Innovative in-office test, when integrated with UTI microbiology testing performed by clinical laboratories, could contribute to better patient outcomes
Treatments for certain bacterial infections are becoming less effective due to antimicrobial resistance (AMR). Now, after a 10-year-long worldwide competition, the first multi-million euro prize for an accurate, rapid, and cost effective clinical laboratory test for diagnosing and treating urinary tract infections (UTIs) went to Sysmex Corporation’s subsidiary Astrego. This milestone event could benefit tens of millions of people who suffer from UTIs annually.
Astrego, of Uppsala, Sweden, won the €8 million (US$8.19 million) Longitude Prize on AMR for its PA-100 AST System. The new diagnostic technology will “transform treatment of urinary tract infections and brings the power of clinical laboratory testing into a doctor’s office,” according to a news release from Challenges Works, the United Kingdom-based organization that organized and awarded the prize.
The Astrego system is, according to Challenge Works’ website, a “game-changing solution” in “a novel point-of-care diagnostic test that rapidly and accurately identifies the presence of a bacterial infection and the right antibiotic to prescribe.”
“We launched the Longitude Prize on AMR (in 2014) to create the urgent ‘pull’ needed to get innovators working on one of the biggest life-and-death challenges facing humanity. Hundreds of teams [that] competed with multiple solutions [are] now close to market thanks to the prize,” said Tris Dyson, Managing Director, Challenge Works, in a news release.
The new diagnostic technology “could herald a ‘sea change’ in antibiotic use” according to the judges of the competition, The Guardian reported.
“The PA-100 AST System (above) creates a future where patients can quickly and accurately get a diagnosis and the correct treatment when they visit the doctor,” said Sherry Taylor, MD, UK National Health Service, Temple Fortune Medical Group, London, in the Challenge Works news release. “Accurate, rapid diagnosis of bacterial infections that help doctors and health workers to manage and target antibiotics, will slow the development and spread of antibiotic resistant infections, improve healthcare and save potentially millions of lives,” she added. In-office point-of-care systems like the PA-100 may reduce the number of doctor orders for UTI tests to clinical laboratories while contributing to better patient outcomes. (Photo copyright: Sysmex.)
How the Test Works
In the UK, people are treated for UTIs more than any other infection. It takes about three days for doctors to receive the results from traditional microbiology testing. They then prescribe an antibiotic to treat the infection. But about half of “infection-causing bacteria are resistant to at least one antibiotic,” according to a news release from the Geneva, Switzerland-based NESTA Foundation which funded the Longitude Prize on AMR.
“It’s impossible to overstate how critical it is to address AMR [antimicrobial resistance]. By 2050, it is predicted to cause 10 million deaths a year—matching those caused by cancer—and cost $1 trillion in additional health costs,” the news release states.
UTI are more common in women and the reason for eight million healthcare appointments annually in the US, according to Medscape.
The PA-100 AST system makes it possible for patients to provide a small urine sample during their appointments with doctors, find out if they have a bacterial infection in 15 minutes, and receive the “right antibiotic to treat it within 45 minutes,” NESTA said. Sysmex describes the PA-100 AST as an “automated phenotypic analyzer, based on EUCAST standards,” that combines “phase-contrast microscopy and nanofluidics to make available antibiograms at point of care.” It enables healthcare providers to perform antimicrobial susceptibility testing (AST) in-office rather than sending out urine samples to microbiology laboratories.
The systems works as follows, according to the Sysmex website:
As a urine sample passes through the chip, “single bacterial cells are trapped in individual channels.”
Meanwhile, “larger cellular components” are filtered and kept out of the nanofluidic chip.
Contrast-phase microscopy enables real-time monitoring of cell growth. “Resistant bacteria keep a higher growth rate during incubation, while susceptible ones grow slowly or lyse.”
Expert computer software identifies that bacterial strain, delivers an “easy to interpret antibiogram after assay completion” and provides an “informed prescription decision” on which antibiotic is expected to fight the infection.
“The PA-100 AST System challenges bacteria present in a patient’s urine with microscopic quantities of antibiotics in tiny channels embedded in a cartridge the size of a smartphone,” said Mikael Olsson, CEO and co-founder of Sysmex Astrego, in The Microbiologist.
“We rapidly pinpoint whether a bacterial infection is present and identify which antibiotic will actually kill the bugs, guiding doctors only to prescribe antibiotics that will be effective,” he added.
Sysmex is conducting more studies in the UK and working with regulators in Europe for clearances, according to Olsson.
Older Antibiotics May Make Comeback
It’s possible that use of the PA-100 system to identify the best antibiotic to treat infections could lead to a resurgence in the use of previously retired antibiotics.
“Roughly 25-30% of patients have infections resistant to older first-line antibiotics which have been retired as a result; this means the remaining 70-75% of patients could still benefit from those older drugs,” Pathology in Practice reported, adding, “Since the PA-100 AST System identifies which specific antibiotic can treat an infection, it will likely allow retired antibiotics to be brought back into service because the test is able to demonstrate when an infection is susceptible to their effects.”
Many people could benefit from the older antibiotics, Challenge Works noted.
Revolutionizing Healthcare
The Sysmex Astrego’s PA-100 AST System is a significant development.
“Currently, I send the urine sample off for analysis, and it usually takes around three days to come back with results,” said Sherry Taylor, MD, UK National Health Service, Temple Fortune Medical Group, London, in the Challenge Works news release. “Having a bedside test that would enable rapid diagnosis through antibiotic susceptibility testing would revolutionize general practice and patient care. It’s all about using antibiotics only when necessary and appropriate.”
Each individual test costs about €25 (US$25.72), The Guardian reported, adding that ramped up production may lower the price.
The PA-100 AST System is the latest example of a diagnostic/therapeutic solution developed in Europe rather than the US, which is often slower to award regulatory clearance.
It also is another test that will be performed outside of traditional clinical laboratory settings, demonstrating the trend to move medical laboratory tests closer to patients.
November workshop to teach Clinical Lab 2.0 to forward-thinkers among clinical laboratories, IVD manufacturers, and lab IT vendors offered many examples where clinical laboratory diagnostics can add value and improve patient outcomes
DATELINE: ALBUQUERQUE, New Mexico—Here in this mile-high city, a special Project Santa Fe Workshop devoted to teaching the principles of Clinical Lab 2.0 attracted an impressive roster of innovators and forward-thinkers in clinical laboratory medicine. In attendance were leaders from a select number of the nation’s first-rank health systems and hospitals, along with executives from In Vitro diagnostics (IVD) manufacturers, lab IT companies, other lab service companies, attendees from the Centers for Disease Control and Prevention, and from institutions in Canada, Germany, Israel, India, and the UK.
Their common goal was to learn more about the emerging clinical and business model for medical laboratories known as “Clinical Lab 2.0.” A key objective of the workshop was to help those lab leaders in attendance develop strategic action plans for their own lab organizations, so as to take advantage of the insights coming from the vast information streams generated by their clinical laboratories. These services would be in support the evolving needs of health systems, hospitals physicians, and health insurers to more effectively provide integrated patient-centered clinical care.
Medical Laboratories Can Use Clinical Lab 2.0 as a Path to Adding Value
Clinical Lab 2.0 is the clinical and business model of the future for medical laboratories, assert the developers of this concept. “Clinical Lab 2.0 describes the attributes needed by all medical laboratories that want to succeed in a healthcare system organized to provide precision medicine, keep people out of hospitals, and where providers—including labs—are reimbursed based on the value they provide,” stated Khosrow Shotorbani, CEO of TriCore Reference Laboratories, one of the organizers of the Project Santa Fe Clinical Lab 2.0 Workshop.
“Clinical Lab 2.0 is the path medical labs will need to follow if they are to continue providing relevant lab testing services and generate the reimbursement necessary for them to maintain a high level of clinical excellence and financial stability going forward,” he added. “This is the next generation of medical laboratory organization and operation.”
Lab 1.0 Was Lab Clinical/Business Model for 50 Years
For more than 50 years, Clinical Lab 1.0 was the model for labs,” noted James Crawford, MD, PhD, Executive Director and Senior Vice President of Laboratory Services at Northwell Health Laboratories and an organizer of the Project Santa Fe Clinical Lab 2.0 Workshop. “Lab 1.0 is transactional, focusing on generating high quality analytical data on specimens received, but without assembling these data into integrative clinical care programs. In the simplest sense, Clinical Lab 1.0 focused on generating ever-greater numbers of specimens to drive down average cost-per-test, while maximizing revenue in a fee-for-service system.
This chart shows the attributes of Clinical Lab 1.0 and compares those to the attributes of Clinical Lab 2.0. Lab 1.0 is transactional and based on increasing test volume to lower costs and maximize fee-for-service revenue. Clinical Lab 2.0 is integrative in ways that add value to lab testing services. (Graphic copyright Project Santa Fe.)
“But fee-for-service payment is going away,” he said. “Increasingly, clinical laboratories will be paid based on the value they provide. This payment can be in the form of bundled reimbursement, as a per-member-per-month payment, or as a share of the budgeted payment made to a health system, an accountable care organization (ACO), or a multispecialty provider network. As these alternative forms of provider payment become dominant, to earn a fair share of reimbursement, all medical laboratories will need a clinical strategy to deliver lab testing services that measurably contribute to improved patient outcomes while reducing the overall cost of care. This requires looking at medical laboratories’ contribution to effective delivery of the full dollar of the healthcare spend, not just the three-cents-on-the-dollar representing laboratory testing.”
Innovators in Clinical Laboratory Industry Identify New Ways to Add Value
There are already a handful of innovative clinical laboratory organizations that have clinical experience in moving past the Lab 1.0 paradigm of reporting an accurate test result within the accepted turnaround time. Leaders within these labs are collaborating with physicians and frontline care givers specifically to help them better utilize lab tests in ways that directly improve the speed and accuracy of the overall diagnostic sequence, as well as achieving therapeutic optimization as rapidly as possible. These collaborations are tracking the improvement in patient outcomes while demonstrating how better use of lab tests can lower the total cost per episode of care.
During the Clinical Lab 2.0 workshop, case studies were presented demonstrating how clinical laboratory leaders are taking the first steps to practice Clinical Lab 2.0 so as to achieve added value with medical laboratory tests. The case studies included:
· A project at Henry Ford Health to collaborate with physicians to more appropriately utilize lab tests and build consensus in support of a new lab test formulary.
· A multi-hospital initiative at Northwell Health to collaborate with physicians and nurses in the use of creating testing to make earlier, more accurate diagnoses of acute kidney injury during inpatient admissions, and better guide decisions to treat.
· A partnership involving TriCore Reference Laboratory and certain health insurers in New Mexico where the laboratory—using lab test data (some generated by emergency room testing) and other clinical data—alerts the insurers to women who are pregnant, thus allowing the insurers to provide timely guidance to the women’s care teams with the goal of improving prenatal care.
The Project Santa Fe Clinical Lab 2.0 Workshop convened on November 13-14 in Albuquerque, N.M. A broad spectrum of innovative professionals from the five Project Santa Fe member laboratories (above) were there to teach the lessons learned from their first successful efforts to collaborate with physicians and create added value from medical laboratory diagnostics. Other attendees included progressive lab leaders from several of the nation’s most prominent health systems, along with thought leaders from the IVD, lab software, and lab association sectors. (Photo copyright Project Santa Fe.)
Project Santa Fe Workshop: A Well-Attended Lab ‘Think Tank’
Participants attending the Clinical Lab 2.0 workshop included hospital lab administrators, pathologists, and clinical laboratory industry executives. The importance of this workshop is reflected in the educational grants and financial support provided by leading in vitro diagnostics manufacturers, lab IT companies, and other lab industry vendors. The lab industry vendors included:
Described as a think-tank venture, the organizers are committed to implementing projects that demonstrate how lab tests can be used in ways that add value, and then publish the resulting projects, along with data about improved patient outcomes and reductions in healthcare costs, in peer-reviewed journals. Multi-institutional studies will be required to validate the findings and outcomes from the added-value clinical collaborations initiated at the different medical laboratory organizations participating in Project Santa Fe.
Another primary goal is to share the lessons learned from these innovative projects with other like-minded pathologists, lab administrators, and lab managers. In May, Project Santa Fe organizers led a one-day workshop to teach Clinical Lab 2.0 at the Executive War College on Laboratory and Pathology Management. The workshop in Albuquerque on November 13-14 was the second learning opportunity available to medical laboratory professionals. A November 2018 workshop is planned.
Dark Daily gets tour of clinical lab and anatomic pathology activities
DATELINE: Omaha, Nebraska—This city may be in America’s heartland and best-known for corn-fed beef and billionaire-investor Warren Buffet, but its premier academic center clinical pathology laboratory is breaking new ground in several important ways.
Using Lean and Value Process Maps in the Clinical Laboratory
Across the United States, every academic center Department of Pathology has activities and goals which distinguish it in specific ways when compared to other pathology departments. During this site visit, Dark Daily recognized three distinct laboratory management activities taking place in the clinical pathology laboratory at the 525-bed University of Nebraska Medical Center laboratory.