share that data with healthcare providers. (Photo copyright: XPRIZE Foundation.)

The collection of FDA-approved devices that make up the “tricorder” includes sensors designed to gather data about vital signs, body chemistry, and biological functions. The DxtER device walks patients through the self-diagnosis of 34 medical conditions. The instruments include:

·       A compact spirometer that calculates lung strength;

·       A test kit for Mononucleosis;

·       A heart rate monitor;

·       A respiration monitor;

·       The DxtER Orb, a digital stethoscope that also serves as a thermometer; and

·       An artificial intelligence (AI) “engine” that diagnoses medical conditions.

DxtER communicates with a tablet and/or smartphone-based app. Since the components are FDA-approved, diagnostic test results can be taken directly to healthcare professionals.

“You can [receive the] results and take them to the ER or to your physician or whoever’s helping you, and they can build off those results,” George Harris explained in an Engadget article. “They don’t have to start back at square one. They can jump off at that point and move on with their healthcare.”

Basil Leaf Technologies’ DxtER “tricorder” (above) enables the user to self-diagnose up to 34 medical conditions. Each individual component is FDA-approved, so hospital physicians can rely on the accuracy of the test results. (Photo copyright: XPRIZE Foundation.)

According to the contest website, “at the heart of DxtER is an artificially intelligent engine that learned to diagnose by integrating years of experience in clinical emergency medicine with data analysis from actual patients having a variety of medical conditions and outcomes.”

“It is very exciting that our vision of mobile, personalized patient-centric healthcare is getting closer to becoming a reality thanks to the great work of the Qualcomm Tricorder XPRIZE teams,” declared Paul E. Jacobs, PhD, Executive Chairman of Qualcomm Incorporated (NASDAQ:QCOM) in an XPRIZE press release. “Creating technology breakthroughs in an industry as complex as healthcare is quite a milestone, and what these teams accomplished is a great stepping stone to making mobile healthcare a viable option across the world.”

DxtER Functions Like a Mobile Medical Laboratory

In addition to the $2.6-million prize, Qualcomm Foundation is giving the Basil Leaf team $3.8 million to further develop the device. This amount includes a:

·       $2.5 million proposal grant to the University of California San Diego; and a

·       $1.6-million gift from the Roddenberry Foundation to adapt the tricorder for hospital use in the developing world.

The XPRIZE competition required contestants to create a tricorder device that could accurately diagnose 13 health conditions. This included 10 core conditions and a choice of three elective health conditions. The devices also needed to be able to acquire five real-time vital signs:

1.     Blood pressure;

2.     Heart rate;

3.     Oxygen saturation;

4.     Respiratory rate; and

5.     Temperature.

The 10 core conditions the devices had to be able to identify were:

1.     Anemia;

2.     Atrial Fibrillation;

3.     Chronic Obstructive Pulmonary Disease;

4.     Diabetes Mellitus;

5.     Leukocytosis;

6.     Pneumonia;

7.     Otitis;

8.     Sleep Apnea;

9.     Urinary Tract Infection; and

10.  Absence of condition.

The contest also required participants to choose three elective conditions from the following list:

·       Cholesterol screen;

·       Food-borne illness;

·       Human Immunodeficiency Virus (HIV) screen;

·       Hypertension;

·       Hypothyroidism/Hyperthyroidism;

·       Melanoma;

·       Mononucleosis;

·       Pertussis;

·       Shingles, and

·       Strep throat.

It is notable that the TriCorder XPRIZE—with its $2.6 million prize—generated entries from 312 teams. Pathologists and clinical laboratory managers can take this high number of entrants as a sign that the ongoing advances in technology are poised to support a new generation of very small medical lab testing devices. Thus, miniaturized diagnostic technologies, when combined with more sophisticated computing chips and software are making it simpler and more feasible to pack multiple diagnostic instruments into a hand-held package.

—JP Schlingman

Related Information:

Final Frontier Medical Devices

Family-led Team Takes Top Prize in Qualcomm Tricorder XPRIZE Competition for Consumer Medical Device Inspired by Star Trek

The Contest to Build the First Star Trek Tricorder Has a Winner [Infographic]

XPRIZE Winner Says its Tricorder is Better Than ‘Star Trek’

Underdog Team Wins Millions in Competition to Make Real-Life Tricorder

Star Trek’s “Tricorder” Medical Scanner Just Got Closer to Becoming a Reality

Qualcomm Tricorder XPRIZE Goes to US Team for Device Fusing AI, IoT, Health

Tricorder X Prize – Wikipedia

Star Trek’s Tricorder, Realized? This Device Uses AI to Diagnose Medical Conditions

The Race to Build a Real Star Trek Tricorder

Qualcomm TriCorder XPRIZE Selects 10 Finalists: Next Step Is for Devices to Diagnose Patients using Clinical Laboratory Test Technologies and Similar Diagnostic Tools

Wearable Tattoo Can Monitor Blood Alcohol Levels with Diagnostic Technologies Familiar to Clinical Laboratory Scientists

The minute electronic device accurately determines alcohol blood levels by sampling the wearer’s sweat

During a night out on the town, what better way for individuals to monitor their consumption of alcohol and blood alcohol levels than by wearing a tattoo that can monitor blood alcohol levels? That’s the vision of researchers at the University of California, San Diego (UCSD).

This temporary tattoo would be capable of helping an individual determine, “Am I drunk or just slightly buzzed. Am I becoming a public nuisance? Am I able to drive right now?” An innovative, cutting-edge device is being designed to help consumers definitively answer those questions.

Clinical chemists, medical laboratory scientists, and pathologists will be interested in the diagnostic technologies used to accomplish this testing. The device is basically a malleable, temporary tattoo that adheres to the skin and induces sweat. It is equipped with a flexible electronic circuit board and a hydrogel patch that contains pilocarpine, a sweat-inducing drug. The electrodes in the device collect a sample to determine blood alcohol content. That data is then wirelessly transmitted to a mobile device, such as a laptop or a smartphone, and provides an accurate reading of whether or not a person is inebriated. (more…)

Qualcomm TriCorder XPRIZE Selects 10 Finalists: Next Step Is for Devices to Diagnose Patients using Clinical Laboratory Test Technologies and Similar Diagnostic Tools

This new device will likely to be disruptive to clinical laboratories, as it can noninvasively diagnose at least 16 diseases and conditions

Pathologists and clinical laboratory managers who are fans of Star Trek will be interested to learn that a real-life “Tricorder” medical diagnostic device may be just around the corner. Officials of the XPRIZE organization recently announced 10 finalists who are competing to build a working Tricorder capable of monitoring multiple vital signs and identifying specific disease states.

Erik Viirre, M.D., Ph.D., Technical and Medical Director for the Qualcomm Tricorder XPRIZE, announced the 10 finalists last fall. Their devices may have a disruptive impact on medical laboratories, particularly if they lead to inexpensive, self-diagnostic tools that are capable of immediately running most lab tests.

Launched in January 2012 by the XPRIZE Foundation, which organizes international competitions to advance innovation, this life sciences contest to make the tricorder a reality is offering $10 million (£6m) in prize money. (See Dark Daily, “Pathologists and Clinical Lab Scientists: Design a Modern “Tricorder” and You Could Win $10 Million From the XPRIZE Foundation!,” March 22, 2013.) (more…)

;